Micro-burst Decreasing in Layer3 Network for Low-Latency Traffic

draft-du-detnet-layer3-low-latency-03 Zongpeng Du <u>duzongpeng@chinamobile.com</u> Peng Liu <u>liupengyjy@chinamobile.com</u> IETF111

Modifications

 Make some clarifications about "the purpose of the draft"

• Add some clarifications about "large scale"

 Add some texts in "Section 5. Analysis of the Proposed Method"

The purpose of the draft

- Point out the problem:
 - In large scale ISP networks, we need a simple and scalable deterministic mechanism
 - The large-scale network means the network is relatively large, serving for a lot of users, and thus there are **many dynamic flows** in the network
 - In a large-scale network, it is hard to do per-flow shaping for the intermediate nodes because they have high pressure on forwarding on the data plane
- Propose a potential direction for the problem:
 - per flow scheduling on the edge nodes
 - per interface scheduling on the intermediate nodes
 - a large aggregation granularity to ensure the scalability

Different levels of deterministic

- For "Industrial" networks, critical SLAs are required
 - TSN scheduling mechanisms (solution1) is suitable
 - but they are more complex, have relatively lower scalability, and are not likely be adopted in a relatively near future in a large-scale network
- For "Consumer" networks, relatively lower levels of deterministic are required
 - Statistical multiplexing mechanisms (solution2) in a relatively light load network
 - for example, critical traffic is marked with a high priority, and there are not too much critical traffic in the network
 - Maybe a mechanism (solution3) based on the method in this document can do a better job than the solution2 in the aspect of higher deterministic

Comparisons of three kinds of mechanism

	three mechanisms	levels of deterministic	scalability and easy to be adopted	deterministic scenarioes that can support
solution1	TSN scheduling mechanisms, such as ATS	high	not very good	all scenarioes
solution2	Statistical multiplexing mechanisms	low	good	part of
solution3	a mechanism based on the method in this document	relatively high	relatively good	relatively larger than soluiton2

 In conclusion, the proposed method has a better scalability than traditional TSN mechanisms, and a better reliability than the statistical multiplexing based method.

Thanks for listening

Welcome for comments