

Toward Building a Context-Aware Data Aggregation Framework for Network Monitoring

July 2021 IETF 111 - NMRG Ignacio Dominguez (UPM), Daniel Gonzalez (UPM) Diego R. Lopez (TID)

Index

- 1. Introduction
- 2. Context Modeling
- 3. Semantic Data Aggregator (SDA) Framework
- 4. Real Use Case
- 5. Conclusions

Introduction

Main Ideas

- Deal with heterogeneous data sources
 - Multi-domain, multi-technology, multi-...
 - Transport protocols
 - Encoding formats
 - Subscription mechanisms (pull vs push)
- Metadata to characterize the data sources
 - Context information management based on ETSI CIM
- Semantic framework for network monitoring
 - Applies streaming telemetry techniques
 - Leverages metadata for configuration/description of data pipelines
 - Transformation between data models

ETSI ISG CIM

- Focused on mechanisms to deal with context information
 - Information shared through data publication platforms (Context Brokers)
- Standardizes the NGSI-LD protocol for exchanging context information:
 - NGSI-LD information models describing entities, properties, and relationships (property graphs)
 - Definition of NGSI-LD API based on REST
- Mainly applied to IoT scenarios

INDUSTRY SPECIFICATION GROUP (ISG) CROSS CUTTING CONTEXT INFORMATION MANAGEMENT (CIM)

Context Components

- Context Brokers → Store and exchange context information
- Context Sources → Provide context information to the Context Broker (e.g., YANG-based devices)
- Context Consumers → Request and subscribe to context information from the Context Broker (e.g., database services)

Context Modeling

Prometheus-based Data Source

Telemetry-based Data Source

Semantic Data Aggregator (SDA) Framework

SDA Architecture Overview

Context Modeling of Data Pipelines

Real Use Case

Anomaly Detector (I)

Module that analyzes the status of a RAN cell:

- Learns from data traffic patterns and mobility patterns
- Identifies and predicts anomalies based on RAN KPIs
- Exposes REST API for ingesting streams of events
- Provides a future notification/alert system

Field Name	Data Type	Description
ul_delay	Float	Uplink delay (ms)
dl_delay	Float	Downlink delay (ms)
lost_packets	Integer	# of lost packets, per service per user
rsrp	Float	RSRP (dB)
transfer_protocol	Boolean	TCP or UDP encoded [0,1]
urlx_cell	Integer	UE Bytes received from the cell
timestamp	Datetime	Measurement timestamp (datetime format - "yyyy'-'MM'-'dd' 'HH':'mm':'ss")
cell_id	Integer	RAN cell ID

Anomaly Detector (II)

- Context describes which data source provides which RAN KPI measurements
- SDA collects measurements and aggregates per cell ID and time window
- Aggregated data combined and transformed into the data model of the Anomaly Detector module
- SDA delivers data through the Anomaly Detector's REST API

Conclusions

Summary

- Data-driven network management requires the integration of heterogeneous data sources and data consumers
- Context-aware management based on the ETSI CIM standard
 - Modeling of data sources, data consumers and data pipelines
- Development of monitoring framework for collecting and aggregating data
 - Separation between monitoring context and data planes

Next Steps

- Combination of context information from different levels:
 - Operations level → network functions, network services
 - Business level → network policies, intents, SLAs, owners
- Alignment with the SAIN architecture
- Auto discovery of context information
- Northbound API for interacting with the semantic data aggregator
- Closing the loop

 Collection, processing, and application of configuration data

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 856709.

