
ANIMA	DNS-SD	compatible	services	auto	
configuration

draft-eckert-anima-grasp-dnssd-02
draft-eckert-anima-services-dns-autoconfig-00

IETF111	July	2021

Toerless	Eckert	(Futurewei USA),	tte@cs.fau.de
Mohamed	Boucadair,	mohamed.boucadair@orange.com
Christian	Jacquenet,	christian.jacquenet@orange.com
Michael	H.	Behringer,	michael.h.behringer@gmail.com

Background
• Work	already	published	around	IETF100/IETF101,	presentend	to	
ANIMA,	DNS-SD.
• Author	let	it	expire	due	to	dependencies,	priorities
• Needed	to	finish	ANIMA	charter	round	1	work	(8	RFC,	420	pages,	published	
May	2021).

• Now	reviving	the	work,	adding	new	co-authors,	only	minor	textual	
improvements	(more	work	to	come)
• Editorial	change:	
• draft-eckert-anima-noc-autoconfig	changed	to	draft-eckert-anima-services-
dns-autoconfig	after	discussion	with	Ignas	– term	NOC	not	commonly	the	
correct	term	in	some	networks

DNS-SD	“service”	API
• No	explicit	IETF	specification	?	

• Maybe	this	is	a	good	work	item	too.
• But	many	concrete,	OS	APIs.

• Ideally	would	like	API	to	be	able	to	choose	whether	
to	use	RFC6763	or	GRASP-DNSSD	(or	both).
• Some	concrete	API	may	be	too	explicit,	asking	user	to	even	

select	transport	(mDNS,	Unicast).

• May	not	be	100%	match
• Some	unicast	name	related	functions	not	possible	
(TBD)

• Some	extensions	very	useful	and	only	easily	possible	
with	GRASPs	approach
• Flooding	allows	to	introduce	“distance”	as	
service	selection	parameter	(DNS-SD	only	has	
priority/wight,	independent	of	distance	to	
service	instance	– based	on	unicast	DNS).

RFC	6763
Map	API	to	DNS	RR

Service	resolution
requires	four (or	more)
RR:	PTR,	SRV,	TXT,	AAAA

Map	to	DNS	transport

Query/resolve/announce/reply	“DNS-SD	Service”

GRASP-DNSSD
Map	API	to	GRASP

Service	resolution
uses	one GRASP
app	message	type

Map	to	GRASP
Messages:	FLOOD,	DISCOVER,	

Unicast	DNS mDNS… GRASP …	(other	if	needed)

DNS-SD	Abstract	Service	“API”

DNS-SD	client/server	application

DNS-SD	compatible	GRASP	objectives	(CDDL):
objective-name //= SRV.<rfc6335-service-name>
objective-name //= NAME.<hostname> ….......... If we ever need them
service-element = {

?(&(private:0) => any), Non-standardized extensions

?(&(msg-type:1 => msg-type
?(&(service:2) => tstr),............. Service Name (“printer“)

*(&(instance:3) => tstr),............. Instance Name („my-kitchen-printer“)

?(&(domain:4) => tstr),............. Empty = ANI/ACP (like .local), else VRF name
?(&(priority:5) => 0..65535),........ As in DNS-SD

?(&(weight:6) => 0..65535),........ As in DNS-SD
*(&(kvpairs:7) => { *(tstr: any) },.. Key Value pairs – as in DNS-SD

?(&(range:8) => 0..255),.......... For distance based service selection

*(&(clocator:9) => clocator),......... GRASP locators with context indicator (“VRF”)
}

clocator = [context, locator-option] Permit locators to be in data plane

context = tstr Empty: ACP, „0“ = „VRF0“, else name of VRF

locator-option = <unchanged> from GRASP specification – IPv4/IPv6addr/port

msg-type = &(describe: 0, describe-request:1, enumerate:2, enumerate-request:3).

The	End
…	until	there	is	more	interest...

• Why,	how	?

Autonomic	Conrol	Plane	(ACP,	RFC8994)
ACP	is	an	autonomically	built,	hop-by-hop	IPsec	encrypted	IPv6	
“VRF-lite”	across	all	router/switches	(nodes)	in	a	network
Runs	even	when	nothing	is	configured	or	anything	else	is	broken	
(not	mis-configurabl	by	operator/SDN	controllers).
Primarily	intended	for	OAM,	automated	network	management,	
M2M	communications.	
ACP	IPv6	address	is	name	of	node:	Automatically	generated	
during	onboarding	of	node,	attached	to	node	ACP	certificate.
Therefore	no	need	for	other	node	names	(e.g.:	DNS	name)
BUT:	ACP	needs	service	discovery.
Primary	services	of	interest:	infrastructure	service	instances	
used	on	many/all	nodes	to	autoconfigure	relevant	services	for	
nodes	themselves	and/or	network	users:
Servers	for	protocols	such	as	NetConf	Zerotouch,	TFTP,	
Diameter,	Radius,	NTP,	PTP,	syslog,	SNMP	trap,	DHCP,	DNS,	Ipfix	
collector,…

Domain
Certificate

Domain
Certificate

Domain
Certificate

Domain
Certificate

Domain
Certificate

Domain
Certificate

Domain
Certificate

Domain
Certificate

Domain
Certificate

“centralize”
Service
instance

“NOC”	

ACP	secure	virtual	connections
With	GRASP	signaling
ACP:	Autonomic	Control	Plane

Domain
Certificate

Domain
Certificate

Network	infrastructure
With	ACP	inband	OAM	VRF

draft-eckert-anima-services-dns-autoconfig
• Explicitly	describes	the	services	to	autoconfigure
• NTP,	syslog	– required	for	bring-up	of	network	and	continuously.	
• radius,	diameter,	tacacs+

• Servers	announce	themselves,	all	ACP	nodes	autoconfigure	themselves	to	use	the	
“best”	server	they	see	via	GRASP-DNSSD	for	authentication	of	any	services	across	
the	ACP	that	require	user	authentication

• SSHD	/	NetConf
• If/when	radius	and/or	diameter	servers	are	discovered,	ACP	routers	start	SSHD	/	
NetConf	via	TLS)	and	allow	user-authentication	via	radisu/diameter

• Syslog,	NTP
• Servers	announce	themselves,	client	autoconfigure	NTP,	syslog	when	they	see	such	
service	announcements

• These	services	may	benefit	from	actually	interacting	in	parallel	with	not	only	one-
best	server,	but	multiple.	How	do	we	indicate	this	(extension	of	DNS-SD	parameters	
?)

• Various	other…	(Ipfix/Netflow,	SNMP	traps,	Yang	Push,	OAM	DNS,	...)

Service	announcement/discovery	
for	network	infrastructure	services
• DNS-SD	unicast	not	feasible	/	ideal

• Infeasible:	No	other	system	to	discover	DNS-SD	servers.	We	are	talking	about	the	
root	service	discovery	system	in	networks.

• Not	ideal:	Do	not	want	a	limited-redundancy,	third	arty	dependency	between	service	
announcer	and	consumer.	Also	difficult	to	autoconfigure	a	sufficient	set	of	DNS	
servers	on	routers/switches	(limited	functionality	nodes).

• Network	wide	flooding/multicast	is	great	for	our	purpose
• Limited	number	of	services,	no	third	party	dependency,	needed	on	most/every	node	
anyhow

• mDNS	multihop	flooding	never	standardized	AFAIK
• Would	also	limit	message	transport	to	only	DNS	messages/transactions.

• And	we	(ANIMA)	wanted	something	generic/extensible
• Past	commercial	attempts	showed	challenges	building	reliable	multihop	flooding	
issues	using	DNS	messages	themelves	to	build	loop-free	flooding	

GeneRic	Autonomic	Signaling	Protocol		(GRASP,	RFC8990)
Only	explaining	what	is	relevenat	here.	GRASP	does	much	more

• GRASP	runs	on	every	ACP	node.	Can	unicast	and	flood	GRASP	messages.
• Loop	prevention	by	GRASP	message-id	tracking	(drop	message	if	already	forwarded)

• GRASP	messages	are	CBOR	messages
• Simple	GRASP	header	(message	types,	e.g.:	“FLOOD”)
• CBOR	application	specified	CBOR	payload	(application	is	called	“objective”)
• Message	formats	(objective	parameters)	specified	in	CDDL

Single	services	names	registry
• Define	a	DNS-SD	GRASP	application/objective	group		for	
DNS-SD	compatible	service	announcement/discovery

• Want	to	reuse	as	much	as	we	can	from	DNS-SD	concepts:
• Services	namespace,	parameters,	semantic
• This	started	because	we	started	to	define	our	own	GRASP	
services	(objectives)	IANA	registry	(IMHO	for	many	cases	
unnecessarily)

• Instead,	draft	would	result	in	DNS	service	names	to	be	
reuseable	across	GRASP

• Example	with	existing	service	“est”
• mDNS:				_est._udp.local
• GRASP:			SRV.est
• When	this	work	becomes	RFC,	SRV.xxx	names	would	
not	need	to	be	registered	explicitly	for	GRASP	
anymore	instead,	they	will	have	the	same	semantic	as	
in	the	DNS	service	name	registry.

https://www.iana.org/assignments/grasp-parameters/grasp-
parameters.xhtml#objective-names

Expanding	Applicability	beyond	ACP
• Easily	defined	to	be	reuseable	for	any	existing	network	

• Work	not	specified,	might	be	a	separate	GRASP	draft
• GRASP	forwarding	agent	is	very	simple,	limited	code

• Prototype	code	from	Brian	Carptenter	(python)
• https://github.com/becarpenter/graspy/blob/master/AskDNSSD2.py
• https://github.com/becarpenter/graspy/blob/master/GetDNSSD2.py
• https://github.com/becarpenter/graspy/blob/master/graspy.pdf

• Instead	of	using	(PKI	+	IPsec	secured)	ACP,	one	can	define	more	lightweight	
options:
• No	new	config	for	operator.
• E.g.:	start	GRASP	automatically	to	every	node	known	to	be	an	IGP	peer	with	GRASP	
over	TCP	connection
• Or	even	TLS	with	same	credentials	as	used	for	the	IGP	(if	IGP	uses	credentials).

• This	is	“secure	enough”,	because	the	IGP	must	be	secured,	as	it	is	the	biggest,	easy	
attack	vector	against	a	network	infrastructure.

• “Clamshell”	ACL		protection	to	limit	who	can	be	an	IGP	neighbor	(trusted	internal	
interfaces)	is	common,	and	if	it	is	acceptable	for	IGP,	it	is	also	acceptable	for	GRASP.

