Path Selection for Multiple Paths (stepping back)

(Path Selection for Multiple Paths in QUIC)

Spencer Dawkins
Background

● Multipath transport protocols have been “a thing” in TSV for a while
 ○ Standards-track extensions for SCTP, TCP, proposals for DCCP, QUIC ...
 ○ There are interesting technical questions, both engineering and research
 ○ Multipath sequencing, loss detection, congestion control, reordering ...

● One less-technical question - what are applications trying to do?
 ○ Lots of use cases have been put forward
 ○ Not a lot of commonality between use cases

● Path Selection for Multiple Paths in QUIC (ignore “in QUIC” for now)
 ○ “How many path selection strategies are enough?”

“Thank you” to Christian Huitema for that question!
What I see, so far

- At least 10 path selection strategies described in QUIC WG, so far
 - Divided into “switching between paths” and “splitting between paths”
- The number of desired strategies is growing over time
 - It’s not obvious there is an upper bound on the number of strategies
- "Goldilocks and the Three Bears" story: “too big”/“too small/“just right”
 - “Minimum RTT”, “RTT threshold”, “equivalent RTT”, …
 - Arbitrary combinations not just possible - that’s already happening

Rather than continuing to add path selection strategies, can we identify “building blocks” and use them to support new strategies?
Background - Identified Path Selection Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Selection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active-Standby</td>
<td>RTT Equivalence</td>
</tr>
<tr>
<td>Latency Versus Bandwidth</td>
<td>Priority-based</td>
</tr>
<tr>
<td>Bandwidth Aggregation/Load Balancing</td>
<td>Redundant</td>
</tr>
<tr>
<td>Minimum RTT Difference</td>
<td>Control Plane Versus Data Plane</td>
</tr>
<tr>
<td>Round-Trip-Time Thresholds</td>
<td>Combinations of Strategies</td>
</tr>
</tbody>
</table>

“Identified” = “Identified So Far” 😞😕😔😭
What I’d like to do

- Assume multiple active paths will become more realistic over time
 - Not just “use wifi when you’ve got wifi, and 5G when you don’t”
 - Even in 3GPP - 5G, EPS/4G, public wifi, private wifi …
 - Goal for “Path splitting” beyond utilizing all available bandwidth
- Trim down the 10 (or so) strategies as much as possible
 - I think we could maybe eliminate two or three
 - Is “latency versus bandwidth” real? No one chooses high latency …
- Identify “building blocks” to assemble and support new strategies
Why I’d like to do that

- Some implementers really can handle multipath just fine today
 - Either granular control or bandwidth aggregation
 - I think we’re still at the beginning of making multipath broadly usable
- I’d like to make multipath easier to use for more applications
 - “If multiple paths are available, why wouldn’t you use them?”
 - But “using multiple paths” means different things for different use cases
- I’d like to support multipath without requiring constant library upgrades
 - “How many selection strategies do you put in a library?”
 - “How many libraries do you ship with an application?”
 - At least some strategies get standardized - more maintenance work
Answers I’m hoping for

● Is this research?
● Is this interesting?
● Is this doable?
● Do you want to help?

We can talk here, and in Gather, and on panrg@irtf.org, and on Github (SpencerDawkins/quic-multipath-selection)
Thank you all!

And please, Make Good Choices