
Patrick McManus (co-chair)

Kirsty Paine (co-chair)

<dispatch-chairs@ietf.org>

DISPATCH WG
ART Area

Virtual Meeting

IETF-111

Note Well

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to
point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF
"contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

● By participating in the IETF, you agree to follow IETF processes and policies.

● If you are aware that any IETF contribution is covered by patents or patent applications that are owned or
controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.

● As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic
records of meetings may be made public.

● Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.

● As a participant or attendee, you agree to work respectfully with other participants; please contact the
ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or
ADs:

● BCP 9 (Internet Standards Process)
● BCP 25 (Working Group processes)
● BCP 25 (Anti-Harassment Procedures)
● BCP 54 (Code of Conduct)
● BCP 78 (Copyright)
● BCP 79 (Patents, Participation)
● https://www.ietf.org/privacy-policy/ (Privacy Policy)

2

IETF 111 Virtual Meeting Participation

This session is being recorded
● Participation Tips:

○ Please use a headset!

○ Please add yourselves to the Meetecho queue to speak. Please say your name before speaking

○ Side discussions in Jabber are fine, but please consider bringing important points to the queue.

○ Blue Sheets will be taken from the Meetecho roster

● Some useful links:

○ DISPATCH Session: https://gce.conf.meetecho.com/conference/?group=dispatch

○ Notes: https://codimd.ietf.org/notes-ietf-111-dispatch

○ Jabber (Mirrored in Meetecho): xmpp:dispatch@jabber.ietf.org?join

○ Meetecho Participant Guide: https://www.ietf.org/how/meetings/technology/meetecho-guide-
participant/

○ Meetecho Documentation: https://www.ietf.org/media/documents/IETF111-Meetecho-
Documentation.pdf

○ Meetecho Tutorial Video: https://youtu.be/0SPRhhHAg2I

3

IETF 111 DISPATCH
Virtual Meeting

26 July 2021

Agenda (Part 1 of 2)

• 1900-1905 Status and agenda bash (Chairs and ADs)

DISPATCH

• 1905-1925 -- JWS Clear Text JSON Signature Option (JWS/CT) (Samuel
Erdtman)

• 1925-1935 -- image/webp mime-type registration (James Zern)

• 1935-1955 -- NICER (usage profile of ICE) (Harald Alvestrand)

• 1955-2005 -- SDP Security Descriptions is NOT RECOMMENDED and
Historic (John Mattsson)

• 2005-2015 -- The "large file in email" problem (Bron Gondwana)

Agenda (Part 2 of 2)

ART Area

• 2015-2025 – BoF, updates and other meetings of interest (ADs)

• 2025-2030 -- FFV1 v4 - new codec spec from CELLAR WG (Michael
Richardson)

• 2030-2040 -- IPv6 Zone Identifiers in URIs (RFC6874bis) (Brian
Carpenter)

• 2040-2050 -- Reliable (unreliable) streaming protocol (Kirill Pugin)

AoB

A Reminder of Mailing lists

• General discussion of ART topics: art@ietf.org

• Discussion of work proposals that need to be dispatched:
dispatch@ietf.org

DISPATCH Topics

JWS Clear Text JSON
Signature Option

B. Jordan, Ed. - Broadcom
S. Erdtman - Spotify AB

A. Rundgren - Independent

Abstract

JWS Clear Text JSON Signature Option describes a method for extending JSON
Web Signature (JWS) standard, called JWS/CT. By combining the detached mode
of JWS with the JSON Canonicalization Scheme (JCS). Maintaining Signed JSON
data in JSON format.

Why JSON Cleartext signatures

In many situations JSON data structures are already defined. To have the option to add a
signature without packaging the data within the signature is important to improve backwards
compatibility and adoption of signed data.

Large data structures in JSON format that are shared across and between organisations, and
signed in later steps and reshared is not feasible with solutions that packages data within the
signature, the nesting becomes unbearable.

Adding multiple signatures and nested data structures in different combinations is significantly
easier to handle when the signature is packaged within the data and not the other way around.

If needing/wanting to transmit unsigned data it is easy to omit the signature instead of creating a
JWS package and then use the “none” algorithm.

Maintaining JSON data as is while in transport is makes readability and debugging easier.

Constructs
JSON Canonicalization Schema and

Detached JWS

RFC-8785 (JCS) Canonicalization

Human readable format

{
"numbers": [333333333.33333329, 1E30, 4.50, 2e-3],
"string": "\u20ac$\u000F\u000aA'\u0042\u0022\u005c\\\"\/",
"literals": [null, true, false]

}

Canonical format (100% valid JSON):

{"numbers":[333333333.3333333,1e+30,4.5,0.002],"string":"
€$\u000f\nA'B\"\\\\\"/","literals":[null,true,false]}

Detach JWS Signature

Normal/Classic JWS Signature

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJqb2UiLA0KICJleHAi
OjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVl
fQ.dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Detached JWS Signature

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9..dBjftJeZ4CVP-mB92K27uhbUJU
1p1r_wW1gFWFOEjXk

JWS/CT Signing Process

JWS/CT Signing Process

Create the JSON Object to be Signed

Canonicalize the JSON Object to be Signed

Generate a JWS String

Assemble the Signed JSON Object

{
 "statement": "Hello signed world!",
 "otherProperties": [2000, true]
}

JWS/CT Signing Process

Create the JSON Object to be Signed

Canonicalize the JSON Object to be Signed

Generate a JWS String

Assemble the Signed JSON Object

{"otherProperties":[2000,true],"state
ment":"Hello signed world!"}

JWS/CT Signing Process

Create the JSON Object to be Signed

Canonicalize the JSON Object to be Signed

Generate a JWS String

Assemble the Signed JSON Object

eyJhbGciOiJIUzI1NiJ9..VHVItCBCb
8Q5CI-49imarDtJeSxH2uLU0DhqQ
P5Zjw4

JWS/CT Signing Process

Create the JSON Object to be Signed

Canonicalize the JSON Object to be Signed

Generate a JWS String

Assemble the Signed JSON Object

{
 "statement": "Hello signed world!",
 "otherProperties": [2000, true],
 "signature": "eyJhbGciOiJIU..."
}

JWS/CT Verification
Process

JWS/CT Verification Process

Parse the Signed JSON Object

Fetch the Signature Property String

Remove the Signature Property String

Canonicalize the Remaining JSON Object

Validate the JWS String

{
 "statement": "Hello signed world!",
 "otherProperties": [2000, true],
 "signature": "eyJhbGciOiJIU..."
}

JWS/CT Verification Process

Parse the Signed JSON Object

Fetch the Signature Property String

Remove the Signature Property String

Canonicalize the Remaining JSON Object

Validate the JWS String

eyJhbGciOiJIUzI1NiJ9..VHVItCBCb
8Q5CI-49imarDtJeSxH2uLU0DhqQ
P5Zjw4

JWS/CT Verification Process

Parse the Signed JSON Object

Fetch the Signature Property String

Remove the Signature Property String

Canonicalize the Remaining JSON Object

Validate the JWS String

{
 "statement": "Hello signed world!",
 "otherProperties": [2000, true]
}

JWS/CT Verification Process

Parse the Signed JSON Object

Fetch the Signature Property String

Remove the Signature Property String

Canonicalize the Remaining JSON Object

Validate the JWS String

{"otherProperties":[2000,true],"state
ment":"Hello signed world!"}

JWS/CT Verification Process

eyJhbGciOiJIUzI1NiJ9.eyJvdGhlclB
yb3BlcnRpZXMiOlsyMDAwLHRydW
VdLCJzdGF0ZW1lbnQiOiJIZWxsby
BzaWduZWQgd29ybGQhIn0.VHVIt
CBCb8Q5CI-49imarDtJeSxH2uLU0
DhqQP5Zjw4

Parse the Signed JSON Object

Fetch the Signature Property String

Remove the Signature Property String

Canonicalize the Remaining JSON Object

Validate the JWS String

JWS/CT Application Notes

The document does not dictate signature attribute name or location. It is up to the
application to choose a suitable name and location for the signature attribute in its
context.

The document does not define counter signatures, arrays of signatures or
detached signatures, but it exemplifies how it could be done.

Path forward

We suggest that this work is moved forward under ISE, because:

● Canonicalization (RFC-8785) is published as an Independent Submission.
● JOSE WG is not active and the list has previously expressed limited interest

in this work.

Path forward

We suggest that this work is moved forward under ISE, because:

● Canonicalization (RFC-8785) is published as an Independent Submission.
● JOSE WG is not active and the list has previously expressed limited interest

in this work.

However

● If you are interested we would love to get reviews

Thank you!
Questions?
Comments!

Proprietary + Confidential

image/webp

WebP Media Type
Registration

James Zern (Google)

Proprietary + ConfidentialProprietary + Confidential

https://developers.google.com/speed/webp
● Lossy Compression (2010)
● Lossless Compression (2012)
● Alpha (Transparency) (2012)
● Animation (2013)

WebP Image Format

https://developers.google.com/speed/webp

Proprietary + ConfidentialProprietary + Confidential

● All major browsers
● Image editing applications

○ GIMP
○ ImageMagick
○ Photoshop (plugin)
○ …

● image/webp use (Debian)

Availability

https://wiki.debian.org/MimeTypesSupport/PackageList
https://caniuse.com/webp

Proprietary + ConfidentialProprietary + Confidential

WG Proposal: DISPATCH
IANA Considerations: IANA has updated the "Image Media
Types" registry to include 'image/webp' as described in
draft-zern-webp

Working Group Discussion

https://datatracker.ietf.org/doc/draft-zern-webp/

NICER - Nicer ICE based
on RTT

Jonas Oreland, Harald Alvestrand
Google

 Problem Statement

ICE tries many paths.

It then selects one, and keeps it until
ICE restart.

This is not always optimal.
Wi-Fi in house

good
bad

gone

weak

Basic Idea of NICER

- Rather than throwing away non-best paths, keep them (or some of them)
- Keep probes running on them to give an idea of current quality
- When one path deteriorates, switch to another one
- If the bad path turns good again, switch back

Meshes well with Trickle-ICE: Making new candidates (and candidate pair sets)
available whenever a new interface turns up.

Offers many opportunities for heuristic tuning and optimization

Requires a few changes in order to be interoperable

NICER: Required extensions to the ICE specification

● Permit the ICE controller to change the selected candidate pair
○ draft-thatcher-ice-renomination was one attempt at specifying this

● Be explicit that ICE candidate pairs with connectivity are not discarded
○ Those that never connect, or that are suspected of being duplicates, can be discarded

● Support Trickle ICE (RFC 8838)

We believe that with these extensions, any NICER ICE controller endpoint should
be interoperable with any NICER ICE controlled endpoint.

NICER: Possible optimizations in the ICE protocol

There are a number of changes one could do in order to make NICER perform
better.

NICER sends a large number of pings, so the size of the ping is important.

● Shorter checksums
● Omitting parameters whose value is unchanging after the first ping

NICER could also make good use of more information about the network on the
ICE controlled side - however, this raises some privacy concerns.

NICER: ICE Controller behavior examples

NICER has to make two important decisions:

- When to ping
- When to switch

The ping decision may take into account phase of the call (ping a lot at first, more
rarely later), stability of ping results (varying RTT may indicate a rapidly fluctuating
network condition, requiring more pings for reliability), and other factors.

The switch decision may take into account RTT, ping failure rate, cost of interface
(prefer free over $-per-gigabyte), and other factors

NICER: Tricks and lessons

NICER will send many pings. One thing we learned is that on mobile devices,
activating a radio costs a lot of power budget. Thus - rather than running all pairs
on individual timers, bunch up all the pings that use the same radio, so that they
are sent at the same time, activating only once.

NICER will switch earlier than “switch-after-break” schemes based on ICE restart,
but swtiching has a cost too - a certain hysteresis needs to be applied so that the
connection does not oscillate.

NICER will not probe with a full load, so when the channel switches, congestion
may occur. Bandwidth management needs to integrate with NICER.

NICER: Open issues

NICER works best when it has maximum information available. But it has to run in
the ICE Controller, since that’s the one that initiates switches.

This works well for client to datacenter, since all the network complexity will be on
the client side; it takes the controller role.

It works less well with peer-to-peer, unless the peers can exchange more
information than is presently done.

NICER: Next steps

We seek the DISPATCH group’s advice on one of the following:

- This is a bad idea because of <reason>. Do not speak of it again.
- This is something best done in private, but documented in public. Ask for an

ind-sub Informational to tell others what you are doing.
- This is a small good idea. We should ask for an AD-sponsored PS.
- This is a big good idea. We should dispatch it to <Insert WG here>.
- This is a big good idea. We shoul reactivate or create a WG for it.

We do not have a preference at this time.

1
Limbo Queen by Dave Hogg https://www.flickr.com/photos/davehogg/873564673
Creative Commons Attribution 2.0 Generic (CC BY 2.0) https://creativecommons.org/licenses/by/2.0/

IETF 110
John Preuß Mattsson

Analysis of Usage Limits
on AEAD Algorithms
IETF 110, SAAG, John Preuß Mattsson

Radar Speed Sign by Richard Drdul https://commons.wikimedia.org/wiki/File:Radar_speed_sign_-_close-up_-_over_limit.jpg
Creative Commons Attribution-ShareAlike 2.0 Generic (CC BY 2.0) https://creativecommons.org/licenses/by-sa/2.0/
One image has been cropped and mirrored. Two images have been combined

Weakest Link by Yuri Samoilov https://yuri.samoilov.online/
Creative Commons Attribution 3.0 Unported (CC BY 3.0) https://creativecommons.org/licenses/by/3.0/

SDP Security Descriptions is
NOT RECOMMENDED and Historic
draft-mattsson-dispatch-sdes-dont-dont-dont
IETF 111, DISPATCH, John Preuß Mattsson, Magnus Westerlund

https://www.flickr.com/photos/davehogg/873564673
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Radar_speed_sign_-_close-up_-_over_limit.jpg
https://creativecommons.org/licenses/by-sa/2.0/

SDES has many known security weaknesses…
— Security Descriptions is vulnerable to SSRC collisions, which leads to so called "two-time pad" [RFC7201].

— Worse than using a 32-bit MAC, as "two-time pad" may lead to loss of both confidentiality and integrity.
— In addition to happening by itself with a non-negligible probability, the SSRC collision attack can also be

triggered by an attacker in different ways. See e.g. [Replay-SDES].

— As Security Descriptions use plaintext keys [RFC7201], the keys often end up in logs and data retention
systems. These systems are often accessible by many more user accounts than Lawful Interception (LI)
systems.

— As explained in [Baiting-SDES] the model of slitting the security between two independent layers is flawed,
is vulnerable to the Baiting attack [I-D.kaplan-sip-baiting-attack], and "This situation leads to security
vulnerability and attacker could get master key by spoofing in unencrypted path.”

— Security Descriptions [RFC4568] requires use of an encapsulating data-security protocol on each hop in the
path giving at best hop-by-hop security. Several deployed systems are known to use Security Descriptions
without any encapsulating data-security protocol to protect the SDP messages. A huge problem with SDP
Security Descriptions is that the endpoints have no way of verifying if the path is protected or not.

2

SDES has many known security weaknesses…

3

— If the encapsulating data-security protocol without Diffie-Hellman is used, access to long-term keys
enables attackers to compromise past and future sessions. Entities can get access to (and have gotten
access to) long-term key material in many different ways: physical attacks, hacking, software bugs,
social engineering attacks, espionage, weaknesses injected in hardware, software, or standards, buying
access, or demanding access to keying material with or without a court order.

— The situation is maybe best summarized by [Hacking-SDES] that writes: ”the false sense of security
might be more dangerous than simply leaving your voice calls unencrypted.”

— New systems and recommendations like WebRTC [RFC8827], PERC [RFC8871], and [RFC8862] do
mandate support of DTLS-SRTP [RFC5764]. WebRTC forbids support of SDP Security Descriptions:
"WebRTC implementations MUST NOT offer SDP security descriptions [RFC4568] or select it if offered.”

— Using DTLS-SRTP with an ephemeral Diffie-Hellman key exchange (DHE or ECDHE) forces attackers to
perform dynamic key exfiltration instead of static key exfiltration [RFC7624]. As required by
[RFC7258], work on IETF protocols needs to consider the effects of pervasive monitoring and mitigate
them when possible.

https://datatracker.ietf.org/doc/html/rfc8827
https://datatracker.ietf.org/doc/html/rfc8871
https://datatracker.ietf.org/doc/html/rfc8862
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc4568

The question is not if SDES should be phased out but how

4

— The security level SDP Security Description provide is not on the level expected by an IETF in force
proposed standard and there exist alternatives.

— Many implementations, devices, and libraries support DTLS-SRTP.

— Current draft suggestion:

This document reclassifies [RFC4568] (SDP Security Descriptions) to Historic Status and
also obsoletes RFC 4568.

This document updates [RFC7201] (Options for Securing RTP Sessions) to note that SDP
Security Descriptions SHOULD NOT be used.

This document specifies that use of the SDP Security Descriptions [RFC4568] is NOT
RECOMMENDED. Existing deployments SHOULD mandate support of DTLS-SRTP [RFC5764] and long-
term phase out use of SDP Security Descriptions. If it is known by out-of-band means that
the other party supports DTLS-SRTP, then SDP Security Descriptions MUST NOT be offered or
accepted. If it is not known if the other party supports DTLS-SRTP, both DTLS-SRTP and SDP
Security Descriptions SHOULD be offered during a transition period. New deployments SHOULD
forbid support of Security Descriptions [RFC4568].

— Should this be handled in MMUSIC WG or somewhere else?

1/15

The big file emailing problem

DISPATCH @IETF 111 / 26 Jul 2021
San Francciso / Virtual

Bron Gondwana <brong@fastmailteam.com>

mailto:brong@fastmailteam.com

2/15

Problem Statement
● End-users want to send files to each other
● Emails are limited to about 10Mb, as they have

been for the past 20+ years
● The file sizes that end-users create keep

getting bigger (4k video!)
● There is no standard solution

3/15

Solutions

4/15

Solutions

5/15

Solutions

6/15

Problems to solve

1. Upload of large files (restart)

2. Ownership/Responsibility of data

3. Discoverability/Embedability
– Disposition: attachment vs inline
– The virus-check / link follow problem
– Search: “emails with attachments”

7/15

1. Upload of large files

● This is a general problem
→ httpbis?

→ httpapi?

● IMAP / SMTP doesn’t support it
● We’d love this for JMAP

– My blob draft allows server-side concatenation so you can duct tape it
by uploading chunks and joining them server side, but it’s horrible.

8/15

2. Ownership / Responsibility
● With “regular” emails, entire content is sent.
● Sender may keep a copy, but it’s not necessary for the protocol.
● iCloud gives an expiry date, others don’t even do that.
● Need a general way for recipient system to take a copy and tie

lifetime to email lifetime.
● Centralised systems can upload and refcount, but email is

decentralised.

9/15

3. Discoverability

Gmail:

10/15

3. Discoverability

iCloud:

11/15

3. Discoverability

Outlook:

12/15

3. Discoverability
● Arbitrarily following links from emails is dangerous

(GET side effects, content can change, timing/privacy
leaks)

● Hard to know which links are “attached files”
● Lifetime uncertain
● Content can change after delivery (bypass virus and

spam checks)

13/15

Proposal
● Upload work – to one of the http groups
● Ownership/Discovery: new MIME type, something like: application/remote-

content
● Digest for content integrity protection and immutability
● Expiry timestamp tied to link
● UUID for deduplication and data lifetime
● Content-ID linkability within the message
● Recipient server SHOULD download a copy to virus check and then retain it

for the lifetime of the email

14/15

e.g.

15/15

Conclusion
● Has this already been solved somewhere and I just don’t know where to look?
● Am I barking up entirely the wrong tree?

– I assume SMTP isn’t going to allow gigabyte files
– I assume users are going to keep wanting to email larger and larger files.
– I assume that email recipients want the lifetime of the files they have been sent to be identical to

the emails themselves (so if they don’t delete the email, they don’t lose the file)
– We need this for calendar event attachments too… and presumably every other messaging

system has the same problem.

● Is there interest in doing work in this space?
– What is a sensible group for it if so?
– Who wants to get involved?

CELLAR

Codec Encoding for LossLess Archiving and
Realtime transmission

Michael Richardson
<mcr+ietf @ sandelman.ca>

Spencer Dawkins
<spencerdawkins.ietf@gmail.com>

Co-chairs

Running Code
● Matroska and EBML go back to 2002

– Google WebM is fork

● Matroska is a container for multimedia, widely
supported, but like a lot of open source, has
some issues

● -> need for Rough Consensus

The story so far
● Following in the success of OPUS, a WG was formed in 2015.
● Published RFC7894 (EBML) in 2020
● FFv1 (v0,1,3) in RFC-editor Queue (RFC9043)
● FFv1 v4 being worked on
● Matroska document pretty firm, probably finish in 2021.
● Almost all CELLAR WG meetings have been virtual interims,

fourth Tuesday of the month.
– Open source authors, mostly working after hours
– But, also includes archivists for whom this is part of their day job

What next?
● FFV1 v4 goals include

– Better Compression and or Speed
– BAYER support to efficiently store RAW color CCD images
– Better error resilience
– Arbitrary color spaces
– Limit worst case size after compression

● Arbitrary color spaces: Allow storage of any 2D plane of samples not limited to red, green, blue, alpha or
transforms of these.

● Examples: Infrared, Radar, surface vectors, height, age, temperature, charge, elasticity, velocity,
acceleration

● Also: attestation.
– What format should autonomous vehicles make their records in, such that they are compatible with courts world

wide?

1

Representing IPv6 Zone
Identifiers in Uniform
Resource Identifiers

draft-carpenter-6man-rfc6874bis

Brian Carpenter
Bob Hinden

IETF 111
July 2021

2

We discussed this just
recently...

... which
became
RFC 6874

3

Motivation
• Literal addresses in URIs are mainly intended for

operational and diagnostic use.

• Sometimes, there is a need to make tests that relate
to IPv6 link local addresses via a specific interface on
the host.

• A web browser may be the handiest tool for this

• It may be the only tool for reconfiguring
misconfigured devices

• At least one application (CUPS printing) requires
HTTP usage of link local addresses via a specific
interface.

4

Fail
 For link-local addresses, RFC 4007 defines a text

representation of the Zone Identifier (in practice
equal to an interface name):

fe80::abcd%eth0

 Widely supported and used in IPv6-land

 RFC 6874 defined a mapping for the Zone ID in
URI syntax.

 No known current browsers support it.

 The browser community (WHATWG) decided
this explicitly.

5

Problems with RFC6874 (1)
 Modifies the IP-literal branch of the ABNF for URIs

(RFC 3986)

 http://[fe80::abcd%25eth0] becomes legal

 using %25 as separator, i.e. RFC 4007 notation
with URI escaping

 This prevents cut and paste (e.g. from ping to URL)

 Arguably, required because % is always an escape
character in URIs

 Arguably, unnecessary if parsers follow ABNF
rigidly

 Proposal: no change

6

Problems with RFC6874 (2)
 Requires hosts to delete the Zone ID from

outgoing URIs (in the HTTP Host header)

 Violates the normal behaviour of HTTP/1.1
(RFC 7230)

 At the least, awkward to code

 Breaks CUPS

 Proposal: delete this requirement

7

Problems with RFC6874 (3)
 Suggests URL parsers should support the %25

encoding but heuristically accept (for example)

fe80::abcd%eth0

instead of

fe80::abcd%25eth0

 Very tricky to code

 Confusing to users

 Proposal: delete this suggestion

8

Feedback requested
 IPv6 community, including operators
 ART Area
 W3C
 Browser implementers, including

WHATWG

RUSH
Reliable (Unreliable) Streaming

protocol
Kirill Pugin, Facebook

Motivation

- Applications have different latency requirements
- Live streaming of soccer match may be ok with 10-30 seconds latency
- Interactive live streams like Gaming would benefit from lower latency (< 5

seconds)
- Extensibility

- New audio/video codec support
- New client-server interactions
- Multi-strack support, including captions

2

Motivation

3

- Reliability
- Disconnects can happen due to network change, errors or server

maintenance
- Quality

- Better signals from network to adjust audio/video bitrate to network
conditions (Adaptive Bitrate selection)

Motivation (continued)

4

- RTC – focused on P2P and low latency upload, doesn’t give a choice
between latency and quality .

- RTMP – old, not flexible – no new codec support , some implementations don’t
support reconnect.

- DASH – doesn’t allow per-frame level control - hard to control latency.

RUSH

5

RUSH is a bidirectional application level protocol designed for live video ingestion
that runs on top of QUIC.

RUSH was built as a replacement for RTMP (Real-Time Messaging Protocol) with
the goal to provide support for new audio and video codecs, extensibility in the
form of new message types, and multi-track support.

In addition, RUSH gives applications option to control data delivery guarantees by
utilizing QUIC streams.

Wire format

Client and server exchanges information using frames. Frames can be different
types and data passed within a frame depends on its type.

Generic frame format:

6

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- ...
| 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 | 8 : 9 : 10: 11: 12: 13: 14: 15| 16|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- ...
| LENGTH | ID | T |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- ...

Wire format

- LENGTH(64): Each frame starts with length field, 64 bit size that tells size of the
frame in bytes.

- ID(64): 64 bit frame sequence number, every new frame MUST have a sequence
ID greater than that of the previous frame within the same track.

- TYPE(8): 1 byte representing type of the frame.

7

Frames

RUSH defines 7 frames types:

- Connect frame
- Connect Ack frame
- End Of Video frame
- Error frame
- Audio frame
- Video frame
- GoAway frame

8

How it works

There are two modes defined:

- Normal mode: RUSH uses one bidirectional QUIC stream to send data and
receive data. Using one stream guarantees reliable, in-order delivery -
applications can rely on QUIC transport layer to retransmit lost packets. The
performance characteristics of this mode are “similar” to RTMP over TCP.

9

Normal mode

- Client sends Connect frame on
bidirectional QUIC stream

- Client sends audio and video data
on the same QUIC stream

- Only one video can be send on the
same Connection

- Server replies with Connect Ack
frame on the same QUIC stream

- Frames arrive in order
- Client sends End Of Video frame

to indicate that video is done

10

Normal mode (what can go wrong?)

If V2 frame is lost all frames sent after it will be not available to the server, until V2
retransmitted - this is variation of head of line blocking and can affect latency and
introduce jitter.

11

How it works

- Multi-stream mode: To address head of line blocking and also to give more
control to application over delivery guarantees, in multi-stream mode, every
new frame is sent on new QUIC bidirectional stream. Since QUIC streams are
independent of each other this allows server receive data as it arrives and not
wait for retransmissions of lost packets.

12

Multi-stream mode

- Frames arrive out of order
- Server uses frame IDs within a

track to detect missing frames, it’s
up to server to “restore” order

- Client can stop retransmission by
resetting the corresponding QUIC
stream

13

How it works (reconnect)

- Client opens new QUIC connection
- Client closes currently used QUIC

connection.
- Client follows normal connect flow

and continue sending data on new
QUIC connection

14

How it works (reconnect) - Server sends GoAway method
- Client may send frames one current

connection
- Client establishes new connection
- Client follows normal connect flow

and continue sending data on new
QUIC connection

- NOTE: server may close connection
after sending GoAway, but before
client finished sending frames on
that connection - this may result in
data loss

15

Questions?

Meetings of Interest

• BoFs:

• Tues 1900 UTC DANE AutheNtication for Iot Service Hardening
(DANISH)

• Tues 2300 UTC Oblivious HTTP (ohttp)

• Weds 1900 UTC MAC Address Device Identification for Network
and Application Services (MADINAS)

• Thurs 2030 UTC SCIM Industry Next Steps (SINS)

• Fri 1900 UTC Application-aware Networking (APN)

• New ART WGs:

• Tues 1900 UTC Serialising Extended Data About Times and
Events (SEDATE)

Meetings of Interest

• Other Interesting Meetings (all times UTC):

• Mon 2300 Security Dispatch (secdispatch)

• Weds 1900 General Area Dispatch (gendispatch)

• Weds 2130 Stay Home Meet Only Online (shmoo)

• Thurs 2030 RFC Editor Future Development Program (rfcefdp)

• Thurs 2330 IAB Open Meeting (iabopen)

