RFC 8572

Secure Zero Touch Provisioning (SZTP)

(RFC Published April 2019)

1

- Presents a technique to securely provision a networking device when it is booting in a factory-default state.
- Variations in the solution enable it to be used on both public and private networks.
- The provisioning steps are able to update the boot image, commit an initial configuration, and execute arbitrary scripts to address auxiliary needs.
- The updated device is subsequently able to establish secure connections with other systems.

Key Characteristics

- Protocol is device-initiated (on boot, whenever device in a factory default state)
- Supports both Internet and non-Internet based deployments.
- Several possible sources of bootstrapping data:
 - Removable storage device, DHCP server, DNS server, SZTP Bootstrap server, etc.
- Any such source MAY redirect device to a Bootstrap server.
 - Bootstrap server protocol is JSON or XML over HTTPS (RESTCONF)
- Secure (Zero Trust)
 - Mutually authenticated certificates: IDevID + Manufacturer's Trust Anchor
 - RFC 8366 Vouchers MAY be used to proxy trust from Manufacturer Authorized Signing Authority (MASA)
 - Bootstrapping data MAY be encrypted with Device's public key.

From Device's Perspective

Three Bootstrapping Artifacts

Ownership Voucher (from RFC 8366)

- Assigns device ownership to a "domain certificate"
- Public key used to authenticate the Owner Certificate

Owner Certificate

- Issued by the "domain certificate"
- o Public key used to authenticate "signed data"

A 4th bootstrapping artifact?

In draft-ietf-netconf-sztp-csr, it becomes possible for the device to also obtain an LDevID certificate.

The LDevID can use the same public key as the IDevID or a fresh one with algorithms selected by the server.

Conveying Trust

- A device, in its factory default condition, can only trust certificates authorized by its Manufacturer (using trust anchors).
- Trusted anchor certificates are used in two ways:
 - 1. To authenticate that a remote TLS server' certificate is signed, somewhere in its chain, by the Manufacturer (or delegate).
 - 2. To verify that an RFC 8366 Voucher is signed by the Manufacturer (or delegate).
- If a source is NOT trusted, then response MUST be either:
 - An unsigned redirect response.
 - A signed response (i.e., using the Ownership Voucher + Owner Certificate).

SZTP + CSR (draft-ietf-netconf-sztp-csr - in Last Call)

7

Comments or Questions?