[glog]

structured event logging

The philosophical update

Robin Marx robin.marx@kuleuven.be

The story so far
;C]Hg | = QUIC Logging

Log events directly inside the endpoint implementations

- Packet captures require full decryption - worse for privacy/security
- Can add additional information (e.g., congestion window)

3 separate documents:

- Main schema mmm) metadata schema + serialization format
- QUIC and TLS events

t sch
- HTTP/3 and QPACK events }-> cvent schema

https://github.com/quicwg/glog

Schema vs Serialization Format

{
"metadata": {...},
"events": [{
"time": 15000,
"name": "transport:packet_received",
"data": {
"header": {
"packet_type": "1rtt",
"packet_number": 25

b

"frames": [class AckFrame{
{ frame_type:string = "ack";
“frame_type": "ack",
"acked_ranges": [ack_delay?:float; // in ms
[10,15], | | |
[17,20] acked_ranges?:Array<[uint64, uint64]|[uint64]>;
] ectl?:uint64;
ect@?:uint64;
ce?:uint64;

}H

https://github.com/quicwg/qlog

Schema vs Serialization Format
o
{

"metadata": {...}, JSO N
"events": [{
"time": 15000,
"name": "transport:packet_received",
"data": {
"header": {
"packet_type": "1rtt",
"packet_number": 25

b

"frames": [class AckFrame{
{ frame_type:string = "ack";
“frame_type": "ack",
"acked_ranges": [ack_delay?:float; // in ms
[10,15], | | |
[17,20] acked_ranges?:Array<[uint64, uint64]|[uint64]>;
] ectl?:uint64;
ect@?:uint64;
ce?:uint64;

}H

https://github.com/quicwg/qlog

Schema vs Serialization Format

[JSON and NDJSON

"time": 15000,
"name": "transport:packet_received", glog_format?:string = “JSON" | “"NDJSON";
"data": {
"header": {
"packet_type": "1rtt",
"packet_number": 25

b

"frames": [class AckFrame{
{ frame_type:string = "ack";
“frame_type": "ack",
"acked_ranges": [ack_delay?:float; // in ms
[10,15],
[17,20] acked _ranges?:Array<[uint64, uint64]|[uint64]>;
J
]
}H

ectl?:uint64;
ect@?:uint64;
ce?:uint64;

https://github.com/quicwg/qlog

Today

What do we actually standardize and why?

https://github.com/quicwg/qglog/issues

Part 1: The JSON in the room
JSON pros:

- Broadly supported = browser-based tooling, scripting libraries
- Plaintext = re-use existing tools (jg, sed/awk/grep/..., YOU), fprintf(“%s")

JSON cons:

- Slow

- Verbose
- NDJSON isn't actually standardized anywhere yet... need to define our own “Streaming JSON”

Alternatives:

- CBOR

Protobuffers/flatbuffers/...
- PCAPNG

Binary format - https://github.com/quicwg/qlog/issues/30
Revisit serialization format - https://github.com/quicwg/qlog/issues/144

Part 1: What is the goal for gqlog?

Optimize for interoperable/reusable tools?

VS
Optimize for direct output/storage/transfer?

https://github.com/quicwg/qlog/issues/85#issuecomment-721232467
https://github.com/quicwg/qlog/issues/144#issuecomment-815018003

Part 1: What is the goal for gqlog?

Optimize for interoperable/reusable tools?

VS

Optimize for direct output/storage/transfer?

Is this even needed?

Direct JSON is feasible - Compress

- meStl CI u iC‘g O 500MB_Oms_lsquic
format raw (MB) % gzip6 (MB)
pcap 561.57 203 .45 529.01
Log optimized, convert Cho TR
- quicly, picoquic ooy o0 o1 1513
_ Chromium (k|nd Of) protobuf 66.15 23.96 14.56

Y
191.65
06.94
b6.44
6.25
550
3.27

brotlid (MB)
528.85
19.40

18.90

17.99

13.18

10.71

https://crates.io/crates/qglog
https://github.com/quicwg/qlog/issues/30
https://github.com/quicwg/qlog/issues/144#issuecomment-815018003

b
191.60
7.03
6.85
6.52
4.77
3.83

Part 1. Proposal
Stick to JSON + “Streaming JSON”

- Optimize for text-based and browser-based processing

- Even loading large JSON files should be feasible
- Not in gvis/browser, but surely in native apps

- Other documents can later define CBOR/PCAPNG/Protobuf/... if needed

- Take care to make schema as generic as possible to allow easy mapping
- You're free to use another format in your implementation (duh) and then write converter

- We do need to define Streaming JSON properly ourselves then...

- Can still be identical to NDJSON's format! Or use another delimiter or ...

Revisit serialization format - https://github.com/quicwg/qglog/issues/144

Part 2: which events do we include?

wire image internal state

{
"time": 15000,
"name": "transport:packet_received",
"data": {
"header": {
"packet_type": "1rtt",
"packet_number": 25

: 15001,
: "recovery:metrics_updated”,
: {
in_rtt": 25,
"smoothed_rtt": 30,

}s "latest_rtt": 25,

"frames": [

{ "congestion_window": 60,

“frame_type": "ack"”, "bytes_in_flight": 77000,

"acked_ranges": |
[10,15],
[17,20]

+ Custom events!

Tools MUST deal with unknown events
000

congession state updated i

10 1 EXTo oo

11

Part 2: 2 sides of the same coin

wire Image

{
"time": 15000,
"name": "transport:packet_received",
"data": {
"header": {
"packet_type": "1rtt",
"packet_number": 25
}s
“"frames": [
{
“frame_type": "ack",
"acked_ranges": |
[10,15],
[17,20]

{

¢ state changes
"time": 15000,
"name": "transport:packets_acked",
"data": {
"packet_numbers": [17,20] gg:(y geW|y
e

}

Note: we also have a separate packet_lost event

12

Part 2: 3 sides of the same... triangle?

¢ wire image ® state changes

{ {
"time": 15000, _ "time": 15000,
"name": "transport:packet_received", "name": "transport:packets_acked",

"data": { "data": {
"header”: { "packet_numbers": [17,20] Only nery

"packet_type": "lrtt", } ACKed

"packet_number": 25

s

"frames": [

{ O

"frame_type": "ack", partlal wire image
"acked_ranges": | {

[10,15], "time": 15000,

[17,20] "name": "transport:frames_processed",

"data”: { No packet

"frames": {

"frame_type": "ack", header

"acked_ranges": [
[10,15],
[17,20]

Is this too tied to
implementation
specifics?

Part 2: 4 sides of ... | give up

° wire image ® “optimized” partial wire image
{

"time": 15000,

"name": "transport:packet_received", :tlme::}5®®®, " Often
vdata": { name":"transport:frames_created",

"header": { "data":{ sending
"packet_type": "1rtt", "default_frame": { similar
"packet_number": 25 “frame_type":"stream", STREAM

}, “stream_id":0,

"frames”: ["length": 1000 frames

{ 3
“frame_type": "ack", zframes":[

"acked_ranges": | {"offset": 2000 },
[10315]3 {"()ffset": 3000 },
[17,20] {"offset": 4000, "length": 500}

Aggregating stream_frame - https://github.com/quicwg/qglog/issues/163

14

Part 2: Explosion of events

All useful, but confusing

- glog implementers: what to log when/where?
- Tool creators: which events to use? What if contradictions?

- If tools only support a subset, what'’s the use of standardizing more?

We need guidelines/design philosphy

When should something be a new event / re-use event / be custom event?

provide clearer usage advice - https://github.com/quicwg/qlog/issues/53
frames_processed fails to capture - https://github.com/quicwg/qlog/issues/154

Part 2: Re-use event types

instead of frames_processed

@
{
"time": 15000, {
"name": "transport:packet_received", "time": 15000,
"data": { "name": "transport:packet_received",
"header": { "data": {
“packet_type": "1rtt", "header": {
"packet_number": 25 "packet_number": 25

=
12)()| "frames": |

{
COupleS "frame_type": "ack",
"acked_ranges": [
based on [10,15],

PN [17,20]

When handling header When handling payload

frames_processed fails to capture - https://github.com/quicwg/qlog/issues/154

16

Part 2: Proposal
Pragmatism: rules with exceptions
1. Stay as close to wire image as possible

- Only deviate for internal state
- Makes tools mostly usable on pcaps as well

packet_sent +
congestion_metrics_updated

17

Part 2: Proposal
Pragmatism: rules with exceptions
1. Stay as close to wire image as possible

- Only deviate for internal state
- Makes tools mostly usable on pcaps as well

2. Prevent duplicate info logging

packet_sent +
congestion_metrics_updated

- Only deviate for non-trivial internal state changes packets_acked

- packets_acked would be a good “exception to the rule”
- QPACK wire image vs “dynamic_table_contents”

18

Part 2: Proposal
Pragmatism: rules with exceptions
1. Stay as close to wire image as possible packet_sent +

- Only deviate for internal state congestion_metrics_updated
- Makes tools mostly usable on pcaps as well

2. Prevent duplicate info logging

- Only deviate for non-trivial internal state changes packets_acked
- packets_acked would be a good “exception to the rule”
- QPACK wire image vs “dynamic_table_contents”

=no-more frames—processed

If implementations need split (re-used) events/other logic:
- Write custom converter to “proper” glog for tools that don't support those

19

What do we actually standardize?

Proposal 1: JSON + “Streaming JSON”

Proposal 2: limit event options, similar to draft-01

getting rough consensus on these impacts ~75% of open issues

provide clearer usage advice - https://github.com/quicwg/qlog/issues/53
frames_processed fails to capture - https://github.com/quicwg/qlog/issues/154

EXTRA

Schema vs Serialization Format

[JSON and NDJSON

"time": 15000,

"name": "transport:packet_received”, qlog_format?:string = "JSON" | “NDJSON";
"data": {
"header": {
"packet_type": "1rtt",
"packet_number": 25
}s
"frames": [class AckFrame{
{ frame_type:string = "ack";
“frame_type": "ack",
"acked_ranges": [ack_delay?:float; // in ms
[10,15], | | |
[17,20] acked_ranges?:Array<[uint64, uint64]|[uint64]>;
] ectl?:uint64;
}H ect@?:uint64;
} ce?:uint64; Data Definition Language
not for today ;)

https://github.com/quicwg/qlog

Part 1: what does it look like?
draft-01: csv + JSON

{

"event_fields": [

"relative_time",
“category",
"event",
"data"
1,
"events": [
[
2,
"“transport”,
"packet_received",
{ header: {...}, frames: {...} }

- mvfst - neqo
- aloquic - picoquic
- quicly / H20 - ats

- 15 - applequic
https://github.com/quicwg/qlog

Part 1: what does it look like?
draft-01: csv + JSON draft-02: JjsoN

{

"event_fields": [
"relative_time",
“category",
"event",

"data"

{
"events": [
{
"“time": 2,
"name": "transport:packet_received",
"data": {

]

3
"events": [

[
2

"“transport”,
"packet_received",
{ header: {...}, frames: {...} }

header: {...},
frames: {...}

}

- quic-go
- rr.wfst. - nNeqo - ngtcp?2
- aioquic - picoquic - quiche
- quicly / H20 - ats i haskell
- 15 - applequic i kwik

https://github.com/quicwg/qlog

Part 1: what does it look like?
draft-01: csv + JSON draft-02: JSoN + NDJSON

{

"event_fields": [
"relative_time",
“category",
"event",

"data" .
"name": "transport:packet_received",

"data": {

I,
"events": [
[
p

header: {...},
frames: {...}
}
}s

"“transport”,
"packet_received",
{ header: {...}, frames: {...} }

- quic-go
- rr.wfst. - nNeqo - ngtcp?2
- aioquic - picoquic - quiche
- quicly / H20 - ats i haskell
- 15 - applequic i kwik

https://github.com/quicwg/qlog

