Profiles for TE Topology Model

TEAS WG, IETF111, Virtual Meeting

draft-busi-teas-te-topology-profiles-02

Authors:
Italo Busi (Huawei)
Xufeng Liu (Volta Networks)
Igor Bryskin
Vishnu Pavan Beeram (Juniper)
Tarek Saad (Juniper)
Oscar Gonzalez de Dios (Telefonica)

Contributors:
Aihua Guo (Futurewei)
Haomian Zheng (Huawei)
Sergio Belotti (Nokia)
Motivation

• Multiple similar discussions in IETF working groups
 – Scenario: non-TE networks
 – Requirement: sub-set TE Topology attributes

• TE Topology Model (RFC8795) looks very complex at the first glance
 – Extensive model to support many features
 • Some applicable only to TE networks
 • Others applicable to both TE and non-TE networks
 – Most of the features/attributes are optional

• Clarify that a sub-set (profile) of TE Topology can be used in specific scenarios (including non-TE use cases)
Examples of non-TE scenarios

• UNI Topology Discovery
• Administrative and Operational State
• Geolocation
• Overlay and Underlay Topology
• Nodes with switching limitations
Technology-specific Augmentations

Option 1
(single inheritance)

Network

Network Topology

TE Topology (profile)

Technology-specific
TE Topology

Option 2
(multi-inheritance)

Network

Network Topology

TE Topology (profile)

Technology-specific
Network Topology
Changes from IETF 110

• Added new section 3.1 about multi-inheritance
 – There is not a detailed description of the multi-inheritance capability of RFC8345
 – Authors/contributors believe this document could be a common reference for other drafts using multi-inheritance

• Added new section 4 about reporting to the client the profiles implemented by a server
 – More investigation needed based on the feedbacks from Netmod WG:
 https://mailarchive.ietf.org/arch/msg/netmod/8wsAyGazqi7KqgFHz9VK-7vuzHc/

• Git: https://github.com/tsaad-dev/te
 – Written in kramdown
Next Step

• Advertising this draft to other WGs
• Update the title as suggested by Daniele
 – Profiles for TE Topology Data Model and applicability to non TE use cases
• Get more review and feedbacks
 – Address the open issues and any comments
• Authors/contributors believe it would be valuable to progress this work as an Informational RFC
 – Ready for TEAS WG adoption
Backup
module: ietf-te-topology
 augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!
 augment /nw:networks/nw:network/nw:node/nt:termination-point:
 +-rw te-tp-id? te-types:te-tp-id
 +-rw te!
 +-rw admin-status?
 | te-types:te-admin-status
 +-rw inter-domain-plug-id? binary
 +-ro oper-status? te-types:te-oper-status
Administrative and Operational State

module: ietf-te-topology
augment /nw:networks/nw:network/nw:network-types:
 +--rw te-topology!
augment /nw:networks/nw:network:
 +--rw te-topology-identifier
 | +--rw provider-id? te-global-id
 | +--rw client-id? te-global-id
 | +--rw topology-id? te-topology-id
 +--rw te!
 +--rw name? string
augment /nw:networks/nw:network/nw:node:
 +--rw te-node-id? te-types:te-node-id
 +--rw te!
 +--rw te-node-attributes
 | +--rw admin-status? te-types:te-admin-status
 | +--rw name? string
 +--ro oper-status? te-types:te-oper-status
augment /nw:networks/nw:network/nt:link:
 +--rw te!
 +--rw te-link-attributes
 | +--rw name? string
 | +--rw admin-status? te-types:te-admin-status
 +--ro oper-status? te-types:te-oper-status
augment /nw:networks/nw:network/nw:node/nt:termination-point:
 +--rw te-tp-id? te-types:te-tp-id
 +--rw te!
 +--rw admin-status? te-types:te-admin-status
 +--rw name? string
 +--ro oper-status? te-types:te-oper-status
Geolocation

module: ietf-te-topology
augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!
augment /nw:networks/nw:network:
 +-rw te-topology-identifier
 | +-rw provider-id? te-global-id
 | +-rw client-id? te-global-id
 | +-rw topology-id? te-topology-id
 +-rw te!
 --ro geolocation
 --ro altitude? int64
 --ro latitude? geographic-coordinate-degree
 --ro longitude? geographic-coordinate-degree
augment /nw:networks/nw:network/nw:node:
 +-rw te-node-id? te-types:te-node-id
 +-rw te!
 --ro geolocation
 --ro altitude? int64
 --ro latitude? geographic-coordinate-degree
 --ro longitude? geographic-coordinate-degree
augment /nw:networks/nw:network/nw:node/nt:termination-point:
 +-rw te-tp-id? te-types:te-tp-id
 +-rw te!
 --ro geolocation
 --ro altitude? int64
 --ro latitude? geographic-coordinate-degree
 --ro longitude? geographic-coordinate-degree
Overlay and Underlay Topology

module: ietf-te-topology

augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!

augment /nw:networks/nw:network/nw:node:
 +-rw te-node-id? te-types:te-node-id
 +-rw te!
 +-rw te-node-attributes
 +-rw underlay-topology {te-topology-hierarchy}?

augment /nw:networks/nw:network/nt:link:
 +-rw te!
 +-rw te-link-attributes
 +-rw underlay {te-topology-hierarchy}?
 +-rw enabled? boolean
 +-rw primary-path
 +-rw network-ref?
 +-rw path-element* [path-element-id]
 +-rw path-element-id uint32
 +-rw (type)?
 +-rw:(numbered-link-hop)
 +-rw:(unnumbered-link-hop)
 +-rw link-tp-id te-tp-id
 +-rw hop-type? te-hop-type
 +-rw direction? te-link-direction
Nodes with switching limitations

module: ietf-te-topology
augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!

augment /nw:networks/nw:network/nw:node:
 +-rw te-node-id? te-types:te-node-id
 +-rw te!
 +-rw te-node-attributes
 +-rw connectivity-matrices
 +-rw number-of-entries? uint16
 +-rw is-allowed? boolean
 +-rw connectivity-matrix* [id]
 +-rw id uint32
 +-rw from
 | +-rw tp-ref? leafref
 +-rw to
 | +-rw tp-ref? leafref
 +-rw is-allowed? boolean
Technology-specific Augmentations
Option 1

Augments Network Topology:
- Nodes
- Links
- Termination Points (TPs)

Augment also TE Topology:
- Bandwidth
- Tunnel Termination Points (TTPs)
- Connectivity Matrix
Technology-specific Augmentations
Option 2

Network

Network Topology

TE Topology (profile)

Technology-specific Network Topology

Augments only Network Topology
- Nodes
- Links
- Termination Points (TPs)
Technology-specific Augmentations
Option 3

Network

Network Topology

TE Topology (profile)

Technology-specific Network Topology

Technology-specific TE Topology

Augments only Network Topology
- Nodes
- Links
- Termination Points (TPs)

References

No advantages compared to Option 1
Useful only if the Technology-specific Network Topology already exists

Augment only TE Topology:
- Bandwidth
- Tunnel Termination Points (TTPs)
- Connectivity Matrix
Example: Technology-specific Augmentations (Link)

```bash
+--rw link* [link-id]
  +--rw link-id link-id
  <...>
  +--rw example-link-attributes // augment TE (Option 1) OR
  |  <...> // augment NT (Option 2 or 3)
  +--rw te!
    +--rw te-link-attributes
    +--rw name? string
    +--rw example-te-link-attributes // augment TE (Option 1 or 3)
    |  <...>
    +--rw max-link-bandwidth
      +--rw te-bandwidth
      +--rw (technology)?
      +--:(generic)
      |  +--rw generic? te-bandwidth
      +--:(foo) // augment TE (Option 1 or 3)
      +--rw foo? foo-bandwidth
```