HyStart++: Modified Slow Start for TCP draft-ietf-tcpm-hystartplusplus-03

TCPM, IETF 111 July 27, 2021

Praveen Balasubramanian, Yi Huang, Matt Olson

HyStart++ Recap

- Slow Start can overshoot ideal send rate & cause massive packet loss
 - Increased retransmissions
 - Time spent in recovery
 - Sometimes results in RTO (retransmission timeout)
- HyStart++ until draft-01
 - Simple modification to Slow Start
 - Only use Delay Increase algorithm from original HyStart
 - Compensate for premature slow start exit
 - Use max of Limited Slow Start (RFC3742) and Congestion Avoidance
 - Define tuning constants based on measurements and deployment experience

Jitter Problems

• Intra DC WAN transfers suffered latency spikes

HYSTART	НТТР	RUN COUNT	PAYLOAD SIZE (BYTES)	AVERAGE THROUGHPUT (MB/S)	MAX THROUGHPUT (MB/S)	MIN THROUGHPUT (MB/S)
ENABLED	2	30	262144000	100.435	120.9	54.4
DISABLED	2	30	262144000	118.538	108.3	128.02

- Latency spike lasted 1-2 rounds but triggered HyStart exit
- Source of spike not root caused, but later disappeared during testing
- Performance problems due to jitter
 - Reported as an issue in https://datatracker.ietf.org/meeting/interim-2020-maprg-01/materials/slides-interim-2020-maprg-01-sessa-behavior-of-tcp-cubic-in-low-latency-mobile-radio-networks-00.pdf
 - Raised as an issue in tcpm mailing list by Christian and others
 - Reported as an issue in <u>TCP HyStart Performance over a Satellite Network</u> (wpi.edu)

Jitter Resiliency and Simplification

- Standard slow start (RFC 5681)
- Only use Delay Increase algorithm from original HyStart
- Upon exit from slow start, enter Conservative Slow Start (CSS)
- Under CSS increase cwnd as a fraction of standard slow start
- If measured RTT shrinks during CSS, exit was spurious, resume HyStart++
- Else enter congestion avoidance
- Rationale: Instead of trying to compensate for early exit, add detection for spurious exits to be able to resume slow start

Algorithm Details

- On each ACK in slow start
 - Update the cwnd per standard slow start
 - If taking an RTT sample, measure current round's minRTT
- For each round in slow start (round approximates an RTT)
 - Remember last round's minRTT
 - If cwnd >= (LOW_CWND * SMSS) and at least N_RTT_SAMPLE RTT samples taken
 - Check if currentRoundMinRTT is greater than lastRoundMinRTT + Threshold
 - If yes, set ssthresh = cwnd, cssBaselineRtt = currentRoundMinRTT, exit slow start and enter CSS
- CSS lasts at most CSS_ROUNDS rounds. On each ACK in CSS
 - Update the cwnd as "standard slow start cwnd" / CSS_GROWTH_DIVISOR
- For each round in CSS
 - If at least N_RTT_SAMPLE RTT samples taken
 - Check if currentRoundMinRTT is less than cssBaseLineRtt
 - If yes, declare exit as spurious and resume HyStart++
 - Else enter congestion avoidance
- Exit HyStart++ on first congestion signal
- SHOULD use on first slow start and MAY use after idle

Lab Measurements – no jitter

New Hystart No Hystart Original Hystart 100 90 80 70 Goodput (Mbps) 60 50 40 30 20 10 10005-100MD5-1200H-64008-200 200n^{6,100,100,2500,4,6400,62,000} 25m^{5,00,005,3}20^{4,60,005,50} 25m5-10MP6-3-124-64008-200 50ne. 00M05.0204.0008.00 50m^{5,000005,250%,64008,200} 100ne100m0e125004.64008.500 20005-1001005-25004-6400B-500 0-

Average Goodput in different scenarios

Lab Measurements – jitter

P90 Goodput in different scenarios

Lab Measurements – Varying CSS_ROUNDS

Average Goodput in different scenarios

Average Goodput in different scenarios

Status & Next Steps

- We made a rather significant change to the algorithm
- Currently flighting and doing A/B measurements
- Revaluate fixed threshold clamps
- Should we change the Intended Status to Experimental?