
Chuck Lever <chuck.lever@oracle.com>

Hash Tree Interchange Format
The Whys and Wherefores

mailto:chuck.lever@oracle.com


Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

What’s Going On
Code signing, or more generally, file content attestation

• To protect file content end-to-end:


• Attestation metadata must be created and signed just after file content is 
generated


• File content must be verified just before it is used


• The format of the attestation metadata must be independent of storage 
media, parse-able everywhere, and unencumbered


• That is, it must be a standard!

2



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

Creating Attestation Metadata
The easy part

• A digest is generated on the file content


• The digest is cryptographically signed


• The signed digest is distributed with the file content

3



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

Verifying File Content
The challenging part

• The end-user’s file system must use the attestation metadata to verify file 
content before presenting it to applications


• Applications typically read a file in small pieces (say, via read(2))


• The entire file must be read into memory to verify any part of it. That makes a 
linear digest inefficient for verifying small portions of a file.


• Further, memory management can reclaim portions of a file not recently used, 
meaning the next verifying read must read the entire file again

4



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

Verifying File Content
Solving the issue

• A tree of digests enables the efficient verification of portions of a file


• However, hash trees can get large. Not all storage mechanisms have the 
flexibility to store boundless amounts of file metadata.


• Legacy filesystems and storage protocols


• Data backup


• Software distribution schemes

5



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

First Proposal: Data Reduction

• Instead of durably storing the whole tree, store (and sign) just the root hash.


• When installing a file for use on an end system, reconstitute the tree using its 
root hash and the file content


• The reconstituted tree can be maintained locally, if possible


• Otherwise it can be cached in memory on demand

6



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

Second Proposal: Standard Format

• We want to store the metadata in a widely supported data representation 
format


• We want to support a broad set of digest algorithms


• Therefore, use an X.509v3 certificate


• DER encoding


• Standardized set of available digest algorithms


• A cryptographic signature protects the whole thing

7



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

Technical Discussion

• Has this been done before? Let’s not duplicate it.


• Should it support ADT shapes other than binary trees?


• Is there a better approach than a Merkle tree?


• How should it handle second pre-image attacks?


• Currently the format stores the tree height, but it might support prefixing 
digest values on internal nodes

8



Supplemental Material



Copyright © 2021 IETF Trust and the author of this presentation. All rights reserved. Version 07212021a

Bibliography

• https://datatracker.ietf.org/doc/draft-cel-nfsv4-hash-tree-interchange-format/

10

https://datatracker.ietf.org/doc/draft-cel-nfsv4-hash-tree-interchange-format/

