The ‘D’ between CN and CDN

Marwan Fayed
IRTF GAIA rg, IETF 111 (Virtual)
Problem: Internet services are “inaccessible” to CNs

Communities can, do, and need to:

- design and deploy their own local infrastructure;
 - e.g. directional wi-fi, fibre, etc.
 - even if difficult, many-to-all aspects are **within communities’ control or influence**

- establish ‘backhaul’ to an exchange or Internet connection point;
 - e.g. self-owned / operated (unlikely), or via university, NREN, or publicly-funded network
 - even if difficult, many-to-all aspects are **within communities’ control or influence**

- purchase Internet services
 - i.e. routing and connectivity to the open Internet
 - *most often purchased with backhaul, but this is not a requirement...*
e.g. community connections to Internet service points

1. Co-location

2. Point-to-point

3. Community Cooperative

* Images credits due to Kari Linder.
Problem: Internet services are “inaccessible” to CNs

Communities can, do, and need to:

- design and deploy their own local infrastructure:
 - e.g. directional wi-fi, fibre, etc.
 - even if difficult, many-to-all aspects are within communities’ control or influence

- establish ‘backhaul’ to an exchange:
 - e.g. self-owned / operated (unlikely), or via university, NREN, or publicly-funded network
 - even if difficult, many-to-all aspects are within communities’ control or influence

- purchase Internet services:
 - i.e. routing and connectivity to the open Internet
 - most often purchased with backhaul, but this is not a requirement...

Community-driven Elements

- Pricing is outside of control
 (if service is available at all)
Observation:

CDNs are not Internet service providers...

...but they are well-connected* networks.

* relative to scale of service, whether regional, national, international.
What might CDNs and non-ISP contribute to community networks?

...and reasons they should want to do so.
CDNs and non-ISP have the facilities & features

- **Internally,**
 - have facilities to route data within the infrastructure;
 - probably run additional services related to content, security, or both.

- **Externally,**
 - have reliable, high-quality connectivity to the wider Internet;
 - announce reachable address ranges externally via BGP

- **Applies equally, irrespective of size**
 - differences are associated with scale, alone, e.g. locations, sizes of pipes, etc.
(I claim) Incentives align better with CDNs than with ISPs

- Additional bandwidth and service costs:
 - Large CDNs → unlikely to feel additional CN traffic, so it’s a social good
 - Small CDNs → could use additional CN traffic to negotiate better rates on larger connections.

- More connections → larger audience → happier customers!

- May also reduce customer costs!
 - especially for those services that pre-date Internet
 - e.g. government services, who otherwise have to handle paper and phone calls.

- What about charging models? All reasons to charge no more than cost.
Models of service delivery

Should the IETF or similar decide interfaces or best practices?

- Hard to know:
 - Ideally CDNs use open standards, but may not;
 - Sometimes unclear how to extend CDN-specific services in isolation, safe from the CDN itself.

What about commercial interests?

- Large CDNs -- remember, *happier customers!*

Could community cooperative models extend to this space? e.g. HUBS, guifi

- Open question, but existence of ‘open-source’ CDNs do raise possibilities.
Summary:

- CDNs are well connected
- Incentives have greater alignment
- No more than cost charging models
- Open question: If there is space for a community cooperative CDN, and does it make sense.