
RUSH
Reliable (Unreliable) Streaming

protocol
Kirill Pugin, Facebook

Motivation

- Applications have different latency requirements
- Live streaming of soccer match may be ok with 10-30 seconds latency
- Interactive live streams like Gaming would benefit from lower latency (< 5

seconds)
- Extensibility

- New audio/video codec support
- New client-server interactions
- Multi-strack support, including captions

2

Motivation

3

- Reliability
- Disconnects can happen due to network change, errors or server

maintenance
- Quality

- Better signals from network to adjust audio/video bitrate to network
conditions (Adaptive Bitrate selection)

Motivation (continued)

4

- RTC – focused on P2P and low latency upload, doesn’t give a choice
between latency and quality .

- RTMP – old, not flexible – no new codec support , some implementations don’t
support reconnect.

- DASH – doesn’t allow per-frame level control - hard to control latency.

RUSH

5

RUSH is a bidirectional application level protocol designed for live video ingestion
that runs on top of QUIC.

RUSH was built as a replacement for RTMP (Real-Time Messaging Protocol) with
the goal to provide support for new audio and video codecs, extensibility in the
form of new message types, and multi-track support.

In addition, RUSH gives applications option to control data delivery guarantees by
utilizing QUIC streams.

Wire format

Client and server exchanges information using frames. Frames can be different
types and data passed within a frame depends on its type.

Generic frame format:

6

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- ...
| 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 | 8 : 9 : 10: 11: 12: 13: 14: 15| 16|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- ...
| LENGTH | ID | T |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- ...

Wire format

- LENGTH(64): Each frame starts with length field, 64 bit size that tells size of the
frame in bytes.

- ID(64): 64 bit frame sequence number, every new frame MUST have a sequence
ID greater than that of the previous frame within the same track.

- TYPE(8): 1 byte representing type of the frame.

7

Frames

RUSH defines 7 frames types:

- Connect frame
- Connect Ack frame
- End Of Video frame
- Error frame
- Audio frame
- Video frame
- GoAway frame

8

How it works

There are two modes defined:

- Normal mode: RUSH uses one bidirectional QUIC stream to send data and
receive data. Using one stream guarantees reliable, in-order delivery -
applications can rely on QUIC transport layer to retransmit lost packets. The
performance characteristics of this mode are “similar” to RTMP over TCP.

9

Normal mode

- Client sends Connect frame on
bidirectional QUIC stream

- Client sends audio and video data
on the same QUIC stream

- Only one video can be send on the
same Connection

- Server replies with Connect Ack
frame on the same QUIC stream

- Frames arrive in order
- Client sends End Of Video frame

to indicate that video is done

10

Normal mode (what can go wrong?)

If V2 frame is lost all frames sent after it will be not available to the server, until V2
retransmitted - this is variation of head of line blocking and can affect latency and
introduce jitter.

11

How it works

- Multi-stream mode: To address head of line blocking and also to give more
control to application over delivery guarantees, in multi-stream mode, every
new frame is sent on new QUIC bidirectional stream. Since QUIC streams are
independent of each other this allows server receive data as it arrives and not
wait for retransmissions of lost packets.

12

Multi-stream mode

- Frames arrive out of order
- Server uses frame IDs within a

track to detect missing frames, it’s
up to server to “restore” order

- Client can stop retransmission by
resetting the corresponding QUIC
stream

13

How it works (reconnect)

- Client opens new QUIC connection
- Client closes currently used QUIC

connection.
- Client follows normal connect flow

and continue sending data on new
QUIC connection

14

How it works (reconnect) - Server sends GoAway method
- Client may send frames one current

connection
- Client establishes new connection
- Client follows normal connect flow

and continue sending data on new
QUIC connection

- NOTE: server may close connection
after sending GoAway, but before
client finished sending frames on
that connection - this may result in
data loss

15

Questions?

