

Path Selection for Multiple Paths (stepping back)

(Path Selection for Multiple Paths in QUIC)

Spencer Dawkins

- Multipath transport protocols have been "a thing" in TSV for a while
 - Standards-track extensions for SCTP, TCP, proposals for DCCP, QUIC ...
 - There are interesting technical questions, both engineering and research
 - Multipath sequencing, loss detection, congestion control, reordering ...
- One less-technical question what are applications trying to do?
 - Lots of use cases have been put forward
 - Not a lot of commonality between use cases
- Path Selection for Multiple Paths In QUIC (ignore "in QUIC" for now)
 - "How many path selection strategies are enough?"

"Thank you" to Christian Huitema for that question!

- At least 10 path selection strategies described in QUIC WG, so far
 - Divided into "switching between paths" and "splitting between paths"
- The number of desired strategies is growing over time
 - o It's not obvious there is an upper bound on the number of strategies
- "Goldilocks and the Three Bears" story: "too big"/"too small/"just right"
 - o "Minimum RTT", "RTT threshold", "equivalent RTT", ...
 - Arbitrary combinations not just possible that's already happening

Rather than continuing to add path selection strategies, can we identify "building blocks" and use them to support new strategies?

Background - Identified Path Selection Strategies

Active-Standby	RTT Equivalence
Latency Versus Bandwidth	<u>Priority-based</u>
Bandwidth Aggregation/Load Balancing	Redundant
Minimum RTT Difference	Control Plane Versus Data Plane
Round-Trip-Time Thresholds	Combinations of Strategies

"Identified" = "Identified So Far" (**) (**) (**)

- Assume multiple active paths will become more realistic over time
 - O Not just "use wifi when you've got wifi, and 5G when you don't"
 - Even in 3GPP 5G, EPS/4G, public wifi, private wifi ...
 - Goal for "Path splitting" beyond utilizing all available bandwidth
- Trim down the 10 (or so) strategies as much as possible
 - I think we could maybe eliminate two or three
 - o Is "latency versus bandwidth" real? No one chooses high latency
- Identify "building blocks" to assemble and support new strategies

Why I'd like to do that

- Some implementers really can handle multipath just fine today
 - Either granular control or bandwidth aggregation
 - I think we're still at the beginning of making multipath broadly usable
- I'd like to make multipath easier to use for more applications
 - o "If multiple paths are available, why wouldn't you use them?"
 - But "using multiple paths" means different things for different use cases
- I'd like to support multipath without requiring constant library upgrades
 - "How many selection strategies do you put in a library?"
 - "How many libraries do you ship with an application?"
 - At least some strategies get standardized more maintenance work

Answers I'm hoping for

- Is this research?
- Is this interesting?
- Is this doable?
- Do you want to help?

We can talk here, and in Gather, and on panrg@irtf.org, and on Github (SpencerDawkins/quic-multipath-selection)

Thank you all!

And please, Make Good Choices