Problems and Requirements of Satellite Constellation for Internet
draft-lhan-problems-requirements-satellite-net-00

Lin Han, Richard Li
Futurewei Technologies, Inc. U.S.A
Background and Motivation

• Background
 • Satellite network is becoming a hot topic for 5G and beyond (6G?)
 • StarLink has provided the beta service
 • As of 5/2021, ~1500 satellites, ~10k subscribers in service, ~500k have ordered the service;
 • Has shown some competitive quality over traditional ISP
 • But the deployment and service are preliminary, limited areas, offline, long provisioning, etc
 • More companies/countries plan to launch LEO/VLEO satellites

• Motivation
 • Analyze the issues in satellite network and drive the better solution
 • Orbit, Coverage, Life time of Communication,
 • Operation Model
 • Problems of networking, only focus on mobility, routing and switching technology
Satellite Orbit elements and position

• Fully represent physical characters (position) of a satellite, it needs orbit elements.

• Orbit Elements:
 • Eccentricity (e)
 • Semimajor axis (a)
 • Inclination (i)
 • Longitude of the ascending node (Ω)
 • Argument of periapsis (ω)
 • True anomaly (ν).

• Epoch (t0), the time above parameters are measured.

• At any time t, the exact position of a satellite can be calculated by the law of ‘conservation of angular momentum’.
Orbit Plane and Satellite

Satellite Coverage and Speed

\[\alpha = \cos^{-1}\left(\frac{R}{R + H} \cdot \cos \beta \right) - \beta \]

\[R_c = R \left(\frac{\alpha \pi}{180}\right) \]

\[V = \sqrt{\frac{GM}{R + H}} \]

\(\beta \) – Elevation Angle.

\(R_c \) - Radius of coverage area

\(D_s \) - Distance of satellite

\(D_o \) - Distance of orbit

\(N_s \) - Minimum number of satellite per orbit

\(N_o \) - Minimum number of orbit

\(R \) - Radius of Earth

\(H \) - Altitude of satellite

\(V \) – The velocity of the satellite

\(G \) - Gravitational constant

\(M \) - Mass of Earth

https://faculty.nps.edu/awashburn/Files/Notes/EARTHCOV.pdf
Some data for coverage and life-of-communication

<table>
<thead>
<tr>
<th>Parameters</th>
<th>VLE01</th>
<th>VLE02</th>
<th>LEO1</th>
<th>LEO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>As (km)</td>
<td>335.9</td>
<td>450</td>
<td>1100</td>
<td>1150</td>
</tr>
<tr>
<td>a (degree)</td>
<td>3.907</td>
<td>5.078</td>
<td>10.681</td>
<td>11.051</td>
</tr>
<tr>
<td>Rc (km)</td>
<td>435</td>
<td>565</td>
<td>1189</td>
<td>1230</td>
</tr>
<tr>
<td>Ns</td>
<td>54</td>
<td>41</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>No</td>
<td>62</td>
<td>48</td>
<td>23</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 1: Satellite coverage estimation for LEO and VLEO examples

<table>
<thead>
<tr>
<th>Parameters</th>
<th>VLE01</th>
<th>VLE02</th>
<th>LEO1</th>
<th>LEO2</th>
<th>LEO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>As (km)</td>
<td>335.9</td>
<td>450</td>
<td>1100</td>
<td>1150</td>
<td>1325</td>
</tr>
<tr>
<td>a (degree)</td>
<td>3.907</td>
<td>5.078</td>
<td>10.681</td>
<td>11.051</td>
<td>12.293</td>
</tr>
<tr>
<td>AL (km)</td>
<td>793</td>
<td>1848</td>
<td>2415</td>
<td>2515</td>
<td>2863</td>
</tr>
<tr>
<td>SD (km)</td>
<td>792.5</td>
<td>1847.2</td>
<td>2404</td>
<td>2503.2</td>
<td>2846.1</td>
</tr>
<tr>
<td>V (km/s)</td>
<td>7.7</td>
<td>7.636</td>
<td>7.296</td>
<td>7.272</td>
<td>7.189</td>
</tr>
<tr>
<td>T (s)</td>
<td>103</td>
<td>137</td>
<td>331</td>
<td>346</td>
<td>398</td>
</tr>
</tbody>
</table>

Table 2: The time for the ground-station-satellite communication

<table>
<thead>
<tr>
<th>A (degree)</th>
<th>0</th>
<th>10</th>
<th>45</th>
<th>90</th>
<th>135</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.065</td>
<td>1.338</td>
<td>5.869</td>
<td>10.844</td>
<td>14.169</td>
<td>15.336</td>
</tr>
<tr>
<td>T (s)</td>
<td>61810</td>
<td>2984</td>
<td>680</td>
<td>368</td>
<td>282</td>
<td>260</td>
</tr>
</tbody>
</table>

Table 4: Two VLEO intersects with different angle and the life of communication

<table>
<thead>
<tr>
<th>A (degree)</th>
<th>0</th>
<th>10</th>
<th>45</th>
<th>90</th>
<th>135</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.083</td>
<td>1.263</td>
<td>5.535</td>
<td>10.226</td>
<td>13.360</td>
<td>14.461</td>
</tr>
<tr>
<td>T (s)</td>
<td>47961</td>
<td>3155</td>
<td>720</td>
<td>390</td>
<td>298</td>
<td>276</td>
</tr>
</tbody>
</table>

Table 6: Two LEO intersects with different angle and the life of communication
LEO/VLEO satellite network

• Two Operational Mode
 • Satellite Relay
 • One satellite relay
 • Multiple satellite-ground-station relay
 • Satellite network
 • Inter-satellite Link (ISL) is mandatory, not mature

• Limited communication time:
 • Satellite to ground station communication: 100 ~ 500s
 • Inter-Satellite (different altitude) communication: <24Hr.

• Dynamic topology, Frequent Hands over
Common issues

• Mobility
 • Current Mobility not Helpful
 • Mobile end-communication-node + Static base station and provider network
 • Protocols:
 • 3GPP: inter and intra hands over
 • IETF: MIPv4, MIPv6/PMIPv6, LISP
 • Satellite Mobility
 • End-communication-node static + Provider network is moving
 • Moving speed is fast

• Power supply constraint
 • Packet process, forwarding should consider the power consumption
 • Link speed is limited (ISL ~10G for laser)
Satellite Relay

- One satellite relay is same as traditional GSO communication
- Multiple satellite Relay
 - Practical Solution for global coverage before Inter-Satellite Networking is available
- More complicated than One Satellite Relay
 - Networking
 - Satellite, Peer, Path selection
 - Protocols and Packet forwarding
Satellite Networking by Inter-Satellite Communication

• Most complicated
 • Combination of satellite-to-satellite link and satellite-ground-station link
 • Ground station could be isolated or internet-connected

• Not mature

• Two key issues
 • Inter-satellite communication (out of scope of the draft)
 • Routing and switching
Satellite Networking – By Inter-satellite Link

- Huge amount of satellite
 - Satellite - >10k for one provider
- Huge amount of ground stations
 - Ground stations > 1m
 - StarLink has requested 1m ground station license
- Two routing issues
 - Massive IGP flooding
 - BGP convergency

Consequences
- Satellite routing device is costly and consume a lot power due to the heavy tasks for routing protocols
- ISL link consume bandwidth for control
- Network state is not steady
- Service is not steady
Comments & Feedback?

Thanks