Toward Building a Context-Aware Data Aggregation Framework for Network Monitoring

Ignacio Dominguez (UPM), Daniel Gonzalez (UPM)
Diego R. Lopez (TID)
Index

1. Introduction

2. Context Modeling

3. Semantic Data Aggregator (SDA) Framework

4. Real Use Case

5. Conclusions
Introduction
Main Ideas

• Deal with **heterogeneous** data sources
 • Multi-domain, multi-technology, multi-...
 • Transport protocols
 • Encoding formats
 • Subscription mechanisms (pull vs push)

• Metadata to characterize the data sources
 • **Context information management** based on ETSI CIM

• Semantic framework for network monitoring
 • Applies **streaming telemetry** techniques
 • Leverages metadata for configuration/description of **data pipelines**
 • **Transformation** between data models
ETSI ISG CIM

• Focused on mechanisms to deal with context information
 • Information shared through data publication platforms (Context Brokers)
• Standardizes the **NGSI-LD protocol** for exchanging context information:
 • NGSI-LD information models describing entities, properties, and relationships (property graphs)
 • Definition of NGSI-LD API based on REST
• Mainly applied to IoT scenarios
Context Components

• **Context Brokers** → Store and exchange context information

• **Context Sources** → Provide context information to the Context Broker (e.g., YANG-based devices)

• **Context Consumers** → Request and subscribe to context information from the Context Broker (e.g., database services)
Context Modeling
Prometheus-based Data Source

(*)

MetricFamily NGSI-LD entity aligned with OpenMetrics initiative (https://openmetrics.io/)
Telemetry-based Data Source
Semantic Data Aggregator (SDA) Framework
SDA Architecture Overview

SEMANTIC DATA AGGREGATOR

- Scorpio
- NGSI-LD Broker

NGSI-LD API
- Send notifications

Weaver

- Metric A
 - Topic X
- Metric B = avg(Metric A)
 - Topic Y
- Metric B
 - URI Data Consumer

NGSI-LD API
- Navigate tree +
- Define data pipeline

DATA FABRIC

- Apache NiFi
- Apache Flink
- Apache Kafka

NGSI-LD API
- Provide metadata information

- Data Source

- Collect data

- Collection Agent
- Dispatch Agent
- Aggregation Agent
- Write topic X
- Read topic Y

- Apache NiFi
- Apache Flink
- Apache Kafka

- Deliver data
- Data Consumer
Context Modeling of Data Pipelines
Real Use Case
Anomaly Detector (I)

Module that analyzes the status of a RAN cell:

- Learns from data traffic patterns and mobility patterns
- Identifies and predicts anomalies based on RAN KPIs
- Exposes REST API for ingesting streams of events
- Provides a future notification/alert system

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ul_delay</td>
<td>Float</td>
<td>Uplink delay (ms)</td>
</tr>
<tr>
<td>dl_delay</td>
<td>Float</td>
<td>Downlink delay (ms)</td>
</tr>
<tr>
<td>lost_packets</td>
<td>Integer</td>
<td># of lost packets, per service per user</td>
</tr>
<tr>
<td>rsrp</td>
<td>Float</td>
<td>RSRP (dB)</td>
</tr>
<tr>
<td>transfer_protocol</td>
<td>Boolean</td>
<td>TCP or UDP encoded [0,1]</td>
</tr>
<tr>
<td>urlx_cell</td>
<td>Integer</td>
<td>UE Bytes received from the cell</td>
</tr>
<tr>
<td>timestamp</td>
<td>Datetime</td>
<td>Measurement timestamp (datetime format - "yyyy-MM-dd HH:mm:ss")</td>
</tr>
<tr>
<td>cell_id</td>
<td>Integer</td>
<td>RAN cell ID</td>
</tr>
</tbody>
</table>
Anomaly Detector (II)

- Context describes which data source provides which RAN KPI measurements
- SDA collects measurements and aggregates per cell ID and time window
- Aggregated data combined and transformed into the data model of the Anomaly Detector module
- SDA delivers data through the Anomaly Detector’s REST API
Conclusions
Summary

• Data-driven network management requires the integration of heterogeneous data sources and data consumers
• Context-aware management based on the ETSI CIM standard
 • Modeling of data sources, data consumers and data pipelines
• Development of monitoring framework for collecting and aggregating data
 • Separation between monitoring context and data planes
Next Steps

• Combination of context information from different levels:
 • Operations level → network functions, network services
 • Business level → network policies, intents, SLAs, owners

• Alignment with the SAIN architecture

• Auto discovery of context information

• Northbound API for interacting with the semantic data aggregator

• Closing the loop → Collection, processing, and application of configuration data
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 856709.