
RATS Agenda – Thursday, July 29th – Session I

6

Room 8, RATS Session 2
Time zone: PDT (UTC-7)

12:00 : 12:05 Agenda bash & logistics
(5 min) Nancy Cam-Winget, Kathleen Moriarty, Ned Smith

12:05 : 12:10 Open Mic
(5 min)

12:10 : 12:35 Attestation Results, Trusted Path Routing
(25 min) Eric Voit
draft-voit-rats-attestation-results, draft-voit-rats-trustworthy-path-routing

12:35 : 12:40 Attestation Event Stream Subscription
(5 min) Henk Birkholz, Eric Voit
draft-birkholz-rats-network-device-subscription

12:40 – 13:00 Trusted Identities
(20 min) Meiling Chen

13:00 – 13:30 Break
(30 min)

Attestation Results and Trusted Path Routing

● Eric Voit

Eric Voit
Cisco
evoit@cisco.com

Attestation Results for Secure Interactions
draft-voit-rats-attestation-results-01

Henk Birkholz
Fraunhofer SIT
henk.birkholz@sit.fraunhofer.de

Thomas Hardjono
MIT
hardjono@mit.edu

Thomas Fossati
Arm Limited
Thomas.Fossati@arm.com

Vincent Scarlata
Intel
vincent.r.scarlata@intel.com

IETF 111, July 29th 2021, RATS WG

2

Summary

• Contents

• Object definitions for Attestation Results (AR) to support Secure Interactions
between Attester and Relying Party

• How the Attester can augment AR to improve scale and speed of appraisal

• State Machine for the Appraisal Policy for Attestation Results

• Two implementations

• Trusted Path Routing (Proprietary – Cisco)

• Veraison (Open Source – Confidential Compute Consortium)

• Ask: WG Adoption

https://www.youtube.com/watch?v=dOa128d_utY
https://github.com/veraison/veraison

3

Remote Attestation in a Heterogenous World

• Many types of Attesting Environments (AE)

• What may be trusted by Relying Party

Support varies by AE chip type > Attester > Verifier

• Relying Party cannot support ∞ language permutations

• And a mix and match across L1 ↔ L7 platforms is coming if IETF RATS succeeds

• Need: Shared definitions/structures for Verifier Appraisals coming to Relying Party
• Will help scale and Interop

• Reduce transcoding/mapping between sequentially bound sets of Attesters

• Could be encoded in EAT, YANG, CDDL, etc...

Freshness

Verifier Appraisals

Identity Hardware type, software build, developer

Sw integrity, config ok, attester recognized, ...

Nonce, trusted timestamp, ...

https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

4

TimeBoot Time Time

Verifier Appraisal
• Periodic appraisal and generation of Attestation Results

• One to Many Trustworthiness Claims assigned during an appraisal cycle

• Attestation Results signed and returned to Attester (for scale/speed)

config-secure

executables-verified

file-system-anomaly

hw-authentic

hw-verification-fail
config-secure

executables-verified

hw-authentic

Attester

Verifier

5

Normalizing Trustworthiness Claims

Trustworthiness
Claim

Attesting Environments

Confidential Compute
HSM-based

(TPM)Process-based
(SGX, TrustZone)

VM-based
(SEV, TDX, ACCA)

ae-instance-recognized Optional Optional Optional

ae-instance-unknown Optional Optional Optional

hw-authentic Implicit Chip dependent If PCR check ok

hw-verification-fail Implicit if not ok Chip dependent If PCR don't check ok

executables-verified Optional Optional If PCR check ok

executables-refuted Optional Optional If PCR don't check ok

file-system-anomaly n/a Optional Insufficient

source-data-integrity Optional Optional Optional

config-secure Optional Optional Optional

config-insecure Optional Optional Optional

target-isolation Implicit Implicit Optional

runtime-confidential Implicit Implicit Insufficient

secure-storage Implicit Chip dependent Very minimal space

Specific claim

definitions,

extensible

affirming

detracting

6

Normalized Trustworthiness Claims
≠ the same Relying Party policy disposition

• Even with Normalized Trustworthiness Claims, Attesters need not be
treated equivalently by the Relying Party

• Variance in underlying protections of SGX, TrustZone, SEV, TPM, etc.
could mean different disposition via the Appraisal Policy for
Attestation Results.

• Each Verifier, or Verifier version, or Verifier appraisal of a specific
type of Attester may be trusted differently for different claims

7

.----------------.
| Attester |
| .-------------.|
| | Attesting || .----------. .---------------.
| | Environment || | Verifier | | Relying Party |
| '-------------'| | A | | / Verifier B |
'----------------' '----------' '---------------'

time(VG) | |
|<------Verifier PoF-------time(NS) |
| | |

time(EG)(1)------Evidence------------>| |
| time(RG) |
|<------Attestation Results-(2) |
~ ~ ~

time(VG')? | |
~ ~ ~
|<------Relying Party PoF-----------------(3)time(NS')
| | |

time(EG')(4)------AR-augmented Evidence----------------->|
| | time(RG',RA')(5)

(6)
~

time(RX')

Trustworthiness Claim Delivery
Based on draft-ietf-rats-architecture: Passport Model

8

.----------------------------.
| Relying Party / Verifier B |
| |
| |
| |
| |
| |
| |
| |
| |
| |
'----------------------------'

(5) Appraisal Policy for Attestation Results

Attestation Results Augmented Evidence

Identity
• is Verifier A known & trusted ?
• is Attester on Accept-List ?

Trustworthiness Claims
• what did Verifier A conclude ?

Freshness
• is this Evidence recent ?

(4) AR-augmented Evidence----->

• Input to Relying Party’s Appraisal Policy for Attestation Results

• How to review the AR-augmented evidence to ensure no tampering

9

Attestation Results Augmented Evidence
objects needing specification

Identity
Attesting

Environment

ae-instance-recognized

ae-instance-unknown

Integrity

Hardware
hw-authentic

hw-verification-fail

Files

executables-verified

executables-refuted

file-system-anomaly

source-data-integrity

Config
config-secure

config-insecure

Confidentiality
Target

Environment

target-isolation

runtime-confidential

Data secure-storage

Trustworthiness Claims of the Verifier Verified Identity instance(s)

Attester

chip vendor

chip type

target environment

target developer

ae instance

Verifier
verifier developer

verifier build

Verifiable Freshness

Random

Number
nonce

Synchronized

Clocks

timestamp

tuda sync token

Epoch epoch id

+ +

• Categories defined in
draft-ietf-rats-architecture
Section 10

• Categories defined in this draft
• Specific objects to be defined

in other drafts

Defined in this draft

10

Current topics being worked by authors

• Categorizing ‘Trustworthiness Claims’ into ‘Endorsements’ and ‘Capabilities’ ?

• Datatype of ‘Trustworthiness Claims’ : move from identities to enumerations ?

• Follow-up drafts. E.g., Encoding in EAP for TLS transport

11

Summary

• Contents

• Object definitions for Attestation Results (AR) to support Secure Interactions
between Attester and Relying Party

• How the Attester can augment AR to improve scale and speed of appraisal

• State Machine for the Appraisal Policy for Attestation Results

• Two implementations

• Trusted Path Routing (Proprietary – Cisco)

• Veraison (Open Source – Confidential Compute Consortium)

• Ask: WG Adoption

https://www.youtube.com/watch?v=dOa128d_utY
https://github.com/veraison/veraison

Eric Voit
Cisco
evoit@cisco.com

Trusted Path Routing
draft-voit-rats-trustworthy-path-routing-03

Henk Birkholz
Fraunhofer SIT
henk.birkholz@sit.fraunhofer.de

Chennakesava Reddy Gaddam
Cisco
chgaddam@cisco.com

Guy Fedorkow
Juniper
gfedorkow@juniper.net

IETF 111, July 29th 2021, RATS WG

© 2021 Cisco and/or its affiliates. All rights reserved.

time(x)

nonce y-

time(y)

replicate
through
Existing
Routing

Protocol

Verifier

Attested Topology

Global Routing

Evidence x-

Evidence x

Attestation
Results x+

Trusted Path Routing

• Link adjacencies added to Trusted Topology based on latest Relying
Party’s appraisal of AR Augmented Evidence

TPM

Relying
Party

Attester

Appraisal Policy for
Attestation Results

must
executables-verified

© 2021 Cisco and/or its affiliates. All rights reserved.

Trusted Path Routing - Demo

14

must

Regular Traffic

• Custom topologies dynamically maintained based on

Attestation Results

Appraisal Policy for
Attestation Results

ae-instance-recognized

executables-verified

file-system-anomaly

hw-authentic

executables-verified

Appraisal Policy for
Attestation Results

must
must not

executables-verified

any

ae-instance-recognized

executables-verified

hw-authentic

ae-instance-recognized

executables-verified

hw-authentic

ae-instance-recognized

executables-verified

hw-authentic

ae-instance-recognized

executables-verified

hw-authentic

hw-verification-fail

© 2021 Cisco and/or its affiliates. All rights reserved.

• Extracted the elements to draft-voit-rats-attestation-
results:

• Trustworthiness Claims, Relying Party State Machine,
Call Flow.

• Alignment of WGLC comments received on Charra
YANG model

• Authorship updated

Changed since last draft version

© 2021 Cisco and/or its affiliates. All rights reserved.

• Continued alignment with draft-voit-rats-
attestation-results (e.g., Trustworthiness Claims
structures)

• Definition of EAP payload (separate draft)

• No assertion to adopt until WG makes progress/
adopts draft-voit-rats-attestation-results

Next Steps

Attestation Event Stream Subscription

● Henk Birkholz
● Eric Voit

Trusted Identities

● Meiling Chen

Use TEE Identification in EAP-TLS
draft-chen-rats-tee-identification-01

IETF111-2021-RATS

Meiling Chen /China Mobile

Objective

- Uses TEE and EAP-TLS to create a secure and trusted procedure to
authenticate a device’s identity.

- Can be used in transport layer as identity authentication

- Can be used in link layer to determine if the access of network is
permitted

Justifications

 RATs needs a mechanism to authenticate identity

 TLS protocol is secure, but the device that processes this protocol

cannot be fully trusted

Architecture of TEE Identification use EAP-TLS

IML: Key derivation
Response to EML about EAP-TLS encryption and decryption relevant message.

TEE

REE

Certificates

Key
Derivation

Inner
middle
layer

external
middle
layer

EAP-TLS
Client

EAP-
TLS

Server

EML: Communicate with EAP-TLS Server
Request encryption and decryption relevant messages from IML.

Middle Layer Message

Information pre-stored in TEE

Certificate that complies with X509.3 or other. If using EAP-TLS as the

authentication protocol, then the ID of the TEE enabled device is the

certificate complies X509.3.

Key derivation process in TEE

Key derivation process must be executed in TEE.

Procedure detail

Message 1: KeyShareExtension request from EML to IML.

Message 2: responses to message1 and returns the KeyShareExtension

response to EML.

Message 3: includes plaintext ServerHello message and encrypted Server

Params and Auth, also includes the entire handshake context which will be

used to create CertificateVerify and Finished context.

Message 4: encrypted TLS Client Certificate, TLS CertificateVerify and

TLS Finished Message will be included.

Message 5: encrypted application data 0x00 will be sent to IML to

decode.

Message 6: plaintext will be sent to EML. Then EML will make the

determination if the authentication procedure is finished.

Ticket Establishment message 5

Resumption message 1 for request, message 2 for response

Termination message 4/6

HelloRetry Request plaintext from Server to Client

Other branches of EAP-TLS procedure

Message1-6 also contains the branches of TLS procedure

Security Consideration

1. Exhausitive attack from REE

prioritized problem need to be solved, one possible solution :

use a counter or timer to limited the access frequency from REE to

TEE

2. Deny of Service

the integrity of encrypted message could be tampered by malicious REE

or other parties.

ToDo

• Prevent or mitigate exhaustive attack from REE.

• How to identify if the device enables TEE function.

Thank You!

RATS Agenda – Thursday, July 29th – Session II

6

Room 8, RATS Session 3
Time zone: PDT (UTC-7)

13:00 – 13:30 Break
(30 min)

13:30 – 13:50 SUEID and EAT’s relation to IDevID
(20 min) Laurence Lundblade

13:50 : 14:10 Claims to carry Attestation Results to Relying Parties
(20 min) Laurence Lundblade

14:10 – 14:20 TEEP requirements for EAT
(10 min) Dave Thaler

14:20 – 14:30 Open Mic
(10 min)

SUEID and EAT relation to DevID

● Laurence Lundblade

6

SUEID and IDevID

7

UEID and SUEID (Semi-permanent UEID) device identifiers

• Both UEID and SUEID have the same format, one of these:

• 16, 24 or 32-byte binary string1 created with a crypto-quality random number generator or equivalent

• 6, 8-byte binary string1 that is an IEEE EUI — a MAC address is an IEEE EUI

• 14-byte binary string1 that is an IMEI — a mobile phone serial number

UEID SUEID

One per device (or none) One or more per device (or none)

Assigned at manufacture and never changes Created and destroyed in device life-cycle events
like ownership change and factory reset

No label A simple string label to distinguish one from another

Like an IDevID Like an LDevID

1There is one additional type byte, so the actual lengths are: 17, 25, 33, 7, 9 or 15 bytes

8

Three ways EAT implementations relate to IDevID implementations

◦ The EAT protocol is used with an IDevID — Both are implemented and work together

◦ EAT as a competitor to IDevID to provide identity and manufacturer info — It’s one or the other

◦ EAT claims are added into an IDevID — Parts of EAT are stuffed into an IDevID implementation

9

The EAT protocol used with an IDevID

Device Verifier / Relying Party

Endoser / Manufacturer

EAT

Endorsement /
IDevID certificate

Root Certificate

Endorsement /
IDevID certificate

Attester

DevID Module
signs the EAT

Private Key

nonce

Both the EAT and the IDevID may have a device and vendor identifier
- The UEID and OEM ID in EAT
- In the X.509 subject field in the Endorsement/IDevID
- These should probably be made identical or one derived from the other

10

IDevID used for identity — can be thought of as a competitor to EAT

Device Verifier / Relying Party

Endoser / Manufacturer

Signed nonce

Endorsement /
IDevID certificate

Root Certificate

Endorsement /
IDevID certificate

DevID Module
signs the nonce

Private Key

nonce

This provides signed / secured device and manufacturer identity in the certificate
This architecture can be seen as competing with EAT which can also provide this

11

EAT inside a DevID Certificate

• EAT claims can be put into an X.509 v3 extension in a DevID certificate

• Option 1: define ASN.1 syntax and OID for each EAT claim that is to be included

• Option 2: one OID that contains a CBOR/UCCS format EAT

Note:

• Only works for static EAT claims because DevIDs are not generated on device

• For example, can’t work with GPS location, debug status, some SW measurements

• EAT is not functioning as the protocol between device and relying party that proves the identity of the device,
some message/protocol is still required

12

IDevID expanded with EAT claims

Device Verifier / Relying Party

Endoser / Manufacturer

Signed nonce

Endorsement /
IDevID certificate

Root Certificate

DevID Module
signs the nonce

Private Key

nonce

Can provide EAT claims in a largely IDevID-compatible way
Only static EAT claims since EAT is not generated on device

EAT claims

Endorsement /
IDevID certificate

EAT claims

Claims to carry Attestation Results to Relying Parties

● Laurence Lundblade

13

Attestation Results

14

Purpose of Attestation

• The end purpose of RATS is to give results to the Relying Party

• The Relying Party makes the decision to allow the financial transaction, to allow the device
on the network, to believe the data received,…

• RATS exists to serve the Relying Party

• Relying party may use machine learning and want every scrap of information of even
remote value

• EATis a relatively obvious choice to convey Attestation Results to the Relying Party

• Supports JSON, a common representation for the server side

• Flexible security options: EAT/CWT or UCCS + TLS or UCCS + other

• Many claims are appropriate to pass directly through the Verifier to the Relying Party

15

Claims that are useful to pass-through Verifier to Relying Party

Nonce Must have a nonce from the relying party

UEID, SUEID Relying parties like device identification when privacy policy allows

OEM ID Identifies manufacturer of device

HW Version Sometimes useful to relying party

Boot and debug status Useful when higher security is required

Location Often useful to relying party

Uptime and boot seed Sometimes useful to relying party

Software manifest Contain software versions

Software results — The results of a software
measurement (in a Github, not yet in an EAT
draft)

Some (TEE-based) Attesters can measure AND validate
subsystems and thus measurement results can go directly from
Attester to Relying Party

Key material, particularly a public key This may enable further protocols between the device and Relying
Party (e.g., FIDO, payments, Android key store…)

Submodules For example, many submodules (the TEE, the HLOS, the Secure
Element) may participate in a payment

16

Claims Generated by the Verifier for the Relying Party

Token ID Identifies the particular report to the RP

Time stamp When the results were generated

Nonce Freshness between Verifier and Relying Party

Security Level If the Attester doesn’t include the claim, the Verifier
may have information to know the security level and
report it

Software Results (described only in Github
document, not yet in a published EAT draft)

RP will be very interested in the results of the
measurement comparison to reference values

Digital Letter of Authorization — List of certifications
received by device (described only in Github
document, not yet in a published EAT draft)

Lists certifications granted to the device. For
example, Common Criteria or Global Platform
certifications

17

A DLOA

Digital Letter of Approval (format is XML)

Field Description Example

Authority_Label Names the authority that
issued the certification

EMVCo

LOA_Identifier More or less a serial
number for the
certification

PCN0156.13

LOA_Scope Scope of the LOA (unable to find example)

Platform_Label Manufacturer identied
by OID plus product
identified by text string

1.2.840.114283/
My_Platform_Label_1a

Issuance_Date Date issued 19 Jun 2018

Expiration_Date Date of expiration 19 Jun 2022

Digitally signed with XML signature

• A digital instantiation of the letter
of approval typically issued by a
certification authority

• Always retrieved by URL from a
DLOA registrar

18

DLOA Claim

• An array of one or more references to a DLOA

• Each DLOA reference contains

• Fields to construct URL to fetch DLOA

• Registrar URI

• Platform Label

• Application Label if DLOA is for an application,
not a platform

• DLOA claim must only be present if certification
was granted

• A DLOA’s scope is limited to the submodule it is in

dloas-claim = (

 dloas => [+ dloa-type]

)

 dloa-type = [

 dloa_registrar: ~uri

 dloa_platform_label: text

 ? dloa_application_label: text

]

19

The swresult Claim
A high-level summary report of the verification of a software measurement

Each claim may contain multiple results

An individual result is an array of three or four items
The name of the measurement
system or scheme (required)

Text string describing the measurement product, the measurment standard,
scheme or such

objective — what software
measured (required)

Enumerated type that is one of:
• all
• firmware
• kernel
• privileged
• system-libs
• partial

verification result (required) Enumerated type that is one of:
• verification-not-run
• verification-indeterminite
• verification-failed
• fully-verified
• partially-verified

objective name (optional) Textual name of the objective. For example, “Android kernel”

TEEP Requirements for EAT

● Dave Thaler

TEEP Requirements for EAT
Dave Thaler <dthaler@microsoft.com>

IETF 111 - RATS WG

TEEP WG has requirements for abstract data in
Attestation Results (e.g., to do remediation)

IETF 111 - RATS WG

Requirement Claim Reference

Device unique ID device-identifier draft-birkholz-rats-suit-claims, §3.1.3

Vendor of the device vendor-identifier draft-birkholz-rats-suit-claims, §3.1.1

Class of the device class-identifier draft-birkholz-rats-suit-claims, §3.1.2

TEE hardware type chip-version-scheme draft-ietf-rats-eat, §3.7

TEE hardware version chip-version-scheme draft-ietf-rats-eat, §3.7

TEE firmware (e.g., TF-A) ID component-identifier draft-birkholz-rats-suit-claims, §3.1.4

TEE firmware version version draft-birkholz-rats-suit-claims, §3.1.8

TEE software (e.g., OP-TEE) ID component-identifier draft-birkholz-rats-suit-claims, §3.1.4

TEE software version version draft-birkholz-rats-suit-claims, §3.1.8

Freshness proof (nonce) nonce draft-ietf-rats-eat, §3.3

Freshness proof (timestamp) iat draft-ietf-rats-eat, §3.2

Freshness proof (epoch ID) ? ?

draft-birkholz-rats-suit-claims

3. SUIT Claims . 5
3.1. System Properties Claims 5

3.1.1. vendor-identifier 6
3.1.2. class-identifier 6
3.1.3. device-identifier 6
3.1.4. component-identifier 6
3.1.5. image-digest . 6
3.1.6. image-size . 6
3.1.7. minimum-battery 7
3.1.8. version . 7

3.2. Interpreter Record Claims 7
3.2.1. record-success 7
3.2.2. component-index 7
3.2.3. dependency-index 7
3.2.4. command-index . 7
3.2.5. nominal-parameters 8
3.2.6. nominal-parameters 8

3.3. Generic Record Conditions (TBD) 8

IETF 111 - RATS WG

Per past RATS list
discussion, these
claims are not
SUIT specific

Dispatch: draft-birkholz-rats-suit-claims

Options:
A. RATS WG, even if some claims are SUIT specific
B. SUIT WG, even if some claims are not SUIT specific
C. Split doc: SUIT WG for SUIT claims, RATS WG for general claims

My preference: option C with general claims added into EAT spec
• “System Properties Claims” fall under RATS charter item for “claims

which provide information about system components characteristics
scoped by the specified use-cases”

IETF 111 - RATS WG

TEEP implementation requirements

• From draft-ietf-teep-protocol D.3.1 example:
/ eat-claim-set = /
{

/ issuer / 1: "joe",
/ timestamp (iat) / 6: 1(1526542894)
/ nonce / 10: h'948f8860d13a463e8e',
/ secure-boot / 15: true,
/ debug-status / 16: 3, / disabled-permanently /
/ security-level / 14: 3, / secure-restricted /
/ device-identifier / <TBD>: h'e99600dd921649798b013e9752dcf0c5',
/ vendor-identifier / <TBD>: h'2b03879b33434a7ca682b8af84c19fd4',
/ class-identifier / <TBD>: h'9714a5796bd245a3a4ab4f977cb8487f',
/ chip-version-scheme / <TBD>: "MyTEE v1.0",
/ component-identifier / <TBD>: h'60822887d35e43d5b603d18bcaa3f08d',
/ version / <TBD>: "v0.1"

}

• Need early assignment to unblock implementations

IETF 111 - RATS WG

draft-ietf-rats-eat
chip-version-scheme-claim = (

chip-version-scheme => $version-scheme
)
“The hardware version is a simple text string the format of which is set by each manufacturer. The
structure and sorting order of this text string can be specified using the version-scheme item from
CoSWID [CoSWID].”

draft-ietf-sacm-coswid:
$version-scheme /= multipartnumeric
$version-scheme /= multipartnumeric-suffix
$version-scheme /= alphanumeric
$version-scheme /= decimal
$version-scheme /= semver
$version-scheme /= uint / text

IETF 111 - RATS WG

draft-birkholz-rats-suit-claims

• version => version-value
• Should probably be $version-scheme
• Can this replace (be renamed from) chip-version-scheme-claim?

• device-identifier => RFC4122_UUID
• vendor-identifier => RFC4122_UUID
• class-identifier => RFC4122_UUID
• class-identifier => [+ identifier]
• “A binary identifier can represent a CoSWID [I-D.ietf-
sacm-coswid] tag-id.”

IETF 111 - RATS WG

Thank You!

