
Completing the DNS
Service Discovery

Architecture
Ted Lemon

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What is DNS-SD
• A.K.A. Bonjour

• Automatic advertising and discovery of network services

• Permissionless

• Managed or unmanaged

• Built on top of existing Domain Name Service

• DNS without DNS-SD is also an advertising/discovery
service; DNS-SD builds and improves on this platform

2

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

How it works
• Devices A, B, C provides a service

• Devices A, B, C advertise the availability of their services

• e.g. _hap._tcp.local IN PTR Device-A._hap._tcp.local

• Devices A, B, C advertise info about their services

• e.g., Device-A._hap._tcp.local IN SRV 0 0 5432 Device-A.local

• e.g., Device-A.local IN A 192.0.2.1

• Device D needs that service

• Device D discovers servers:
• _hap._tcp.local IN PTR ?

• Device D resolves a service:
• Device-A._hap._tcp.local IN SRV ?

• Device D gets IP address of server:
• Device-A.local IN A ? IN AAAA ?

3

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

State of the art in 2018
• Two ways of doing DNS-SD:

• Multicast DNS (mDNS)

• Permissionless

• Limited to a single subnet

• RFC 6763 (DNSSD) + RFC 6762 (mDNS)

• Unicast DNS (regular DNS)

• Only supported for managed networks

• Not automated

• Not limited to single subnets

• RFC 6763 (DNS-SD) + RFC 1034/1035 (DNS)

4

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

DNS-SD over mDNS

5

Device A Device C

Device B

Device E

Device D

Device F

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

DNS-SD over mDNS

6

Device A Device C

Device B

Device E

Device D

Device F

_hap._tcp?

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

DNS-SD over mDNS

7

Device A Device C

Device B

Device E

Device D

Device F

_hap._tcp!

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

DNS-SD over DNS

8

Device A DNS Server

Device C

Device B

Device D

_hap._tcp?

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

DNS-SD over DNS

9

Device A DNS Server

Device C

Device B

Device D

_hap._tcp!

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What we added in 2019
• DNS-SD Discovery Proxy (RFC8766)

• A discovery proxy proxies between mDNS and DNS

• Acts as an authoritative name server for queries

• Acts as an mDNS client to collect answers for queries

• DNS Push (RFC8765)

• Service browsing is asynchronous

• DNS is synchronous

• DNS Push is an extension to DNS that allows for a
subscribe/push query model rather than an ask/answer
query model

10

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Discovery Proxy

11

Device A Discovery
Proxy

Device C

Device B

Device D

_hap._tcp?

DNS Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Discovery Proxy

12

Device A Discovery
Proxy

Device C

Device B

Device D

_hap._tcp?

DNS Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Discovery Proxy

13

Device A Discovery
Proxy

Device C

Device B

Device D

_hap._tcp!

DNS Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Discovery Proxy

14

Device A Discovery
Proxy

Device C

Device B

Device D

_hap._tcp!

DNS Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Discovery Proxy

15

Device A Discovery
Proxy

Device C

Device B

Device D

_hap._tcp!

Device F

DNS Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Discovery Proxy

16

Device A Discovery
Proxy

Device C

Device B

Device D

_hap._tcp!

Device F

DNS Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What new capabilities did
this enable?

• We can now use mDNS to discover services on other
subnets

• DNS now supports asynchronous discovery, like mDNS:

• we see new services as they are advertised

• we see them leave when they are discontinued

• This means that the user experience when using DNS +
Discovery Proxy is the same as when using mDNS

17

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

New problems that motivated
SRP and Advertising Proxy

• We needed a way to support service discovery on
constrained networks

• Constrained networks are subnetted from WiFi

• We could use Discovery Proxy

• but that relies on mDNS

• For constrained devices, spurious questions are costly

• mDNS isn’t the right solution for this problem

• So we need to register a service with a less-constrained
proxy, and have that proxy advertise the service

18

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What we added
• “SRP Proxy”:

• Service Registration Protocol (draft-ietf-dnssd-srp)

• Services advertise themselves in a DNS zone

• No need for mDNS as backing store for the DNS zone

• Advertising Proxy (draft-sctl-advertising-proxy)

• mDNS is permissionless, DNS requires configuration

• Advertising proxy advertises the contents of a DNS
zone using mDNS on an adjacent link

19

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP mDNS Proxy

20

Device A SRP
Proxy

Device C

Device B

Device D

_hap._tcp!

SRP

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP mDNS Proxy

21

Device A

Device C

Device B

Device D

_hap._tcp?

SRP
ProxymDNS

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP mDNS Proxy

22

Device A

Device C

Device B

Device D

_hap._tcp!

SRP
ProxymDNSmDNS

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What we are asking of the
WG

• draft-srp-10 is ready for last call

• has a normative reference to draft-sekar-dns-ul, oops

• draft-sctl-advertising-proxy-02 is ready for adoption

• There is at least one open issue: how to deal with name
conflicts

• Previous version of document said “rename.”

• But SRP has FCFS naming, and renaming sucks

• With SRP Replication (coming soon) we should be able to
assert uniqueness

• Discuss?

• draft-sekar-dns-ul-03 is ready for adoption

23

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Problems with SRP Proxy
• Multiple servers do not cooperate, leading to name conflicts

• But we want multiple servers for redundancy

• Many devices per network mean lots of mDNS traffic in
answer to a browse query

• Multicast on Wifi (common deployment) is expensive and
unreliable

24

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

New work this year
• SRP Replication (draft-lemon-srp-replication)

• More than one SRP server on same link will cooperate to maintain
client list

• Advertising Proxy scalability

• DNS Zone Discovery over mDNS

• Discover the SRP server as a DNS server

• Already suggested in RFC6763, but not much detail

• draft-tljd-dnssd-zone-discover provides a lot of detail

• SRP Proxy as authoritative server

• SRP server answers authoritatively for SRP zone

• Also described in draft-tljd-dnssd-zone-discover

• SRP replication provides the common zone for DNS queries

25

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP DNS Proxy

26

Device A SRP
Proxy

Device C

Device B

Device D

lb._dns-sd._udp.local?

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP DNS Proxy

27

Device A SRP
Proxy

Device C

Device B

Device D

lb._dns-sd._udp.local
IN PTR

 openthread.thread.home.arpa!

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP DNS Proxy

28

Device A SRP
Proxy

Device C

Device B

Device D

DNS
Push

_hap._tcp.openthread.thread.home.arpa?

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP DNS Proxy

29

Device A SRP
Proxy

Device C

Device B

Device D

_hap._tcp!

DNS
Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

SRP DNS Proxy

30

Device A

Device C

Device B

Device D

Device B._hap._tcp.openthread.thread.home.arpa!

SRP
Proxy

DNS
Push

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Open issues
• SRP Replication is pretty solid, but could use more review

• Review may turn up substantive issues

• There may be opportunities for simplification

• Zone Discovery has some known issues

• In the ad-hoc scenario, how we do we agree on a name?

• Document describes several approaches

• Some can coexist, but some decisions need to be made

• Current implementation uses one of these alternatives

31

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What we are asking of the
WG

• Call for adoption on draft-lemon-srp-replication

• Call for adoption on draft-tljd-zone-discover

32

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

Remaining Issues
• Still reliant on mDNS

• Can’t get away from this entirely because of legacy
devices and networks,

• but currently we don’t even provide a way for the
infrastructure to support SRP zones and Discovery Proxy
zones

• mDNS is not reliable on WiFi

• We see a lot of bug reports because of this

• Some proprietary mDNS enhancements actually break
mDNS even when multicast is working

• So we really want to enable moving away from mDNS

33

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What’s needed (1)
• Network infrastructure needs to be able to integrate Stub

network DNS-SD proxies, such as Discovery Proxies and
SRP proxies

• Document how Stub Network DNS-SD proxies register
with infrastructure automatically

• All devices should be able to do all service discovery using
DNS-SD

• Document how network signals that this is safe to do

• All services should advertise using SRP instead of mDNS
when available

• Document how network signals this is available

34

Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

What’s needed (2)
• mDNS is only used to support legacy devices

• Discovery Proxies on WiFi access points proxy DNS
queries to mDNS, unicast individually to each connected
WiFi device

• No multicast on WiFi

• mDNS queries from connected devices go to Discovery
Broker, which decides which answers to give, and
responds using mDNS only to the device that asked the
question (not actually multicast, if possible)

• Document how this is done

35

