DOTS Q-Block
Interop testing report

IETF111 DOTS WG
Kaname Nishizuka/NTT Communications
Jon Shallow



Interop Plan

e Target Draft
— draft-ietf-core-new-block-14

e 2 independent implementations
— go-dots (https://github.com/nttdots/go-dots) by NTT
— Jon’s Implementation

e 2 days of preliminary interop testing of Q-Block2
— DOTS server to DOTS client only (Section 10.2)

e Quick recap
— Both ends use libcoap library forked by Jon

— Successfully communicated each other
— even with certain rate of packet loss




Design of Q-Block

Purpose

e supporting Non-confirmable messages

— Needed for (large) telemetry updates
— NON because of DDoS uni-directional network pipe loss

* fewer packet interchanges

 faster recovery (should any of the blocks get lost in
transmission)




Testing Environment

(without loss)

=>CoAP Client

CoAP CoAP

Client Server
e >| NON GET /path M:0xO1 T:
(= + NON 2.05 M:0xf1 T:0xcO
{mmmmm e + NON 2.05 M:0xf2 T:0xcO
(mmmmm + NON 2.05 M:0xf3 T:0xcO
(- T NON 2.05 M:0xf4 T:0xcO

' [[Observe triggered]]

————————— + NON 2.05 M:0xf5 T:0xcO
(- + NON 2.05 M:0xf6 T:0xcO
(= + NON 2.05 M:0xf7 T:0xcO
(- T NON 2.05 M:0xf8 T:0xcO

Figure 8: Example of NON Notifications
Loss)

DOTS gy DOTS
client v Server

with

=>CoAP Server

:0/1/1024
0B2:0/1/1024
QB2:1/1/1024
0B2:2/1/1024
GB2:3/0/1024

OCOOOO

NS

NS

o
rnrnrnr'no
————
mninies
— ik — —i O
O WWWON

1 ET=20 QB2:0/1
1 ET=20 QB2:1/1
1 ET=20 QB2:2/1
1 ET=20 QB2:3/0

OCOoOOO

Q-Block2 Option (Without



Testing Environment

(with loss)

Asymmetric random packet loss from server
Induced by iptables

DOTS ] _ gt DOTS
client v Server
=>CoAP Client =>CoAP Server

CoAP CoAP
Client STrver
[[Observe triggered]]
(= + NON 2.05 M:0xal T:0xf0O 0:1236 ET=23 QB2:0/1/1024
X<-==+ NON 2.05 M:0xa2 T:0xf0 0:1236 ET=23 QB2:1/1/1024
{mmmmm + [[Payloads 3 - 9 not detailed]]

X<{———+ NON 2.05 M:0Oxaa T:0xf0O 0:1236 ET=23 QB2:9/1/1024
[[Some of MAX_PAYLOADS_SET have been received]]

[[NON_TIMEOUT_ &ANDOM (server) delay expires]]
[[Server sends next MAX_ PAYLOAD SET]]

(- + NON 2.05 M:Oxab T:0xf0 0:1236 ET=23 QB2:10/0/1024
[[On seeing a payload from the next MAX_PAYLOAD_SET,
Client realizes blocks are missing and asks for the

missing ones in one gol]

o >| NON GET /path M 0x04 T:0xf3 OBZ 1/0/1024¥

:9/0/1024
X{———+ NON 2.05 M:0xac T:0xf3 ET=23 08211/1/1024
(== + NON 2.05 M:Oxad T:0xf3 ET=23 QB2:9/1/1024

[N N_RECEIVE_{IMEOUT (client) delay expires]]
[[Client realizes block is still missing and asks for
missing block]]
o e >| NON GET /path M:0x05 T:0xf4 QB2:1/0/1024
| {=mmmmmmmm + NON 2.05 M:Oxae T:0xf4 ET=23 QB2:1/1/1024
[[B?dy has beeT received]]

Figure 10: Example of NON Notifications with Q-Block2 Option (Blocks
Recovery)



Result

Without loss

e Successfully received entire body larger than
MAX_ PAYLOADS payloads

e Every MAX_PAYLOADS count gives Congestion Control pause if no ‘Continue’
response

e Fewer packets (compared with Block2 (which normally
requires Confirmable))

With loss

e Successfully recovered entire body even with 1%, 3%, 5%,
10% packet loss rate

e Fewer packets: Reclaim of missing blocks in one go
e Found a few libcoap bugs (now fixed)




libcoap bugs and discussion (1/2)

Issue:

It was not clear before the interop which request
method should be used for asking for missing blocks
(e.g. PUT triggered a large blocked response)

Conclusion:

When requesting the additional blocks (Block2) or
requesting the missing blocks (Q-Block2) then the
request method (+ appropriate (Q-)Block2 options) is
the same for the next blocks as the initial request -
even if it was a PUT



libcoap bugs and discussion (2/2)

Issue:

Initial GET for the entire body (NUM is zero and Mbit
is set) could be misunderstood by the CoAP server as
a request for the remaining missing blocks of the
previous blocked response.

Conclusion:
GET (NUM is zero and Mbit is set) should be treated
as a request for the entire (new or refreshed) body.

[draft 4.4 Using the Q-Block2 Option
NUM is zero: This is a request for the entire body:.]



Questions?
Thank You



