AuthKEM - IETF111

AuthKEM

draft-celi-wiggers-tis-authkem-00

Sofia Celi, Thom Wiggers

Thom Wiggers Sofia Celi

Radboud University Cloudflare

AuthKEM - IETF111

AuthKEM

e What is authentication, really?
e Proving who you are
e Proving possession of a private key
e Authenticationin TLS
e Signature with certificate key in a cert-based context
e Knowledge of PSK
e draft-celi-wiggers-tis-authkem:

e Authentication via Key Encapsulation Mechanisms (KEMs)

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

AuthKEM - IETF111

Authentication via KEM

KEM:

® enc, ss <- Encap (pkB)

® ss <- Decap(enc, skA)

MAC proves to Sofia that Thom has skT

Sofia Thom
HL e ———— > Hi, I'm Thom
Cert [pkT]
o
enc, ss <- Encap (pkT)
enc
———————— >

ss <- Decap (enc, skT)

MAC (ss, msgs)

AuthKEM - IETF111

TLS 1.3 vs server-only AuthKEM

Client

ClientHello

Certificate
CertificateVerify
Finished
Application Data

Server

ServerHello
EncryptedExtensions
CertificateRequest

Certificate
CertificateVerify

Finished
— Application Data

Application Data

TLS 1.3

Client Server

ClientHello >

ServerHello
EncryptedExtensions

Certificate

KEM Encapsulation
Finished sameasTLS 1.3

Application Data

—
; Finished

Application Data

extra half round trip

AuthKEM

AuthKEM - IETF111

TLS 1.3 vs mutual AuthKEM

: Client Server
Client Server
ClientHello _
ClientHello _—
ServerHello
ServerHello EncryptedExtensions
EncryptedExtensions . CertificateRequest
. extra round trip]
CertificateRequest Certificate
Certificate r—f —
CertificateVeri
ert ciiiis(:lefg KEM Encapsulation
— Application Data Certificate E
KEM Encapsulation
Certificate Eiriished
CertificateVerify A 5
. Application Data
Finished Finished
Application Data >
L Application Data
Application Data
s ——
TLS 1.3 AuthKEM

AuthKEM - IETF111

Security considerations

e Client sends application data on second flight, but:
e Server’s ciphersuites not yet authenticated
e Server only implicitly authenticated
e Client MUST be confident in its selected ciphersuites

e Receiving Server’'s Finished message grants explicit authentication
e Any downgrade attack would be detected at this point
e Attacked handshakes will never finish successfully

e Any application data sent before and after the Server’s Finished message is
received:
e (retroactive) strong downgrade resilience and forward secrecy

AuthKEM - IETF111

TLS 1.3 vs server-only PDK AuthKEM

Client Server Client Server
ClientHello > GentHello \
ServerHello KEM Encapsulati >
) s ServerHello
EncryptedExtensions)
CertificateRequest EncryptedEXt?n‘SIons
Certificate ‘ ‘F'n'Shed
CertificateVerify — Application Data
Finished
—— Application Data Finished
Certificate Application Data _—
CertificateVerify >

les.hed. k) same asTLS 1.3
Application Data >

Application Data

TLS 1.3 AuthKEM

AuthKEM - IETF111

TLS 1.3 vs mutual PDK AuthKEM

Client Server Client Server
ClientHello _— ClientHello
KEM Encapsulation
ServerHello Certificate (encrypted)
EncryptedExtensions
e
CertificateRequest
Certificate Serverl-!ello
CertificateVerify EncryptedExtenspns
.. KEMEncapsulation
Finished Finished
—— Application Data Application Data
. —
Certificate
CertificateVerify Finished
Finished Application Data >
Application Data —
Application Data S

k) sameasTLS 1.3
TLS 1.3 AuthKEM

AuthKEM - IETF111

Security considerations for PDK mutual authentication

e The encrypted client certificate:
e Not encrypted under a forward-secure key. Similar considerations and
trade-offs as O-RTT data.
e MUST be sent encrypted with a ciphersuite that the server will accept

e Only <80% of traffic (as noted by Cloudflare) is cached/resumption mode.

AuthKEM - IETF111

Implementation considerations

e New messages, new authentication algorithms
e Handshake state machine closer to TLS 1.2 (Client’s Finished is sent
first)
e New authenticated handshake secret added to the key schedule
e Necessary for client authentication

AuthKEM - IETF111

Why use it?

e Same algorithms for KeyExchange and Auth:
e Push signing algorithm out of the TLS stack
e |n some situations, a signed DH exchange is not appropriate:
o Delegated Credential with DH key
o Certificate with an (EC)DH key, as in ietf-curdle-pkix

e The academic works proposing AuthKEM contain a in-depth technical
discussion of and a proof of the security of the handshake protocol:
https://eprint.iacr.ora/2020/534.pdf , https://eprint.iacr.orq/2021/779.pdf

https://eprint.iacr.org/2020/534.pdf
https://eprint.iacr.org/2021/779.pdf

AuthKEM - IETF111

Why use it?

Why not just use draft-ietf-tls-semistatic-dh ?
e Requires a non-interactive key exchange; incompatible with PQ KEMs
e PQ NIKE (CSIDH) is very slow (tens of ms)
e CSIDH-512 security level still uncertain (too optimistic?)

AuthKEM - IETF111

Why use it?

e Post-quantum KEMs and sighature schemes are coming
e Authentication via KEM saves bytes
e PQSigs: few suitable choices (https://eprint.iacr.org/2020/071)

e Large public keys and signatures, and/or;
e Slow(er) operations, and/or;
e Special hardware requirements for acceptable perf
e AuthKEM is ideal of constrained environments or servers that support

many clients

https://eprint.iacr.org/2020/071

Why use it?

Auth via KEM (pk + enc)
Kyber-512: 1568 bytes
Kyber-768: 2272 bytes

NTRU-HPS-2048-509: 1398 bytes

Auth via sig (pk + sig)

Dilithium-2: 3732 bytes
Dilithium-3: 5952 bytes
Falcon-512: 1587 bytes

(we use pre-quantum HPKE in the draft as that’s currently standardized)

AuthKEM - IETF111

What about the increased round trips?

Client can send application data at the same point asin TLS 1.3
Caching / pdk mechanism avoids this round-trip

Initial experiments at Cloudflare and simulations show (experiments using
KEMSs for KEX and only post-quantum algorithms):

o AuthKEM performs as fast as using pq signature algorithms

o AuthKEM with cached long-term key performs the best

We need more experiments in regards to low latency, low bandwidth,
caching parts of the certificate chain, and more.

KEMTLS: securing TLS connections from quantum adversaries

Thank you!

https://www.ietf.org/id/draft-celi-wiggers-tls-authkem-00.html

(and see the draft for the nitty-gritty details)

https://www.ietf.org/id/draft-celi-wiggers-tls-authkem-00.html

AuthKEM - IETF111

High-level overview of AuthKEM

Client Server
ClientHello ———>
ServerHello
<—=- Certificate
KemEncapsulation --->
Finished —_———>
[HTTP Request] -——>
<—=- Finished
<-—-—-[HTTP Response]

e Send over KemEncapsulation in reply to
Certificate

e Mix in shared secret in key schedule so
traffic keys are authenticated

> Traffic secret can’t be derived without
server secret key

e Client doesn’t have to wait until server
sends Finished before sending data

e Client requests are sent in same place as
TLS 1.3

e Client’s Finishedis sent before server’s

Unfortunately, mutual auth requires a full extra
round-trip.

AuthKEM - IETF111

AuthKEM special scenarios and tricks

PSK / O-RTT should be

compatible

If the client has server public

key:

e Send KemEncapsulation as

a ClientHello extension

Client auth also possible in

1-RTT instead of 2-RTT

Client
ClientHello

KemEncapsulation

Finished
[HTTP Request]

sServer
-——=>
-——=>
<——= ServerHello
<-=-- Finished
-——=>
-—=>
<--—-[HTTP Response]

AuthKEM - IETF111

Table 1. Average time in 10~2 seconds of messages for server-only authentication. Note
that timings are measured per-client and per-server: each one has its own timer. The
"KEX’ label refers to the Key Exchange and the ’Auth’ label refers to authentication.

Handshake Flight
15t 211d | 3th 4th
TLS 1.3 X25519 Ed25519 0.227| 0.436|123.838|180.202

TLS 1.3+DC X25519 Ed25519 0.243| 0.489(156.954|186.868
TLS 1.3+DC X25519 Ed448 0.242| 0.907|165.395|183.124

Handshake KEX Auth

PQTLS Kyber512 Dilithium3 0.350{ 0.701|{173.814|198.256
PQTLS SIKEp434 Dilithium4 2.533| 4.856|441.732|212.924
KEMTLS Kyber512 Kyber512 0.412(0.217|157.123|187.147
KEMTLS SIKEp434 SIKEp434 3.058| 7.215|352.840(291.592

KEMTLS-PDK Kyber512 Kyber512 0.623| 0.327|181.132|189.442
KEMTLS-PDK SIKEp434 SIKEp434 9.573(12.507|396.818|287.550

AuthKEM - IETF111

SSXG m signed KEX
—~ 250 550G incl. int. CA cert.
é) min incl. int. CA cert. e KEMTLS
o - incl. int. CA cert.
s s min excl, o signed KEX
8.3 200 ,,ch:t.CA SFXG excl. int. CA cert.
=) o KEMTLS
= _8 SFGG excl. int. CA cert.
v ®
= .2 150
= &
e} % assumption: NTRU
g a=] ERRR NFFF____ NFFF
o 8 100 o= NNFF 8. NNFFea & PR
g E: RSA-2048 KKDD KDDD KKDD KDDD &
= 5 + X25519 assumption: MLWE £
[
§ 50 =
B
5 | -
0 2 4 6 8 10

Size of public key crypto objects transmitted (KB)

(round 2 numbers; K=Kyber, N=Ntru, etc.)

AuthKEM - IETF111

v
(EC)DHE -> HKDF-Extract = Handshake Secret

Key SChedUIe -lr——> Derive-Secret(., "c hs traffic",

| ClientHello...ServerHello)

| = client_handshake_traffic_secret
|

+--> Derive-Secret(., "s hs traffic"

| ClientHello. . .ServerHello)

| = server_handshake_traffic_secret

v
Derive-Secret(., "derived", "") = dHS

v
SSs -> HKDF-Extract = Authenticated Handshake Secret

|

+--> Derive-Secret(., "c ahs traffic",

| ClientHello. ..KEMEncapsulation)

| = client_handshake_authenticated_traffic_secret

|

+--> Derive-Secret(., "s ahs traffic"

| ClientHello. ..KEMEncapsulation)

| = server_handshake_authenticated_traffic_secret

v
Derive-Secret(., "derived", "") = AHS

\
SSc||@ * -> HKDF-Extract = Master Secret

+--> Derive-Secret(., "c ap traffic",
ClientHello...server Finished)
= client_application_traffic_secret_0

+--> Derive-Secret(., "s ap traffic"
ClientHello...server Finished)
= server_application_traffic_secret_0

+--> Derive-Secret(., "exp master"”,
ClientHello...server Finished)
= exporter_master_secret

+--> Derive-Secret(., "res master",
ClientHello...client Finished)
= resumption_master_secret

