
draft-struik-secdispatch-verify-friendly-ecdsa-00

René Struik

Struik Security Consultancy

E-mail: rstruik.ext@gmail.com

IETF 111 – virtual San Francisco, USA, July 2021

Verification-Friendly

ECDSA

1

1. ECC Signature Schemes:

– ECDSA, EdDSA

– Implementation details

− ECDSA*

2. Speed-ups:

− Verification with ECDSA vs. with ECDSA*

− How to get from ECDSA to ECDSA*?

4. ECDSA* with reuse of existing ECDSA standards

5. Conclusions, next steps

Outline

2struik-secdispatch-verify-friendly-ecdsa

NIST curves:
Curve model: Weierstrass curve

Curve equation: y2 = x3 + a⋅x + b (mod p)

Base point: G=(Gx, Gy)

Scalar multiplication: addition formulae using, e.g., mixed Jacobian coordinates

Point representation: both coordinates of point P=(X, Y) (affine coordinates)

0x04 || X || Y in most-significant-bit/octet first order

Examples: NIST P-256 (ANSI X9.62, NIST SP 800-56a, SECG, etc.);

Brainpool256r1 (RFC 5639)

ECDSA:
Signature: r || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: R´ = (e/s) G + (r/s) Q, where Q= d G; check that R´ → r

Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.)

Note: message m pre-hashed

ECC Signature Algorithms (1)

3struik-secdispatch-verify-friendly-ecdsa

CFRG curves:
Curve model: twisted Edwards curve

Curve equation: a⋅ x2 + y2 = 1 + d⋅ x2⋅y2 (mod p)

Base point: G=(Gx, Gy)

Scalar multiplication: Dawson formulae, using extended coordinates (X: Y: T: Z)

Point representation: compressed point P=(Y, X′), where X′=lsb(X)

Y|| X‘

Examples: Edwards25519, Edwards448 (RFC 7748)

EdDSA:
Signature: R || s

Signing equation: s = k + e ⋅ d (mod n), where e=Hash(Q || R || m), R=k G

Verification: s G = R + e Q, where Q=d G

Example: Ed25519-SHA-512, Ed448-SHAKE-256 (RFC 8032)

Notes: Deterministic Schnorr signature, where k=Hash (d’|| m)

Variant w/ pre-hashing uses Hash(m) instead of m

ECC Signature Algorithms (2)

4struik-secdispatch-verify-friendly-ecdsa

Aspect: ECDSA EdDSA

Curve model: Weierstrass Edwards

Base point: affine affine

Internal coord: Jacobian extended

Formulae: Jacobian Dawson

Wire format: (r, s) (R, s)

@signing:

#message passes: once twice

eph. signing key R: offline inline

inversions mod n: once none

@verification:

single verification no speed-ups speed-ups

batch verification no speed-ups speed-ups

Implementation Detail (1)

5

APPLICATION NOTE:

- Batch verification of

certificate chains

(and any other batch)

- Batch sanity checks

struik-secdispatch-verify-friendly-ecdsa

NOTE:

EdDSA is full-Schnorr

signature, which

are also defined for

Weierstrass curves

- Not standardized

with IETF

- Standardized with

BSI (as short-Schnorr

Signature (e,s))

Aspect: ECDSA EdDSA ECDSA*

Curve model: Weierstrass Edwards Weierstrass

Base point: affine affine affine

Internal coord: Jacobian extended Jacobian

Formulae: Jacobian Dawson Jacobian

Wire format: (r, s) (R, s) (R, s)

@signing:

#message passes: once twice once

eph. signing key R: offline inline offline

inversions mod n: once none once

@verification:

single verification no speed-ups speed-ups speed-ups

batch verification no speed-ups speed-ups speed-ups

Implementation Detail (2)

6struik-secdispatch-verify-friendly-ecdsa

Verification Detail (1)
ECDSA:
Signature: r || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: compute R´ = (e/s) G + (r/s) Q;

check that R‘ → r

ECDSA*:
Signature: R || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: compute R → r;

compute R → R

check that R = (e/s) G + (r/s) Q, where Q= d G

Alternative verify: λ (- R + (e/s) G + (r/s) Q) = O for any λ≠0

speed-ups: ~1.3x make scalars small, which halves ECC doubles (single verify)

up to ~ 6x amortize ECC doubles and common terms (batch verify)

ECDSA and ECDSA* the same if one could reverse R‘ → r mapping, but ± R‘ → r

struik-secdispatch-verify-friendly-ecdsa 7

ECDSA and ECDSA* the same if one could reverse R‘ → r mapping, but ± R‘ → r

This follows from the fact that R‘ → r is defined as r:=x(R) (mod n)

For all prime-order curves, these pre-images come in pairs {R, -R} in practice

Modified ECDSA signing procedure:

− Step 1: Generate ECDSA signature (r, s) of message m, as usual;

− Step 2: Change (r, s) to (r,-s) if ephemeral key R has y-coordinate with odd parity

Notes:

− If (r, s) is a valid ECDSA signature, then so is (r, -s) −− the so-called malleability

− Any party can perform Step 2, since for valid signatures R:=(e/s) G + (r/s) Q

This party does not have to be the signer and this can be done retroactively

− If verifyer knows that modified signing produre was used, R‘ → r has unique

preimage in practice for all prime-order curves (implicit point compression R)

How to Get from ECDSA to ECDSA*?

8struik-secdispatch-verify-friendly-ecdsa

Transitioning towards ECDSA* (1)
ECDSA with modified signing procedure allows implementation of ECDSA* with

existing ECDSA standards (for prime-order curves), provided the verifying device

knows this modified signing procedure was indeed used

Option #1: "Big Bang”

− Implement modified signing procedure retroactively for all existing ECDSA

signatures;

− Generate all new ECDSA signatures with the modified signing procedure (i.e.,

mothball the old way of generating ECDSA signatures)

Option #2: mandate in specifications

− This has same effect as Option #1, for a particular protocol

Question: does this entice implementors enough to adopt speed-ups en masse?

Option #3: define new label for ECDSA*

− New devices who recognize label can uniquely recover R from r

� Old devices that have parser that replaces label ECDSA* with label ECDSA as

pre-processing step can still process ECDSA signatures as usual

NOTE: no changes to old ECDSA processing of triples (h(m), (r,s), Q)

struik-secdispatch-verify-friendly-ecdsa 9

Transitioning towards ECDSA* (2)
Applications with IETF protocols:

Everywhere, e.g., PKIX, CMS, Certificate Transparency, OpenPGP, COSE, JOSE, lake, etc.

Example w/ PKIX:

include id-ecdsa-star-with-sha256 ::=
{iso(1) identified-organization(3)thawte (101) (100) 81}

(for consideration of old devices (if any), see draft, Section 4)

Example w/ OpenPGP:

include ECDSA* as Suite #25 in Table 15 of draft-ietf-openpgp-crypto-refresh

Example w/ lake:

use ECDSA* instead of ECDSA with draft-ietf-lake-edhoc-08

What about other deployed signature schemes similar to ECDSA?

Richer definition allows speed-ups to apply also to other signature schemes,

e.g., Chinese SM2, German ECGDSA scheme, Russian GOST R34.10-2012 (RFC 7091)

struik-secdispatch-verify-friendly-ecdsa 10

Conclusions & Question to Group
Summary:

− ECDSA verification can take advantage of ECDSA* speed-ups,

similarly to EdDSA, both in single verify and batch verify case

− Techniques trivial to use with all prime-order curves (roughly

all existing deployments), for those verifying devices that wish this

− Techniques compatible with existing ECDSA for prime-order curves

− Speed-ups deployed in V2V (P1609.2); useful for servers with

more widespread use client certificates

Techniques known since 1994 (batch), resp. since Jan 2005 (single)

Question to Group:

− Discussed w/ lamps @IETF-110, but not yet in revised charter

− Useful throughout IETF; do in lamps, elsewhere?

− Should be quick project (mainly definition of code points)

struik-secdispatch-verify-friendly-ecdsa 11

