
AuthKEM
draft-celi-wiggers-tls-authkem-00

Sofía Celi, Thom Wiggers

AuthKEM IETF111

Thom Wiggers
Radboud University

Sofía Celi
Cloudflare

AuthKEM

AuthKEM IETF111

● What is authentication, really?
● Proving who you are
● Proving possession of a private key

● Authentication in TLS
● Signature with certificate key in a cert-based context
● Knowledge of PSK

● draft-celi-wiggers-tls-authkem:
● Authentication via Key Encapsulation Mechanisms (KEMs)

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

Authentication via KEM

KEM

● enc, ss <- Encap(pkB)
● ss <- Decap(enc, skA)

MAC proves to Sofía that Thom has skT

Sofía Thom

Hi --------> Hi, I’m Thom

 Cert[pkT]

<--------

enc, ss <- Encap(pkT)

 enc

-------->

 ss <- Decap(enc, skT)

MAC(ss, msgs)

 <--------

AuthKEM IETF111

TLS 1.3 vs server-only AuthKEM

AuthKEM IETF111

TLS 1.3 AuthKEM

TLS 1.3 vs mutual AuthKEM

AuthKEM IETF111

TLS 1.3 AuthKEM

Security considerations

AuthKEM IETF111

● Client sends application data on second flight, but:
● Server’s ciphersuites not yet authenticated
● Server only implicitly authenticated
● Client MUST be confident in its selected ciphersuites

● Receiving Server’s Finished message grants explicit authentication
● Any downgrade attack would be detected at this point
● Attacked handshakes will never finish successfully

● Any application data sent before and after the Server’s Finished message is
received:
● (retroactive) strong downgrade resilience and forward secrecy

TLS 1.3 vs server-only PDK AuthKEM

AuthKEM IETF111

TLS 1.3 AuthKEM

TLS 1.3 vs mutual PDK AuthKEM

AuthKEM IETF111

TLS 1.3 AuthKEM

Security considerations for PDK mutual authentication

AuthKEM IETF111

● The encrypted client certificate:
● Not encrypted under a forward-secure key. Similar considerations and

trade-offs as 0RTT data.
● MUST be sent encrypted with a ciphersuite that the server will accept

● Only <80% of traffic (as noted by Cloudflare) is cached/resumption mode.

Implementation considerations

● New messages, new authentication algorithms
● Handshake state machine closer to TLS 1.2 Client’s Finished is sent

first)
● New authenticated handshake secret added to the key schedule

● Necessary for client authentication

AuthKEM IETF111

Why use it?

AuthKEM IETF111

● Same algorithms for KeyExchange and Auth:
● Push signing algorithm out of the TLS stack
● In some situations, a signed DH exchange is not appropriate:

○ Delegated Credential with DH key
○ Certificate with an (ECDH key, as in ietf-curdle-pkix

● The academic works proposing AuthKEM contain a in-depth technical
discussion of and a proof of the security of the handshake protocol:
https://eprint.iacr.org/2020/534.pdf , https://eprint.iacr.org/2021/779.pdf

https://eprint.iacr.org/2020/534.pdf
https://eprint.iacr.org/2021/779.pdf

Why use it?

AuthKEM IETF111

Why not just use draft-ietf-tls-semistatic-dh ?
● Requires a non-interactive key exchange; incompatible with PQ KEMs
● PQ NIKE CSIDH is very slow (tens of ms)
● CSIDH512 security level still uncertain (too optimistic?

Why use it?

AuthKEM IETF111

● Post-quantum KEMs and signature schemes are coming
● Authentication via KEM saves bytes
● PQSigs: few suitable choices (https://eprint.iacr.org/2020/071)

● Large public keys and signatures, and/or;
● Slow(er) operations, and/or;
● Special hardware requirements for acceptable perf

● AuthKEM is ideal of constrained environments or servers that support
many clients

https://eprint.iacr.org/2020/071

Why use it?

AuthKEM IETF111

Auth via KEM (pk + enc) Auth via sig (pk + sig)

Kyber-512: 1568 bytes Dilithium-2: 3732 bytes

Kyber-768: 2272 bytes Dilithium-3: 5952 bytes

NTRU-HPS-2048-509: 1398 bytes Falcon-512: 1587 bytes

(we use pre-quantum HPKE in the draft as that’s currently standardized)

What about the increased round trips?
● Client can send application data at the same point as in TLS 1.3
● Caching / pdk mechanism avoids this round-trip

● Initial experiments at Cloudflare and simulations show (experiments using
KEMs for KEX and only post-quantum algorithms):
○ AuthKEM performs as fast as using pq signature algorithms
○ AuthKEM with cached long-term key performs the best

● We need more experiments in regards to low latency, low bandwidth,
caching parts of the certificate chain, and more.

AuthKEM IETF111

Thank you!
https://www.ietf.org/id/draft-celi-wiggers-tls-authkem-00.html

(and see the draft for the nitty-gritty details)

KEMTLS securing TLS connections from quantum adversaries

https://www.ietf.org/id/draft-celi-wiggers-tls-authkem-00.html

High-level overview of AuthKEM

Client Server

ClientHello --->
ServerHello

 <--- Certificate

KemEncapsulation --->
Finished --->
[HTTP Request] --->

 <--- Finished
 <---[HTTP Response]

AuthKEM IETF111

● Send over KemEncapsulation in reply to
Certificate

● Mix in shared secret in key schedule so
traffic keys are authenticated

➢ Traffic secret can’t be derived without
server secret key

● Client doesn’t have to wait until server
sends Finished before sending data

● Client requests are sent in same place as
TLS 1.3

● Client’s Finished is sent before server’s

Unfortunately, mutual auth requires a full extra
round-trip.

AuthKEM special scenarios and tricks

AuthKEM IETF111

● PSK / 0RTT should be
compatible

● If the client has server public
key:
● Send KemEncapsulation as

a ClientHello extension
● Client auth also possible in

1RTT instead of 2RTT

Client Server

ClientHello --->
KemEncapsulation --->

 <--- ServerHello
 <--- Finished

Finished --->
[HTTP Request] --->
 <---[HTTP Response]

AuthKEM IETF111

AuthKEM IETF111

(round 2 numbers; KKyber, NNtru, etc.)

Key Schedule

AuthKEM IETF111

