TE Constraints for PCEP

draft-peng-pce-te-constraints-06

Shaofu Peng(ZTE)
Quan Xiong(ZTE)
Fengwei Qin(China Mobile)
Mike Koldychev(Cisco)
Siva Sivabalan(Ciena)

IETF111 PCE, 2021, Online
Overview

- As defined in RFC4655, the PCE MAY compute the path of a TE on the TED based on the considering the constraints such as metric, bandwidth, delay, affinity, etc.

- This document proposes a set of constraints for PCEP with the network topology information as following shown.
 - Source Protocol ID (IS-IS [RFC8202], OSPF [RFC6549], BGP-LS [RFC7752])
 - Muti-topology ID (IS-IS [RFC5120], OSPF [RFC4915], BGP-LS [RFC7752])
 - Application ID (IS-IS [RFC8919])
 - Slice ID (draft-ietf-teas-ietf-network-slice-definition)
 - Color (BGP [RFC9012])
 - FA ID (draft-ietf-lsr-flex-algo)
Constraint 1-Source Protocol ID

- **Source Protocol TLV**
 - Sub-topology identified by the specific source protocol ID.
 - The Source Protocol TLV is optional and is defined to carry the source protocol constraint.
 - Protocol-ID : 8 bits, as defined in RFC7752, indicates the Source Protocol identifier. IS-IS (RFC8202) and OSPF (RFC6549) MAY run multiple routing protocol instances over the same link.
 - Identifier : 64 bits, as defined in RFC7752, indicates the routing universe identifier.
Constraint 2-Multi-topology ID

- Multi-topology TLV
 - Sub-topology identified by the specific Multi-Topology ID within a source protocol.
 - The Multi-topology TLV is optional and is defined to carry the multi-topology protocol constraint.
 - Multi-Topology ID:
 - as defined in RFC5120, 12bits, non-zero MT ID of the topology being announced Source Protocol identifier.
 - as defined in RFC4915, 8bits, represent Multi-Topology ID.
 - as defined in RFC7752, If the value is derived from OSPF, then the upper 9 bits MUST be set to 0.
 - R bits: set to 0 when originated and ignored on receipt.

![Figure 2: Multi-topology TLV](image)
Constraint 3-Application ID

- Application Specific TLV
 - Sub-topology provides the Application Specific information.
 - The Application Specific TLV is optional and is defined to carry the application specific constraints.
 - Standard Application ID: 32 bits, indicates a bit-position value for a single STANDARD application. IS-IS Link Attribute Application Identifiers is defined in RFC8919.
 - User Defined Application ID: 32 bits, indicates a single user defined application which is a specific implementation.

```
<table>
<thead>
<tr>
<th>Bit #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RSVP-TE (R-bit)</td>
</tr>
<tr>
<td>1</td>
<td>Segment Routing Policy (S-bit)</td>
</tr>
<tr>
<td>2</td>
<td>Loop-Free Alternates (F-bit)</td>
</tr>
<tr>
<td>3-63</td>
<td>Unassigned</td>
</tr>
</tbody>
</table>
```

Figure 4: Application Specific TLV
Constraint 4-Slice ID

- Slice-id TLV
 - Sub-topology identified by the specific Slice-id, which is independent of routing protocols such as IGP/BGP and can be applied to any of the virtual network.
 - The Slice-id TLV is optional and is defined to carry the slice specific constraint.
 - Slice-id: 32 bits, indicates the Slice identifier. The Network Slice is defined in draft-ietf-teas-ietf-network-slice-definition.

![Slice-id TLV](Figure 3: Slice-id TLV)
Constraint 5-Color

• Color TLV
 • Sub-topology identified by the specific Color Template which carried specific color parameter and it is suitable for any TE instance such as RSVP-TE, SR-TE, SR-policy.
 • The Color TLV is optional and is defined to carry the color constraints.
 • Color: 32bits, indicates a TE template. It is consistent with the Color Extended Community defined in RFC9012.
 • The color of SR policy is defined in draft-ietf-spring-segment-routing-policy and the color of candidate path in the Composite Candidate Path is discussed in draft-ietf-pce-multipath.

Figure 5: Color TLV
Constraint 6-FA ID

- **FA-id TLV**
 - Sub-topology identified by the specific FA-id to optimize segment stack depth for the IGP area partial of the entire SR policy.
 - The FA-id TLV is optional and is defined to carry the Flex-algo constraints.
 - FA-id : 8 bits, indicates an explicit FA-id mapping information defined in draft-ietf-lsr-flex-algo.
 - Flags : 8 bits, indicates the flags indicator.
 - Flag-M: Indicate mapping behavior when unset, and merging behavior when set.

![Figure 6: FA-id TLV](image-url)
Next Step

• Comments and discussions are very welcome!

• Ready for Adoption?
Thank you!