ANIMA DNS-SD compatible services auto
configuration

draft-eckert-anima-grasp-dnssd-02
draft-eckert-anima-services-dns-autoconfig-00

IETF111 July 2021

Toerless Eckert (Futurewei USA), tte@cs.fau.de
Mohamed Boucadair, mohamed.boucadair@orange.com
Christian Jacquenet, christian.jacquenet@orange.com
Michael H. Behringer, michael.h.behringer@gmail.com

Background

* Work already published around IETF100/IETF101, presentend to
ANIMA, DNS-SD.

* Author let it expire due to dependencies, priorities
* Needed to finish ANIMA charter round 1 work (8 RFC, 420 pages, published
May 2021).
* Now reviving the work, adding new co-authors, only minor textual
improvements (more work to come)

* Editorial change:

 draft-eckert-anima-noc-autoconfig changed to draft-eckert-anima-services-
dns-autoconfig after discussion with Ignas — term NOC not commonly the
correct term in some networks

DNS-SD “service” API

* No explicit IETF specification ?
* Maybe this is a good work item too.
* But many concrete, OS APIs.

 |deally would like API to be able to choose whether
to use RFC6763 or GRASP-DNSSD (or both).

* Some concrete APl may be too explicit, asking user to even
select transport (mDNS, Unicast).

* May not be 100% match

e Some unicast name related functions not possible
(TBD)

* Some extensions very useful and only easily possible
with GRASPs approach

* Flooding allows to introduce “distance” as
service selection parameter (DNS-SD only has
priority/wight, independent of distance to
service instance — based on unicast DNS).

DNS-SD client/server application

&

Query/resolve/announce/reply “DNS-SD Service”

AN

DNS-SD Abstract Service “API”

/\

<

iV

RFC 6763
Map APl to DNS RR

Service resolution
requires four (or more)
RR: PTR, SRV, TXT, AAAA

Map to DNS transport

GRASP-DNSSD
Map APl to GRASP

Service resolution
uses one GRASP
app message type

Map to GRASP
Messages: FLOOD, DISCOVER,

Unicast DNS | ... | mDNS

GRASP | - (otherif needed)

DNS-SD compatible GRASP objectives (CDDL):

objective-name //= SRV.<rfc6335-service-name>

objective-name //= NAME.<hostname> messeeessss If we ever need them
service-element = {
?(&(private:0) => ANY), ccceccscccccns Non-standardized extensions
?(&(msg-type:l => msg-type
?(&(service:2) => tStr),ceceeccccncns Service Name (“printer”)
*(&(instance:3) => tStr),ceceecccccnccs Instance Name (,my-kitchen-printer”)
?(&(domain:4) => tStr),ceececceccnn Empty = ANI/ACP (like .local), else VRF name
?(&(priority:5) => 0..65535),...c... As in DNS-SD
?(&(weight:6) => 0..65535), ceececne As in DNS-SD
*(&(kvpairs:7) => { *(tstr: any) },.. Key Value pairs — as in DNS-SD
?(&(range:8) => 0..255), ceeeecccns For distance based service selection
*(&(clocator:9) => clocator),.cceeeeess GRASP locators with context indicator (“VRF")
}
clocator = [context, locator-option] Permit locators to be in data plane
context = tStr (it iieeeeeeeeeeeectccstssccccccnse Empty: ACP, ,0” = ,VRF0”, else name of VRF
locator-option = <unchanged>cccceeeeeens from GRASP specification — IPv4/IPv6addr/port

msg-type = &(describe: 0, describe-request:1, enumerate:2, enumerate-request:3).

The End
... until there is more interest...

* Why, how ?

Autonomic Conrol Plane (ACP, RFC8994)

ACP is an autonomically built, hop-by-hop IPsec encrypted IPv6
“VRF-lite” across all router/switches (nodes) in a network

Runs even when nothing is configured or anything else is broken
(not mis-configurabl by operator/SDN controllers).

Primarily intended for OAM, automated network management,
M2M communications.

ACP IPv6 address is name of node: Automatically generated
during onboarding of node, attached to node ACP certificate.

Therefore no need for other node names (e.g.: DNS name)
BUT: ACP needs service discovery.

Primary services of interest: infrastructure service instances
used on many/all nodes to autoconfigure relevant services for
nodes themselves and/or network users:

Servers for protocols such as NetConf Zerotouch, TFTP,
Diameter, Radius, NTP, PTP, syslog, SNMP trap, DHCP, DNS, Ipfix
collector,...

-~

Network infrastructure \
With ACP inband OAM VRF

I/NOCII

“centralize”

Service
5 instance
ya

ACP secure virtual connections
With GRASP signaling
ACP: Autonomic Control Plane

draft-eckert-anima-services-dns-autoconfig

* Explicitly describes the services to autoconfigure
* NTP, syslog — required for bring-up of network and continuously.

* radius, diameter, tacacs+

* Servers announce themselves, all ACP nodes autoconfigure themselves to use the
“best” server they see via GRASP-DNSSD for authentication of any services across
the ACP that require user authentication

e SSHD / NetConf

* If/when radius and/or diameter servers are discovered, ACP routers start SSHD /
NetConf via TLS) and allow user-authentication via radisu/diameter

* Syslog, NTP
e Servers announce themselves, client autoconfigure NTP, syslog when they see such
service announcements

* These services may benefit from actually interacting in parallel with not only one-

best server, but multiple. How do we indicate this (extension of DNS-SD parameters
?)

* Various other... (Ipfix/Netflow, SNMP traps, Yang Push, OAM DNS, ...)

Service announcement/discovery
for network infrastructure services

 DNS-SD unicast not feasible / ideal

* Infeasible: No other system to discover DNS-SD servers. We are talking about the
root service discovery system in networks.

* Not ideal: Do not want a limited-redundancy, third arty dependency between service
announcer and consumer. Also difficult to autoconfigure a sufficient set of DNS
servers on routers/switches (limited functionality nodes).

* Network wide flooding/multicast is great for our purpose
* Limited number of services, no third party dependency, needed on most/every node
anyhow
* mDNS multihop flooding never standardized AFAIK

* Would also limit message transport to only DNS messages/transactions.
* And we (ANIMA) wanted something generic/extensible

* Past commercial attempts showed challenges building reliable multihop flooding
issues using DNS messages themelves to build loop-free flooding

GeneRic Autonomic Signaling Protocol (GRASP, RFC8990)

Only explaining what is relevenat here. GRASP does much more

* GRASP runs on every ACP node. Can unicast and flood GRASP messages.
* Loop prevention by GRASP message-id tracking (drop message if already forwarded)

* GRASP messages are CBOR messages

* Simple GRASP header (message types, e.g.: “FLOOD”)
* CBOR application specified CBOR payload (application is called “objective”)
* Message formats (objective parameters) specified in CDDL

, . _ GRASP Objective Names
Single services names registry

Registration Procedure(s)
Specification Required

* Define a DNS-SD GRASP application/objective group for Expert(s) _
. . . Michael Richardson
DNS-SD compatible service announcement/discovery Reference
[REC8990]
* Want to reuse as much as we can from DNS-SD concepts: Avallable Formats
* Services hamespace, parameters, semantic osv
* This started because we started to define our own GRASP Objective Name [Z] Reference [3]
services (objectives) IANA registry (IMHO for many cases EX0 [REC8990]
: EX1 [REC899(0]
unnecessarily) Exo (REC8990]
* Instead, draft would result in DNS service names to be EX3 [REC8990]
EX4 [REC8990]
reuseable across GRASP EX5 [REC8990]
. . . . EX6 [REC8990]
* Example with existing service “est” EX7 [REC8990]
e mDNS: _est. udp.local EX8 [REC8990]
EX9 [REC899(0]
* GRASP: SRV.est PrefixManager [REC8992]
* When this work becomes RFC, SRV.xxx names would irNefZ"c\:ﬂsnager'Params %
not need to be registered explicitly for GRASP SRV est [RFC8994]
anymore instead, they will have the same semantic as AN_Proxy [REC8995]
in the DNS service name registry. _AN_join_registrar [REC8995]

https://www.iana.org/assignments/grasp-parameters/grasp-
parameters.xhtml#objective-names

Expanding Applicability beyond ACP

* Easily defined to be reuseable for any existing network
* Work not specified, might be a separate GRASP draft

 GRASP forwarding agent is very simple, limited code

* Prototype code from Brian Carptenter (python)
* https://github.com/becarpenter/graspy/blob/master/AskDNSSD2.py
* https://github.com/becarpenter/graspy/blob/master/GetDNSSD2.py
* https://github.com/becarpenter/graspy/blob/master/graspy.pdf

* Instead of using (PKI + IPsec secured) ACP, one can define more lightweight
options:

* No new config for operator.

e E.g.: start GRASP automatically to every node known to be an IGP peer with GRASP
over TCP connection

* Or even TLS with same credentials as used for the IGP (if IGP uses credentials).

* This is “secure enough”, because the IGP must be secured, as it is the biggest, easy

attack vector against a network infrastructure.

e “Clamshell” ACL protection to limit who can be an IGP neighbor (trusted internal
interfaces) is common, and if it is acceptable for IGP, it is also acceptable for GRASP.

