Instantiation of IETF Network Slices in service providers networks

draft-barguil-teas-network-slices-instantation-02

S. Barguil, L.M. Contreras, O. Gonzalez de Dios (Telefonica)
V. Lopez, R. Rokui (Nokia), D. King (Old Dog)

IETF#111, Online meeting, July 2021
Scope of the work

• Motivation
 “This document describes the architecture, communication process, models, used between the Network Slice Controller and a network controller for a IETF network slice creation”.

• Intention of the work
 • How to use existing IETF “machinery” to operate IETF Network Slices in Service Provider Networks
 • Evaluate existing Yang models (RFCs, WGs, individual drafts), identify where they apply in the network slicing architecture and find gaps vs the IETF network slice requirements.

• NOT our Intention
 • Defining new YANG models
 • Redefining architecture, terminology, or adding new requirements

• Reference documents:
 • Requirements: Even there is not a formal IETF requirements document, the requirements are being obtained from framework and NBI drafts (draft-ietf-teas-ietf-network-slices and contreras-teas-slice-nbi).
 • The Network Slice Architecture is being worked in [draft-ietf-teas-ietf-network-slices-03] Framework for IETF Network Slices
 • The slice attributes and functionalities expected from use cases are being documented in [draft-contreras-teas-slice-nbi-05] IETF Network Slice Use Cases and Attributes for Northbound Interface of IETF Network Slice Controllers
 • The IETF has produced several YANG data models to support the Network Automation:
 • Service Models: Capture the customer requirements (i.e. LXSM, ...)
 • Network Models: Capture the Network requirements to deliver a service. (i.e. LXNM)
 • TE Models and Service Mapping: Maps the TE data models and the service/network models.
 • ACLs and Routing Policies
 • Existing architectures and frameworks for Network Automation and SDN:
 • [RFC 8969] A Framework for Automating Service and Network Management with YANG
 • [RFC 8453] Framework for Abstraction and Control of TE Networks (ACTN)
Updates from -00 version

- Editorial Updates:
 - Updated structure of the document including new sections, naming alignment and ordering to increase readability and consistency:

- Sections renamed:
 - IETF Network Slice Requirements and Data Models
 - Section renamed: IETF Network Slice Procedure
 - Network Controller Operation
 - Operational considerations.
 - Network Slice Procedure

- New section: Reference Architecture and Components
 - Explains how IETF Network Slice Controller (NSC) can be implemented in operator's network based on [I-D.ietf-teas-ietf-network-slice-definition].
Updates from -00 version

Update in the IETF Network Slice Requirements and Data Models including additional operational requirements:

<table>
<thead>
<tr>
<th>NFV-based services</th>
<th>Network sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming and outgoing bandwidth</td>
<td>Maximum and Guaranteed Bit Rate</td>
</tr>
<tr>
<td>QoS metrics</td>
<td>Bounded latency</td>
</tr>
<tr>
<td>Directionality</td>
<td>Packet loss rate</td>
</tr>
<tr>
<td>MTU</td>
<td>L2/L3 reachability</td>
</tr>
<tr>
<td>Protection scheme</td>
<td>Recovery time</td>
</tr>
<tr>
<td>Connectivity mode</td>
<td>Secure connection</td>
</tr>
</tbody>
</table>

- **New section**: Operational Considerations
 - Outlines the compliance and operational aspects of Network Controller models with IETF Network slice requirements.
 - Availability
 - Downlink throughput / Uplink throughput.
 - Protection scheme
 - Delay
 - Packet loss rate
Next Steps

• Continue to work on implementation options and, security and operational considerations.
• Collect additional deployment requirements for the gap analysis.
• Provide feedback to architecture and solution works.
• Collect feedback / comments from the WG to enhance the document.

• **Question for WG**
 • Is this an I-D that is useful activity for the WG, and should we continue?