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What is DNS-SD
• A.K.A. Bonjour 

• Automatic advertising and discovery of network services 

• Permissionless 

• Managed or unmanaged 

• Built on top of existing Domain Name Service 

• DNS without DNS-SD is also an advertising/discovery 
service; DNS-SD builds and improves on this platform
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How it works
• Devices A, B, C provides a service 

• Devices A, B, C advertise the availability of their services 

• e.g. _hap._tcp.local IN PTR Device-A._hap._tcp.local 

• Devices A, B, C advertise info about their services 

• e.g., Device-A._hap._tcp.local IN SRV 0 0 5432 Device-A.local 

• e.g., Device-A.local IN A 192.0.2.1 

• Device D needs that service 

• Device D discovers servers: 
• _hap._tcp.local IN PTR ? 

• Device D resolves a service: 
• Device-A._hap._tcp.local IN SRV ? 

• Device D gets IP address of server: 
• Device-A.local IN A ? IN AAAA ?
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State of the art in 2018
• Two ways of doing DNS-SD: 

• Multicast DNS (mDNS) 

• Permissionless 

• Limited to a single subnet 

• RFC 6763 (DNSSD) + RFC 6762 (mDNS) 

• Unicast DNS (regular DNS) 

• Only supported for managed networks 

• Not automated 

• Not limited to single subnets 

• RFC 6763 (DNS-SD) + RFC 1034/1035 (DNS)
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DNS-SD over mDNS
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DNS-SD over DNS
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DNS-SD over DNS
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What we added in 2019
• DNS-SD Discovery Proxy (RFC8766) 

• A discovery proxy proxies between mDNS and DNS 

• Acts as an authoritative name server for queries 

• Acts as an mDNS client to collect answers for queries 

• DNS Push (RFC8765) 

• Service browsing is asynchronous 

• DNS is synchronous 

• DNS Push is an extension to DNS that allows for a 
subscribe/push query model rather than an ask/answer 
query model
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Discovery Proxy
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What new capabilities did 
this enable?

• We can now use mDNS to discover services on other 
subnets 

• DNS now supports asynchronous discovery, like mDNS:  

• we see new services as they are advertised 

• we see them leave when they are discontinued 

• This means that the user experience when using DNS + 
Discovery Proxy is the same as when using mDNS
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New problems that motivated 
SRP and Advertising Proxy

• We needed a way to support service discovery on 
constrained networks 

• Constrained networks are subnetted from WiFi 

• We could use Discovery Proxy 

•  but that relies on mDNS 

• For constrained devices, spurious questions are costly 

• mDNS isn’t the right solution for this problem 

• So we need to register a service with a less-constrained 
proxy, and have that proxy advertise the service
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What we added
• “SRP Proxy”: 

• Service Registration Protocol (draft-ietf-dnssd-srp) 

• Services advertise themselves in a DNS zone 

• No need for mDNS as backing store for the DNS zone 

• Advertising Proxy (draft-sctl-advertising-proxy) 

• mDNS is permissionless, DNS requires configuration 

• Advertising proxy advertises the contents of a DNS 
zone using mDNS on an adjacent link
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SRP mDNS Proxy
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What we are asking of the 
WG

• draft-srp-10 is ready for last call 

• has a normative reference to draft-sekar-dns-ul, oops 

• draft-sctl-advertising-proxy-02 is ready for adoption 

• There is at least one open issue: how to deal with name 
conflicts 

• Previous version of document said “rename.” 

• But SRP has FCFS naming, and renaming sucks 

• With SRP Replication (coming soon) we should be able to 
assert uniqueness 

• Discuss? 

• draft-sekar-dns-ul-03 is ready for adoption
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Problems with SRP Proxy
• Multiple servers do not cooperate, leading to name conflicts 

• But we want multiple servers for redundancy 

• Many devices per network mean lots of mDNS traffic in 
answer to a browse query 

• Multicast on Wifi (common deployment) is expensive and 
unreliable

24



Completing the DNSSD Architecture Ted Lemon <mellon@fugue.com>

New work this year
• SRP Replication (draft-lemon-srp-replication) 

• More than one SRP server on same link will cooperate to maintain 
client list 

• Advertising Proxy scalability 

• DNS Zone Discovery over mDNS 

• Discover the SRP server as a DNS server 

• Already suggested in RFC6763, but not much detail 

• draft-tljd-dnssd-zone-discover provides a lot of detail 

• SRP Proxy as authoritative server 

• SRP server answers authoritatively for SRP zone 

• Also described in draft-tljd-dnssd-zone-discover 

• SRP replication provides the common zone for DNS queries
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SRP DNS Proxy
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SRP DNS Proxy
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SRP DNS Proxy
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Open issues
• SRP Replication is pretty solid, but could use more review 

• Review may turn up substantive issues 

• There may be opportunities for simplification 

• Zone Discovery has some known issues 

• In the ad-hoc scenario, how we do we agree on a name? 

• Document describes several approaches 

• Some can coexist, but some decisions need to be made 

• Current implementation uses one of these alternatives
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What we are asking of the 
WG

• Call for adoption on draft-lemon-srp-replication 

• Call for adoption on draft-tljd-zone-discover
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Remaining Issues
• Still reliant on mDNS 

• Can’t get away from this entirely because of legacy 
devices and networks,  

• but currently we don’t even provide a way for the 
infrastructure to support SRP zones and Discovery Proxy 
zones 

• mDNS is not reliable on WiFi 

• We see a lot of bug reports because of this 

• Some proprietary mDNS enhancements actually break 
mDNS even when multicast is working 

• So we really want to enable moving away from mDNS
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What’s needed (1)
• Network infrastructure needs to be able to integrate Stub 

network DNS-SD proxies, such as Discovery Proxies and 
SRP proxies 

• Document how Stub Network DNS-SD proxies register 
with infrastructure automatically 

• All devices should be able to do all service discovery using 
DNS-SD 

• Document how network signals that this is safe to do 

• All services should advertise using SRP instead of mDNS 
when available 

• Document how network signals this is available
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What’s needed (2)
• mDNS is only used to support legacy devices 

• Discovery Proxies on WiFi access points proxy DNS 
queries to mDNS, unicast individually to each connected 
WiFi device 

• No multicast on WiFi 

• mDNS queries from connected devices go to Discovery 
Broker, which decides which answers to give, and 
responds using mDNS only to the device that asked the 
question (not actually multicast, if possible) 

• Document how this is done
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