

11100 Johns Hopkins Road Laurel, MD 20723-6099

BPSec Security Policy Architecture

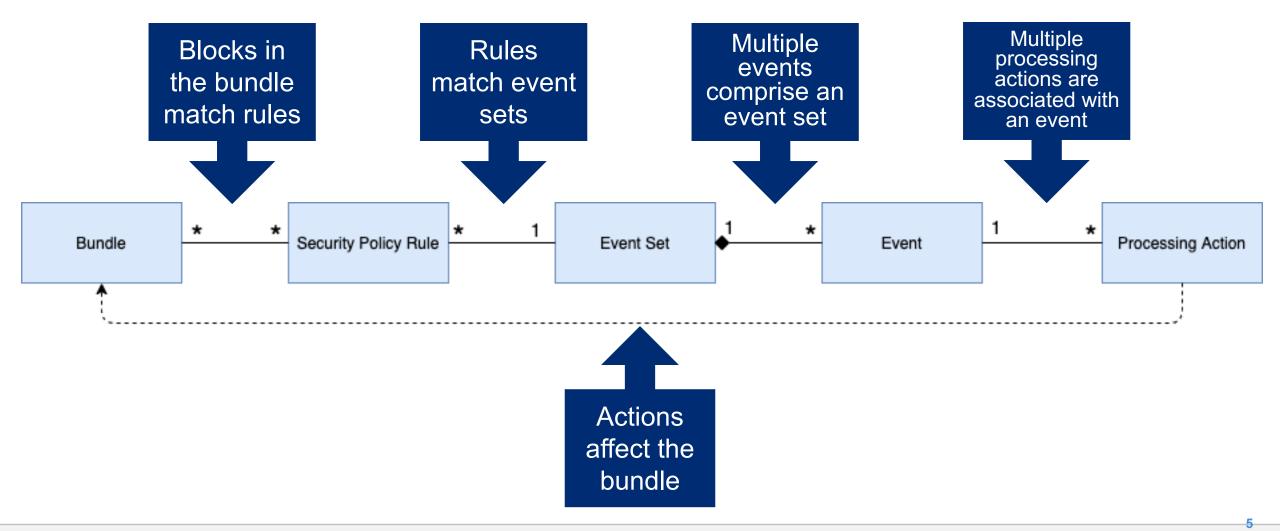
IETF 111

Sarah E. Heiner Johns Hopkins University Applied Physics Laboratory Sarah.Heiner@jhuapl.edu

Introduction

- The next step for BPSec is the development of security policy
 - Compliment the features of BPSec
 - Provide configuration options for mission adoption
 - Create a flexible, user-friendly framework
- Discuss current, proposed security policy architecture and the associated implementation

Agenda


- Proposed design principles for BPSec policy
- A data model for security policy
- Security policy rules
- Security events and the actions associated with each
- Restrictions for policy actions

BPSec Policy Design

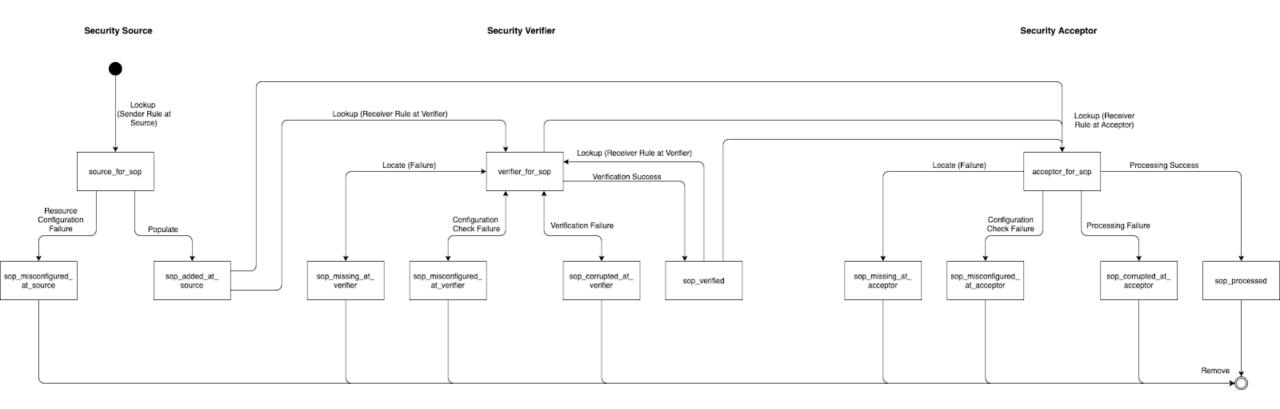
Property	Rationale						
Syntactic Interoperability	Policy must result in bundle and blocks that are parsable by all security-processing nodes in the network.						
Semantic Interoperability	Policy must result in a deterministic, coherent behavior within the network.						
Efficient Processing	Policy must be enforceable within the likely resource constraints of spacecraft						
Block Granularity	Policy must have the same maximum resolution as the BPSec allows.						
Node Customizability	Policy must fit the capabilities of the node on which it is deployed.						

The BPSec policy framework must be flexible and featureful

The Security Policy Data Model

Security Policy Rules

• Filter Criteria


- The bundle(s) the rule applies to
- The block(s) in those bundles that are security targets of the specified security operation
- The security policy role the BPA applying the rule must play

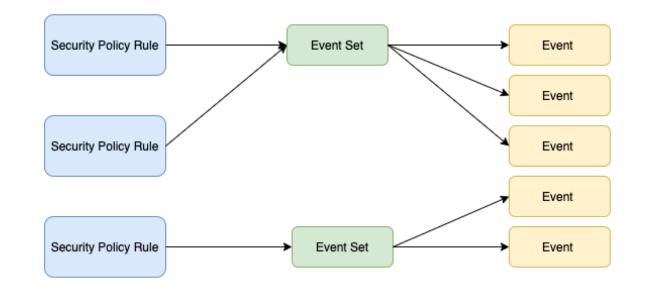
Specification Criteria

- Security service
- Security context
- Event Criteria
 - Association with an event set

{"policyrule" : "desc" : "Verify payloads originating from any endpoint destined for ipn:2.1", "filter" : "rule id" : 1, "role" : "sec verifier", "src" : "ipn:~", "dest" : "ipn:2.1", "tqt" : 1, : "BIB-HMAC-SHA-256" "scid" }, "spec": : "bib-integrity" "svc" "sc parms" : [{"id":"key name", "value":"hmac key256"}] }, "es ref" : "d integrity" Sample Security Policy Rule

The Security Operation Lifecycle

Security events are the processing points for the application of security policy


Security Operation Events

- Are security failures captured sufficiently?
 - \bigcirc Missing
 - \bigcirc Misconfigured
 - \circ Corrupted
- Are there other events in the successful path that may be encountered?

_	
	1. "source_for_sop"
	2. "sop_added_at_source"
	3. "sop_misconfigured_at_source"
	4. "verifier_for_sop"
	5. "sop_misconfigured_at_verifier"
	<pre>6. "sop_missing_at_verifier"</pre>
	7. "sop_corrupted_at_verifier"
	8. "sop_verified"
	9. "acceptor_for_sop"
	10."sop_misconfigured_at_acceptor"
	11."sop_missing_at_acceptor"
	12."sop_corrupted_at_acceptor"
	13."sop_processed"

Security Event Sets

- Set of security events associated with processing actions
 - \circ Named
 - \circ Re-useable
- Support generalized responses to security events

Security event sets support default security policy configurations

Processing Actions

- Retain Security Operation
- Remove Security Operation
- Remove Security Operation Target
- Remove All Security Target
 Operations
- Fail Bundle Forwarding
- Request Bundle Storage
- Report Reason Code
- Override Security Target's Block
 Processing Control Flags
- Override Security Block's Block
 Processing Control Flags

Categories:

- Block Manipulation
- Bundle Manipulation
- Data Generation

Processing actions are

- Required
- Optional
- Prohibited
- for security events

Mapping: Processing Actions to Lifecycle Events

	A1	A2	A3	A4	A5	A 6	A7	A8	A9
E1									
E2		0	0	0	0	0	0		
E3	R								0
E4	R								
E5		0	0		0	0	0	0	0
E6			0		0	0	0	0	
E7		0	0	0	0	0	0	0	0
E8	R								
E9									
E10		R	0		0	0	0	0	0
E11			0		0	0	0	0	
E12		R	0	0	0	0	0	0	0
E13		R							

Bundle Manipulation Processing Actions

- Retain Security Operation
- Remove Security Operation
- Remove Security Operation Target
- Remove All Security Target
 Operations
- Fail Bundle Forwarding

Application of these processing actions affects the bundle being processed by:

- Modifying bundle transmission
- Modifying bundle contents

Block Manipulation Processing Actions

- Override the **security target block's** block processing control flags
- Override the **security operation's** block processing control flags
- Impacts:
 - Block replication
 - Status reporting
 - Bundle/block preservation

Application of these processing actions affects a block in the bundle by:

- Temporarily Overriding
- Modifying
 block processing control flags

Data Generation Processing Actions

• Report occurrence of the security operation event with reason code

• Request storage of the bundle at the current node

Application of these processing actions creates data to be used for later forensic analysis by:

- Creating a bundle status report
- Storing the bundle as-is

Initial BPSec Policy Implementation in ION

- Built on the Bundle Protocol version 7 and BPSec implementations in ION
- Security policy is configured using the bpsecadmin utility
- Use of JSON and jsmn parser
 - Expressive, structured syntax
 - Ability to capture the possibilities of configuration while remaining consistent
- Available in ION 4.0.2 and later versions

ubuntu@ubunu2004:~/Documents/ion/tests/bpsec/bpsec-policy-demo\$ cd 2.ipn.ltp/ ubuntu@ubunu2004:~/Documents/ion/tests/bpsec/bpsec-policy-demo/2.ipn.ltp\$ bpsecadmin : a {"event_set" : {"name": "d_integrity", "desc": "default bib-integrity event set"}} : a {"event_set" : {"name": "d_conf", "desc": "default bcb-confidentiality event set"}} : l {"type": "event_set"}

15

Eventset name: d_conf Associated Policy Rules: 0

Eventset name: d_integrity Associated Policy Rules: 0

Security policy must be both expressive and consistent

Additional Information

- Security policy initial implementation in ION 4.0.2 and later
- ION Demo: Security Policy
 - O https://www.youtube.com/watch?v=RW-MQuJYoG0
- Security Policy User's Manual
- Engineering materials: Requirements and Design documentation for security policy
- SMC-IT STINT Talk: BPSec Policy in ION
- SCC Paper: Towards an Interoperable Security Policy for Space-Based Internetworks

JOHNS HOPKINS APPLIED PHYSICS LABORATORY