
structured event logging

The philosophical update

Robin Marx robin.marx@kuleuven.be
IETF 111



The story so far

= QUIC Logging

Log events directly inside the endpoint implementations

- Packet captures require full decryption → worse for privacy/security

- Can add additional information (e.g., congestion window)

1

3 separate documents:

- Main schema

- QUIC and TLS events

- HTTP/3 and QPACK events

https://github.com/quicwg/qlog

metadata schema + serialization format

} event schema



Schema vs Serialization Format

https://github.com/quicwg/qlog2



Schema vs Serialization Format

https://github.com/quicwg/qlog

JSON

3



Schema vs Serialization Format

https://github.com/quicwg/qlog

JSON and NDJSON
qlog_format?:string = “JSON” | “NDJSON”;

4



Today

What do we actually standardize and why?

https://github.com/quicwg/qlog/issues5



Part 1: The JSON in the room

JSON pros:

- Broadly supported → browser-based tooling, scripting libraries

- Plaintext → re-use existing tools (jq, sed/awk/grep/…, YOU), fprintf(“%s”)

6

JSON cons:

- Slow

- Verbose
- NDJSON isn’t actually standardized anywhere yet… need to define our own “Streaming JSON”

Binary format - https://github.com/quicwg/qlog/issues/30

Revisit serialization format - https://github.com/quicwg/qlog/issues/144

Alternatives:

- CBOR

- Protobuffers/flatbuffers/…

- PCAPNG

- …



Part 1: What is the goal for qlog?

Optimize for interoperable/reusable tools?

7
https://github.com/quicwg/qlog/issues/85#issuecomment-721232467

https://github.com/quicwg/qlog/issues/144#issuecomment-815018003

Optimize for direct output/storage/transfer?

VS



Part 1: What is the goal for qlog?

Optimize for interoperable/reusable tools?

8

https://crates.io/crates/qlog

https://github.com/quicwg/qlog/issues/30

https://github.com/quicwg/qlog/issues/144#issuecomment-815018003

Optimize for direct output/storage/transfer?

Is this even needed?

VS

- Direct JSON is feasible

- mvfst, quic-go

- Log optimized, convert

- quicly, picoquic

- chromium (kind of)

- Compress



Part 1: Proposal

Stick to JSON + “Streaming JSON”

- Optimize for text-based and browser-based processing

- Even loading large JSON files should be feasible

- Not in qvis/browser, but surely in native apps

- Other documents can later define CBOR/PCAPNG/Protobuf/… if needed
- Take care to make schema as generic as possible to allow easy mapping

- You’re free to use another format in your implementation (duh) and then write converter

- We do need to define Streaming JSON properly ourselves then…
- Can still be identical to NDJSON’s format! Or use another delimiter or …

9 Revisit serialization format - https://github.com/quicwg/qlog/issues/144



Part 2: which events do we include?

10

wire image internal state

+ Custom events!

Tools MUST deal with unknown events



Part 2: 2 sides of the same coin

11

wire image

Only newly 

ACKed

state changes

Note: we also have a separate packet_lost event



Part 2: 3 sides of the same… triangle?

12

wire image

Only newly 

ACKed

state changes

partial wire image

No packet 

header

Is this too tied to 

implementation 

specifics?



Part 2: 4 sides of … I give up

13

wire image

Aggregating stream_frame - https://github.com/quicwg/qlog/issues/163

“optimized” partial wire image

Often 

sending 

similar 

STREAM 

frames



Part 2: Explosion of events

All useful, but confusing

- qlog implementers: what to log when/where?

- Tool creators: which events to use? What if contradictions?

- If tools only support a subset, what’s the use of standardizing more?

14
provide clearer usage advice - https://github.com/quicwg/qlog/issues/53

frames_processed fails to capture - https://github.com/quicwg/qlog/issues/154

We need guidelines/design philosphy

When should something be a new event / re-use event / be custom event?



Part 2: Re-use event types

frames_processed fails to capture - https://github.com/quicwg/qlog/issues/154

When handling header When handling payload

Tool 

couples 

based on 

PN

15

instead of frames_processed



Part 2: Proposal

Pragmatism: rules with exceptions

1. Stay as close to wire image as possible

- Only deviate for internal state
- Makes tools mostly usable on pcaps as well

16

packet_sent +

congestion_metrics_updated



Part 2: Proposal

Pragmatism: rules with exceptions

1. Stay as close to wire image as possible

- Only deviate for internal state
- Makes tools mostly usable on pcaps as well

2. Prevent duplicate info logging

- Only deviate for non-trivial internal state changes
- packets_acked would be a good “exception to the rule”

- QPACK wire image vs “dynamic_table_contents”

17

packet_sent +

congestion_metrics_updated

packets_acked



Part 2: Proposal

Pragmatism: rules with exceptions

1. Stay as close to wire image as possible

- Only deviate for internal state
- Makes tools mostly usable on pcaps as well

2. Prevent duplicate info logging

- Only deviate for non-trivial internal state changes
- packets_acked would be a good “exception to the rule”

- QPACK wire image vs “dynamic_table_contents”

If implementations need split (re-used) events/other logic:

→ Write custom converter to “proper” qlog for tools that don’t support those
18

packet_sent +

congestion_metrics_updated

packets_acked

= no more frames_processed



Proposal 1: JSON + “Streaming JSON”

Proposal 2: limit event options, similar to draft-01

19

getting rough consensus on these impacts ~75% of open issues 

What do we actually standardize?

provide clearer usage advice - https://github.com/quicwg/qlog/issues/53

frames_processed fails to capture - https://github.com/quicwg/qlog/issues/154



EXTRA



Schema vs Serialization Format

https://github.com/quicwg/qlog

JSON and NDJSON

Data Definition Language

5

qlog_format?:string = “JSON” | “NDJSON”;

not for today ;)



Part 1: what does it look like?

2 https://github.com/quicwg/qlog

draft-01: csv + JSON

“column” 
names

- mvfst

- aioquic

- quicly / H2O

- f5

- neqo

- picoquic

- ats

- applequic

- …



Part 1: what does it look like?

3 https://github.com/quicwg/qlog

draft-01: csv + JSON

“column” 
names

- mvfst

- aioquic

- quicly / H2O

- f5

- quic-go

- ngtcp2

- quiche

- haskell

- kwik

- neqo

- picoquic

- ats

- applequic

- …

draft-02: JSON



Part 1: what does it look like?

4 https://github.com/quicwg/qlog

draft-01: csv + JSON

“column” 
names

- mvfst

- aioquic

- quicly / H2O

- f5

- quic-go

- ngtcp2

- quiche

- haskell

- kwik

- neqo

- picoquic

- ats

- applequic

- …

draft-02: JSON + NDJSON


