
Large Payloads in IKEv2

draft-tjhai-ikev2-beyond-64k-limit-01

IETF 111

CJ Tjhai (Post-Quantum)

Tobias Heider (genua GmbH)

Valery Smyslov (ELVIS-PLUS)

Motivation

• draft-ietf-ipsecme-ikev2-multiple-ke addresses issues of using

large keys for Key Exchange methods (common in PQC) in IKEv2

• This draft still limits the size of any single public key to 64K – the

maximum size of IKEv2 payload

– most NIST Third Round Candidate Algorithms fit into this restriction

– notable exception - Classic McElice PQKE which smallest public key is 255 KB

• However, some national regulators (e.g. BSI) recommend using

Classic McElice PQKE

• It is also anticipated that PQ Digital Signatures will be used in

IKEv2

– Some NIST Third Round Candidate Digital Signature Algorithms have either

public key size (Rainbow) or signature size (Picnic) greater than 64 KB

2

Goals

• The goal of the document is to define a way for using some

specific data blobs in IKEv2 if they grow beyond 64K

– public keys for key exchange methods (KE)

– signatures (AUTH)

– certificates (CERT)

• The defined mechanism must be backward compatible

• Reliability of transferring large data in IKEv2 should be addressed

• Performance of IPsec traffic should not degrade

• The defined mechanism must be simple and must introduce

minimal changes to IKEv2

3

Not Goal

• There is no goal to define a generic mechanism for IKEv2 which

would allow any payload be greater than 64K

4

Proposed Approach

• If amount of data doesn’t fit into a single payload then split data

into chunks less than 64K and put them into a sequence of

payloads of the same type; receiving end will concatenate data

from a sequence of payloads having the same type

– this approach works well if only one payload of this type may appear in the

message according to IKEv2 (true for KE and AUTH, not true for CERT, but

can be worked around)

– if such sequence of payloads appears inside Encrypted payload, then the

Length field of the Encrypted payload would be overflowed, but this doesn’t

matter, since the length of Encrypted payload can always be deduced from the

length of IKE message, so we can use value 0 for it

5

Example

Initiator Responder

6

IKE_SA_INIT

HDR, SAi1, KE1i, Ni IKE_SA_INIT

HDR, SAr1, KE1r, Nr, [CERTREQ,]

IKE_AUTH

HDR, SK{IDi,[CERT,CERT,CERT,][CERTREQ,]

[IDr,] AUTHi, AUTHi, SAi2, TSi, TSr}

IKE_AUTH

HDR, SK{IDr,[CERT, CERT,]

AUTHr, AUTHr, SAr2, TSi, TSr}

IKE_INTERMEDIATE

HDR, SK{KE2i, KE2i, KE2i} IKE_INTERMEDIATE

HDR, SK{KE2r, KE2r}

Changes from -00 version

• IKE Fragmentation is now mandatory for both UDP and TCP

transport

– with TCP the size of a single IKE message is still limited to 64 KB, so we need

IKE Fragmentation to transmit larger messages (with TCP they may be

fragmented to 64 KB fragments)

• Mixed Transport Mode is introduced

– with this mode IKE starts from UDP port 4500, then switches to TCP on the first

INTERMEDIATE exchange and continues to use TCP for all subsequent

exchanges; however, Child SAs created with this IKE SA use either direct

transport or UDP encapsulation

– this mode is negotiated by exchange of new notification IKE_OVER_TCP

– Mixed Transport Mode allows IKE to reliably transfer large blobs of data still

avoiding performance implications of using TCP for ESP

• Added clarifications for tweaking Length field of Encrypted Payload

7

Future Discussion

• DoS attacks are an important concern for this extension; we are

going to discuss how to defend against them in next version

8

Thanks

• Comments? Questions?

• WG adoption?

9

