
Netmod WG O. Gonzalez de Dios
Internet-Draft S. Barguil
Intended status: Standards Track Telefonica
Expires: 21 April 2022 M. Boucadair
 Orange
 18 October 2021

 Extensions to the Access Control Lists (ACLs) YANG Model
 draft-dbb-netmod-acl-00

Abstract

 RFC 8519 defines a YANG data model for Access Control Lists (ACLs).
 This document discusses a set of extensions that fix many of the
 limitations of the ACL model as initially defined in RFC 8519.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 1]

Internet-Draft Enhanced ACLs October 2021

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Approach . 4
 3. Problem Statement & Gap Analysis 4
 3.1. Suboptimal Configuration: Lack of Manipulating Lists of
 Prefixes . 4
 3.2. Manageability: Impossibility to Use Aliases or Defined
 Sets . 8
 3.3. Bind ACLs to Devices, Not Only Interfaces 9
 3.4. Partial or Lack of IPv4/IPv6 Fragment Handling 9
 3.5. Suboptimal TCP Flags Handling 13
 3.6. Rate-Limit Action . 13
 3.7. Payload-based Filtering 14
 3.8. Reuse the ACLs Content Across Several Devices 15
 4. Overall Module Structure (TBC) 15
 5. YANG Module (TBC) . 15
 6. Security Considerations (TBC) 15
 7. IANA Considerations . 16
 7.1. URI Registration (TBC) 16
 7.2. YANG Module Name Registration (TBC) 16
 8. Acknowledgements . 16
 9. Normative References . 16
 Authors’ Addresses . 17

1. Introduction

 [RFC8519] defines Acces control lists (ACLs) as a user-ordered set of
 filtering rules. The model targets the configuration of the
 filtering behaviour of a device. However, the model structure, as
 defined in [RFC8519], suffers from a set of limitations. This
 document describes these limitations and proposes an enhanced ACL
 structure.

 The motivation of such enhanced ACL structure is discussed in detail
 in Section 3.

 When managing ACLs, it is common for network operators to group
 matching elements in pre-defined sets. The consolidation into
 matches allows reducing the number of rules, especially in large
 scale networks. If it is needed, for example, to find a match
 against 100 IP addresses (or prefixes), a single rule will suffice
 rather than creating individual Access Control Entries (ACEs) for
 each IP address (or prefix). In doing so, implementations would
 optimize the performance of matching lists vs multiple rules
 matching.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 2]

Internet-Draft Enhanced ACLs October 2021

 The enhanced ACL structure is also meant to facilitate the management
 of network operators. Instead of entering the IP address or port
 number literals, using user-named lists decouples the creation of the
 rule from the management of the sets. Hence, it is possible to
 remove/add entries to the list without redefining the (parent) ACL
 rule.

 In addition, the notion of Access Control List (ACL) and defined sets
 is generalized so that it is not device-specific as per [RFC8519].
 ACLs and defined sets may be defined at network / administrative
 domain level and associated to devices. This approach facilitates
 the reusability across multiple network elements. For example,
 managing the IP prefix sets from a network level makes it easier to
 maintain by the security groups.

 Network operators maintain sets of IP prefixes that are related to
 each other, e.g., deny-lists or accept-lists that are associated with
 those provided by a VPN customer. These lists are maintained and
 manipulated by security expert teams.

 Note that ACLs are used locally in devices but are triggered by other
 tools such as DDoS mitigation [RFC9132] or BGP Flow Spec [RFC8955]
 [RFC8956]. Therefore, supporting means to easily map to the
 filtering rules conveyed in messages triggered by hese tools is
 valuable from a network operation standpoint.

1.1. Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 The terminology for describing YANG modules is defined in [RFC7950].
 The meaning of the symbols in the tree diagrams is defined in
 [RFC8340].

 In adition to the terms defined in [RFC8519], this document makes use
 of the following terms:

 * Defined set: Refers to reusable description of one or multiple
 information elements (e.g., IP address, IP prefix, port number,
 ICMP type).

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 3]

Internet-Draft Enhanced ACLs October 2021

2. Approach

 This first version of the document does not include on purpose any
 YANG module. This is because the authors are seeking a work
 direction from the netmod WG whether the missing features can be
 accomplished by means of augmentations or whether an ACL-bis document
 is more appropriate.

 Future versions of the document will include a YANG module that will
 reflect the WG feedback. A network wide module, in adition to the
 device module, might be required. The decision on whether a single
 module is sufficient to handle both device and network levels or two
 separate ones will be based on WG feedback.

3. Problem Statement & Gap Analysis

3.1. Suboptimal Configuration: Lack of Manipulating Lists of Prefixes

 IP prefix related data nodes, e.g., "destination-ipv4-network" or
 "destination-ipv6-network", do not allow manipulating a list of IP
 prefixes, which may lead to manipulating large files. The same issue
 is encountered when ACLs have to be in place to mitigate DDoS attacks
 (e.g., [RFC9132]) when a set of sources are involved in such an
 attack. The situation is even worse when both a list of sources and
 destination prefixes are involved.

 Figure 1 shows an example of the required ACL configuration for
 filtering traffic from two prefixes.

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "first-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:1::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 4]

Internet-Draft Enhanced ACLs October 2021

 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 },
 {
 "name": "second-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:c::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 5]

Internet-Draft Enhanced ACLs October 2021

 }
]
 }
 }
]
 }
 }

 Figure 1: Example Illustrating Sub-optimal Use of the ACL Model
 with a Prefix List.

 Such configuration is suboptimal for both: - Network controllers that
 need to manipulate large files. All or a subset fo this
 configuration will need to be passed to the undelrying network
 devices. - Devices may receive such confirguration and thus will need
 to maintain it locally.

 Figure 2 depicts an example of an optimized strcuture:

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 6]

Internet-Draft Enhanced ACLs October 2021

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "prefix-list-support",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": [
 "2001:db8:6401:1::/64",
 "2001:db8:6401:c::/64"
],
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 2: Example Illustrating Optimal Use of the ACL Model in a
 Network Context.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 7]

Internet-Draft Enhanced ACLs October 2021

3.2. Manageability: Impossibility to Use Aliases or Defined Sets

 The same approach as the one discussed for IP prefixes can be
 generalized by introduing the concept of "aliases" or "defined sets".

 The defined sets are reusable definitions across several ACLs. Each
 category is modelled in YANG as a list of parameters related to the
 class it represents. The following sets can be considered:

 * Prefix sets: Used to create lists of IPv4 or IPv6 prefixes.

 * Protocol sets: Used to create a list of protocols.

 * Port number sets: Used to create lists of TCP or UDP port values
 (or any other transport protocol that makes uses of port numbers).
 The identity of the protcols is identified by the protocol set, if
 present. Otherwise, a set apply to any protocol.

 * ICMP sets: Uses to create lists of ICMP-based filters. This
 applies only when the protocol is set to ICMP or ICMPv6.

 A candidate structure is shown in #example_sets:

 +--rw defined-sets
 | +--rw prefix-sets
 | | +--rw prefix-set* [name mode]
 | | +--rw name string
 | | +--rw mode enumeration
 | | +--rw ip-prefix* inet:ip-prefix
 | +--rw port-sets
 | | +--rw port-set* [name]
 | | +--rw name string
 | | +--rw port* inet:port-number
 | +--rw protocol-sets
 | | +--rw protocol-set* [name]
 | | +--rw name string
 | | +--rw protocol-name* identityref
 | +--rw icmp-type-sets
 | +--rw icmp-type-set* [name]
 | +--rw name string
 | +--rw types* [type]
 | +--rw type uint8
 | +--rw code? uint8
 | +--rw rest-of-header? binary

 Figure 3: Examples of Defined Sets.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 8]

Internet-Draft Enhanced ACLs October 2021

3.3. Bind ACLs to Devices, Not Only Interfaces

 In the context of network management, an ACL may be enforced in many
 network locations. As such, the ACL module should allow binding an
 ACL to multiple devices, not only (abstract) interfaces.

 The ACL name must, thus, be unique at the scale of the network, but
 still the same name may be used in many devices when enforcing node-
 specific ACLs.

3.4. Partial or Lack of IPv4/IPv6 Fragment Handling

 [RFC8519] does not support fragment handling capability for IPv6 but
 offers a partial support for IPv4 by means of ’flags’. Nevertheless,
 the use of ’flags’ is problematic since it does not allow a bitmask
 to be defined. For example, setting other bits not covered by the
 ’flags’ filtering clause in a packet will allow that packet to get
 through (because it won’t match the ACE).

 Defining a new IPv4/IPv6 matching field called ’fragment’ is thus
 required to efficiently handle fragment-related filtering rules.
 Some examples to illustrate how ’fragment’ can be used are provided
 below.

 Figure 4 shows the content of a candidate POST request to allow the
 traffic destined to 198.51.100.0/24 and UDP port number 53, but to
 drop all fragmented packets. The following ACEs are defined (in this
 order):

 * "drop-all-fragments" ACE: discards all fragments.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 198.51.100.0/24.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 9]

Internet-Draft Enhanced ACLs October 2021

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv4": {
 "fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
 }
]
 }
 }
]
 }
 }

 Figure 4: Example Illustrating Canddiate Filtering of IPv4
 Fragmented Packets.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 10]

Internet-Draft Enhanced ACLs October 2021

 Figure 5 shows an example of the body of a candidate POST request to
 allow the traffic destined to 2001:db8::/32 and UDP port number 53,
 but to drop all fragmented packets. The following ACEs are defined
 (in this order):

 * "drop-all-fragments" ACE: discards all fragments (including atomic
 fragments). That is, IPv6 packets that include a Fragment header
 (44) are dropped.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 2001:db8::/32.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 11]

Internet-Draft Enhanced ACLs October 2021

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv6": {
 "fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8::/32"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 5: Example Illustrating Canddiate Filtering of IPv6
 Fragmented Packets.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 12]

Internet-Draft Enhanced ACLs October 2021

3.5. Suboptimal TCP Flags Handling

 [RFC8519] allows including flags in the TCP match fields, however
 that strcuture does not support matching operations as those
 supported in BGP Flow Spec. Definig this field to be defined as a
 flag bitmask together with a set of operations is meant to
 efficiently handle TCP flags filtering rules. Some examples to
 illustrate the use of such field are discussed below.

 Figure 6 shows an example of a candidate request to install a filter
 to discard incoming TCP messages having all flags unset.

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "aces": {
 "ace": [{
 "name": "null-attack",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "not any",
 "bitmask": 4095
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }]
 }
 }]
 }
 }

 Figure 6: Example to Deny TCP Null Attack Messages

3.6. Rate-Limit Action

 [RFC8519] specifies that forwarding actions can be ’accept’ (i.e.,
 accept matching traffic), ’drop’ (i.e., drop matching traffic without
 sending any ICMP error message), or ’reejct’ (i.e., drop matching
 traffic and send an ICMP error message to the source). Howover,
 there are situations where the matching traffic can be accepted, but
 with a rate-limit policy. Such capability is not currently supported
 by the ACL model.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 13]

Internet-Draft Enhanced ACLs October 2021

 Figure 7 shows a candidate ACL example to rate-limit incoming SYNs
 during a SYN flood attack.

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example-with-rate-limit",
 "aces": {
 "ace": [{
 "name": "rate-limit-syn",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "match",
 "bitmask": 2
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "rate-limit": "20.00"
 }
 }]
 }
 }]
 }
 }

 Figure 7: Example Rate-Limit Incoming TCP SYNs

3.7. Payload-based Filtering

 Some transport protocols use existing protocols (e.g., TCP or UDP) as
 substrate. The match criteria for such protocols may rely upon the
 ’protocol’ under ’l3’, TCP/UDP match criteria, part of the TCP/UDP
 payload, or a combination thereof. [RFC8519] does not support
 matching based on the payload.

 Likewise, the current version of the ACL model does not support
 filetering of encapsulated traffic.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 14]

Internet-Draft Enhanced ACLs October 2021

3.8. Reuse the ACLs Content Across Several Devices

 Having a global network view of the ACLs is highly valuable for
 service providers. An ACL could be defined and applied following the
 hierarchy of the network topology. So, an ACL can be defined at the
 network level and, then, that same ACL can be used (or referenced to)
 in several devices (including termination points) within the same
 network.

 This network/device ACLs differentiation introduces several new
 requirements, e.g.:

 * An ACL name can be used at both network and device levels.

 * An ACL content updated at the network level should imply a
 transaction that updates the relevant content in all the nodes
 using this ACL.

 * ACLs defined at the device level have a local meaning for the
 specific node.

 * A device can be associated with a router, a VRF, a logical system,
 or a virtual node. ACLs can be applied in physical and logical
 infrastructure.

4. Overall Module Structure (TBC)

 To be completed.

5. YANG Module (TBC)

 To be completed.

6. Security Considerations (TBC)

 The YANG modules specified in this document define a schema for data
 that is designed to be accessed via network management protocol such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 15]

Internet-Draft Enhanced ACLs October 2021

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 * TBC

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 * TBC

7. IANA Considerations

7.1. URI Registration (TBC)

 This document requests IANA to register the following URI in the "ns"
 subregistry within the "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:xxx
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

7.2. YANG Module Name Registration (TBC)

 This document requests IANA to register the following YANG module in
 the "YANG Module Names" subregistry [RFC6020] within the "YANG
 Parameters" registry.

 name: xxxx
 namespace: urn:ietf:params:xml:ns:yang:ietf-xxx
 maintained by IANA: N
 prefix: xxxx
 reference: RFC XXXX

8. Acknowledgements

 Many thanks to Jon Shallow and Miguel Cros for the discussion when
 preparing this draft.

9. Normative References

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 16]

Internet-Draft Enhanced ACLs October 2021

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/info/rfc8519>.

Authors’ Addresses

 Oscar Gonzalez de Dios
 Telefonica
 Distrito T
 Madrid

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 17]

Internet-Draft Enhanced ACLs October 2021

 Email: oscar.gonzalezdedios@telefonica.com

 Samier Barguil
 Telefonica
 Distrito T
 Madrid

 Email: samier.barguilgiraldo.ext@telefonica.com

 Mohamed Boucadair
 Orange
 Rennes

 Email: mohamed.boucadair@orange.com

Gonzalez de Dios, et al. Expires 21 April 2022 [Page 18]

Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 7950,8407,8525 (if approved) R. Rahman, Ed.
Intended status: Standards Track
Expires: January 13, 2022 B. Lengyel, Ed.
 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 July 12, 2021

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-03

Abstract

 This document specifies a new YANG module update procedure that can
 document when non-backwards-compatible changes have occurred during
 the evolution of a YANG module. It extends the YANG import statement
 with an earliest revision filter to better represent inter-module
 dependencies. It provides help and guidelines for managing the
 lifecycle of YANG modules and individual schema nodes. It provides a
 mechanism, via the revision-label YANG extension, to specify a
 revision identifier for YANG modules and submodules. This document
 updates RFC 7950, RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2022.

Wilton, et al. Expires January 13, 2022 [Page 1]

Internet-Draft Updated YANG Module Revision Handling July 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 4
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 6
 3.1.2. Non-backwards-compatible changes 7
 3.2. non-backwards-compatible revision extension statement . . 7
 3.3. Removing revisions from the revision history 7
 3.4. Revision label . 8
 3.4.1. File names . 8
 3.4.2. Revision label scheme extension statement 9
 3.5. Examples for updating the YANG module revision history . 9
 4. Import by derived revision 12
 4.1. Module import examples 14
 5. Updates to ietf-yang-library 15
 5.1. Resolving ambiguous module imports 15
 5.2. YANG library versioning augmentations 16
 5.2.1. Advertising revision-label 16
 5.2.2. Reporting how deprecated and obsolete nodes are
 handled . 16
 6. Versioning of YANG instance data 17
 7. Guidelines for using the YANG module update rules 17
 7.1. Guidelines for YANG module authors 17
 7.1.1. Making non-backwards-compatible changes to a YANG
 module . 18
 7.2. Versioning Considerations for Clients 20
 8. Module Versioning Extension YANG Modules 20
 9. Contributors . 29
 10. Security Considerations 30
 11. IANA Considerations . 30

Wilton, et al. Expires January 13, 2022 [Page 2]

Internet-Draft Updated YANG Module Revision Handling July 2021

 11.1. YANG Module Registrations 30
 11.2. Guidance for versioning in IANA maintained YANG modules 31
 12. References . 32
 12.1. Normative References 32
 12.2. Informative References 33
 Appendix A. Examples of changes that are NBC 34
 Appendix B. Examples of applying the NBC change guidelines . . . 35
 B.1. Removing a data node 35
 B.2. Changing the type of a leaf node 36
 B.3. Reducing the range of a leaf node 37
 B.4. Changing the key of a list 37
 B.5. Renaming a node . 38
 B.6. Changing a default value 39
 Appendix C. Changes between revisions 39
 Authors’ Addresses . 39

1. Introduction

 This document defines a solution to the YANG module lifecycle
 problems described in [I-D.ietf-netmod-yang-versioning-reqs].
 Complementary documents provide a complete solution to the YANG
 versioning requirements, with the overall relationship of the
 solution drafts described in [I-D.ietf-netmod-yang-solutions].

 Specifically, this document recognises a need (within standards
 organizations, vendors, and the industry) to sometimes allow YANG
 modules to evolve with non-backwards-compatible changes, which could
 cause breakage to clients and importing YANG modules. Accepting that
 non-backwards-compatible changes do sometimes occur, it is important
 to have mechanisms to report where these changes occur, and to manage
 their effect on clients and the broader YANG ecosystem.

 The document comprises five parts:

 Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes, and an optional
 revision label.

 A YANG extension statement allowing YANG module imports to specify
 an earliest module revision that may satisfy the import
 dependency.

 Updates and augmentations to ietf-yang-library to include the
 revision label in the module and submodule descriptions, to report
 how "deprecated" and "obsolete" nodes are handled by a server, and
 to clarify how module imports are resolved when multiple revisions
 could otherwise be chosen.

Wilton, et al. Expires January 13, 2022 [Page 3]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Considerations of how versioning applies to YANG instance data.

 Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at <https://github.com/netmod-wg/yang-ver-dt/
 issues>.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11. Section 3 describes
 modifications to YANG revision handling and update rules, and
 Section 4 describes a YANG extension statement to do import by
 derived revision.

 This document updates [RFC7950] section 5.2. Section 3.4.1 describes
 the use of a revision label in the name of a file containing a YANG
 module or submodule.

 This document updates [RFC7950] section 5.6.5. Section 5.1 defines
 how a client of a YANG library datastore schema resolves ambiguous
 imports for modules which are not "import-only".

 This document updates [RFC8407] section 4.7. Section 7 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

 This document updates [RFC8525] with augmentations to include
 revision labels in the YANG library data and two boolean leaves to
 indicate whether status deprecated and status obsolete schema nodes
 are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 In addition, this document uses the terminology:

 o YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

Wilton, et al. Expires January 13, 2022 [Page 4]

Internet-Draft Updated YANG Module Revision Handling July 2021

 o Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 o Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] assumes, but does not explicitly state, that the revision
 history for a YANG module or submodule is strictly linear, i.e., it
 is prohibited to have two independent revisions of a YANG module or
 submodule that are both directly derived from the same parent
 revision.

 This document clarifies [RFC7950] to explicitly allow non-linear
 development of YANG module and submodule revisions, so that they MAY
 have multiple revisions that directly derive from the same parent
 revision. As per [RFC7950], YANG module and submodule revisions
 continue to be uniquely identified by their revision date, and hence
 all revisions of a given module or submodule MUST have unique
 revision dates.

 A corollary to the above is that the relationship between two module
 or submodule revisions cannot be determined by comparing the module
 or submodule revision date alone, and the revision history, or
 revision label, must also be taken into consideration.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC7895]
 [RFC8525], MAY be used to specify the exact submodule revisions used
 when the submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 requires that all updates to a YANG module are
 BC to the previous revision of the module. This document introduces
 a method to indicate that an NBC change has occurred between module
 revisions: this is done by using a new "non-backwards-compatible"
 YANG extension statement in the module revision history.

Wilton, et al. Expires January 13, 2022 [Page 5]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 to refine the rules for
 permissible changes when a new YANG module revision is created.

 Where pragmatic, updates to YANG modules SHOULD be backwards-
 compatible, following the definition in Section 3.1.1.

 A new module revision MAY contain NBC changes, e.g., the semantics of
 an existing data-node definition MAY be changed in an NBC manner
 without requiring a new data-node definition with a new identifier.
 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

 As per [RFC7950], all published revisions of a module are given a new
 unique revision date. This applies even for module revisions
 containing (in the module or included submodules) only changes to any
 whitespace, formatting, comments or line endings (e.g., DOS vs UNIX).

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11, updated by the following rules:

 o A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is not a backwards-compatible change.

 o YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and are classified as backwards-
 compatible changes. In some circumstances it may be helpful to
 retain the obsolete definitions to ensure that their identifiers
 are not reused with a different meaning.

 o In statements that have any data definition statements as
 substatements, those data definition substatements MAY be
 reordered, as long as they do not change the ordering of any
 "input" or "output" data definition substatements of "rpc" or
 "action" statements. If new data definition statements are added,
 they can be added anywhere in the sequence of existing
 substatements.

Wilton, et al. Expires January 13, 2022 [Page 6]

Internet-Draft Updated YANG Module Revision Handling July 2021

 o Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards
 compatible.

 o A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

3.2. non-backwards-compatible revision extension statement

 The "rev:non-backwards-compatible" extension statement is used to
 indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible" extension statement MUST be added as a
 substatement to the "revision" statement.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desired for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule. Doing so can
 lead to import breakages when import by revision-or-derived is used.
 Moreover, truncating history may cause loss of visibility of when
 non-backwards-compatible changes were introduced.

 If a revision containing a rev:non-backwards-compatible substatement
 is removed from the revision history then a rev:non-backwards-
 compatible substatement MUST be added to the nearest newer revision
 entry in the revision history that is not being removed.

Wilton, et al. Expires January 13, 2022 [Page 7]

Internet-Draft Updated YANG Module Revision Handling July 2021

3.4. Revision label

 Each revision entry in a module or submodule MAY have a revision
 label associated with it, providing an alternative alias to identify
 a particular revision of a module or submodule. The revision label
 could be used to provide an additional versioning identifier
 associated with the revision.

 YANG Semver [I-D.ietf-netmod-yang-semver] defines a versioning scheme
 based on Semver 2.0.0 [semver] that can be used as a revision label.

 Submodules MAY use a revision label scheme. When they use a revision
 label scheme, submodules MAY use a revision label scheme that is
 different from the one used in the including module.

 The revision label space of submodules is separate from the revision
 label space of the including module. A change in one submodule MUST
 result in a new revision label of that submodule and the including
 module, but the actual values of the revision labels in the module
 and submodule could be completely different. A change in one
 submodule does not result in a new revision label in another
 submodule. A change in a module revision label does not necessarily
 mean a change to the revision label in all included submodules.

 If a revision has an associated revision label, then it may be used
 instead of the revision date in a "rev:revision-or-derived" extension
 statement argument.

 A specific revision-label identifies a specific revision (variant) of
 the module. If two YANG modules contain the same module name and the
 same revision-label (and hence also the same revision-date) in their
 latest revision statement, then the file contents of the two modules,
 including the revision history, MUST be identical.

3.4.1. File names

 This section updates [RFC7950] section 5.2.

 If a revision has an associated revision label, then the revision-
 label may be used instead of the revision date in the filename of a
 YANG file, where it takes the form:

Wilton, et al. Expires January 13, 2022 [Page 8]

Internet-Draft Updated YANG Module Revision Handling July 2021

 module-or-submodule-name [[’@’ revision-date]|[’#’ revision-label]]
 (’.yang’ / ’.yin’)

 E.g., acme-router-module@2018-01-25.yang
 E.g., acme-router-module#2.0.3.yang

 YANG module (or submodule) files MAY be identified using either
 revision-date or revision-label. Typically, only one file name
 SHOULD exist for the same module (or submodule) revision. Two file
 names, one with the revision date and another with the revision
 label, MAY exist for the same module (or submodule) revision, e.g.,
 when migrating from one scheme to the other.

3.4.2. Revision label scheme extension statement

 The optional "rev:revision-label-scheme" extension statement is used
 to indicate which revision-label scheme a module or submodule uses.
 There MUST NOT be more than one revision label scheme in a module or
 submodule. The mandatory argument to this extension statement:

 o specifies the revision-label scheme used by the module or
 submodule

 o is defined in the document which specifies the revision-label
 scheme

 o MUST be an identity derived from "revision-label-scheme-base".

 The revision-label scheme used by a module or submodule SHOULD NOT
 change during the lifetime of the module or submodule. If the
 revision-label scheme used by a module or submodule is changed to a
 new scheme, then all revision-label statements that do not conform to
 the new scheme MUST be replaced or removed.

3.5. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how the branched revision history, "non-backwards-compatible"
 extension statement, and "revision-label" extension statement could
 be used:

Wilton, et al. Expires January 13, 2022 [Page 9]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Example YANG module with branched revision history.

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

Wilton, et al. Expires January 13, 2022 [Page 10]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Example module, revision 2019-06-01:

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-06-01 {
 rev:revision-label 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 rev:revision-label 3.0.0;
 rev:non-backwards-compatible;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:revision-label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

Wilton, et al. Expires January 13, 2022 [Page 11]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Example module, revision 2019-05-01:

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-05-01 {
 rev:revision-label 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 rev:revision-label 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:revision-label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Import by derived revision

 RFC 7950 allows YANG module "import" statements to optionally require
 the imported module to have a particular revision date. In practice,
 importing a module with an exact revision date is often too
 restrictive because it requires the importing module to be updated
 whenever any change to the imported module occurs. The alternative
 choice of using an import statement without any revision date
 statement is also not ideal because the importing module may not work
 with all possible revisions of the imported module.

Wilton, et al. Expires January 13, 2022 [Page 12]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Instead, it is desirable for an importing module to specify a
 "minimum required revision" of a module that it is compatible with,
 based on the assumption that later revisions derived from that
 "minimum required revision" are also likely to be compatible. Many
 possible changes to a YANG module do not break importing modules,
 even if the changes themselves are not strictly backwards-compatible.
 E.g., fixing an incorrect pattern statement or description for a leaf
 would not break an import, changing the name of a leaf could break an
 import but frequently would not, but removing a container would break
 imports if that container is augmented by another module.

 The ietf-revisions module defines the "revision-or-derived" extension
 statement, a substatement to the YANG "import" statement, to allow
 for a "minimum required revision" to be specified during import:

 The argument to the "revision-or-derived" extension statement is a
 revision date or a revision label.

 A particular revision of an imported module satisfies an import’s
 "revision-or-derived" extension statement if the imported module’s
 revision history contains a revision statement with a matching
 revision date or revision label.

 An "import" statement MUST NOT contain both a "revision-or-
 derived" extension statement and a "revision-date" statement.

 The "revision-or-derived" extension statement MAY be specified
 multiple times, allowing the import to use any module revision
 that satisfies at least one of the "revision-or-derived" extension
 statements.

 The "revision-or-derived" extension statement does not guarantee
 that all module revisions that satisfy an import statement are
 necessarily compatible, it only gives an indication that the
 revisions are more likely to be compatible. Hence, NBC changes to
 an imported module may also require new revisions of any importing
 modules, updated to accommodation those changes, along with
 updated import "revision-or-derived" extension statements to
 depend on the updated imported module revision.

 Adding, modifying or removing a "revision-or-derived" extension
 statement is considered to be a BC change.

 Adding, modifying or removing a "revision-date" extension
 statement is considered to be a BC change.

Wilton, et al. Expires January 13, 2022 [Page 13]

Internet-Draft Updated YANG Module Revision Handling July 2021

4.1. Module import examples

 Consider the example module "example-module" from Section 3.5 that is
 hypothetically available in the following revision/label pairings:
 2019-01-01/1.0.0, 2019-02-01/2.0.0, 2019-03-01/3.0.0,
 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0. The
 relationship between the revisions is as before:

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

4.1.1. Example 1

 This example selects module revisions that match, or are derived from
 the revision 2019-02-01. E.g., this dependency might be used if
 there was a new container added in revision 2019-02-01 that is
 augmented by the importing module. It includes revisions/labels:
 2019-02-01/2.0.0, 2019-03-01/3.0.0, 2019-04-01/2.1.0,
 2019-05-01/2.2.0 and 2019-06-01/3.1.0.

 import example-module {
 rev:revision-or-derived 2019-02-01;
 }

 Alternatively, the first example could have used the revision label
 "2.0.0" instead, which selects the same set of revisions/labels.

 import example-module {
 rev:revision-or-derived 2.0.0;
 }

4.1.2. Example 2

 This example selects module revisions that are derived from
 2019-04-01 by using the revision label 2.1.0. It includes revisions/
 labels: 2019-04-01/2.1.0 and 2019-05-01/2.2.0. Even though
 2019-06-01/3.1.0 has a higher revision label number than

Wilton, et al. Expires January 13, 2022 [Page 14]

Internet-Draft Updated YANG Module Revision Handling July 2021

 2019-04-01/2.1.0 it is not a derived revision, and hence it is not a
 valid revision for import.

 import example-module {
 rev:revision-or-derived 2.1.0;
 }

4.1.3. Example 3

 This example selects revisions derived from either 2019-04-01 or
 2019-06-01. It includes revisions/labels: 2019-04-01/2.1.0,
 2019-05-01/2.2.0, and 2019-06-01/3.1.0.

 import example-module {
 rev:revision-or-derived 2019-04-01;
 rev:revision-or-derived 2019-06-01;
 }

5. Updates to ietf-yang-library

 This document updates YANG library [RFC7950] to clarify how ambiguous
 module imports are resolved. It also defines the YANG module, ietf-
 yang-library-revisions that augments YANG library [RFC8525] with new
 revision-label related meta-data.

5.1. Resolving ambiguous module imports

 A YANG datastore schema, defined in [RFC8525], can specify multiple
 revisions of a YANG module in the schema using the "import-only"
 list, with the requirement from [RFC7950] that only a single revision
 of a YANG module may be implemented.

 If a YANG module import statement does not specify a specific
 revision within the datastore schema then it could be ambiguous as to
 which module revision the import statement should resolve to. Hence,
 a datastore schema constructed by a client using the information
 contained in YANG library may not exactly match the datastore schema
 actually used by the server.

 The following two rules remove the ambiguity:

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and one of those revisions
 is implemented (i.e., not an "import-only" module), then the import
 statement MUST resolve to the revision of the module that is defined
 as being implemented by the datastore schema.

Wilton, et al. Expires January 13, 2022 [Page 15]

Internet-Draft Updated YANG Module Revision Handling July 2021

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and none of those revisions
 are implemented, then the import MUST resolve to the module revision
 with the latest revision date.

5.2. YANG library versioning augmentations

 The "ietf-yang-library-revisions" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-revisions
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

5.2.1. Advertising revision-label

 The ietf-yang-library-revisions YANG module augments the "module"
 list in ietf-yang-library with a "revision-label" leaf to optionally
 declare the revision label associated wth the particular revision of
 each module.

5.2.2. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-library-revisions YANG module augments YANG library
 with two leaves to allow a server to report how it handles status
 "deprecated" and status "obsolete" nodes. The leaves are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates
 that all schema nodes with a status "deprecated" child statement
 are implemented equivalently as if they had status "current", or
 otherwise deviations MUST be used to explicitly remove
 "deprecated" nodes from the schema. If this leaf is set to
 "false" or absent, then the behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" nodes. If

Wilton, et al. Expires January 13, 2022 [Page 16]

Internet-Draft Updated YANG Module Revision Handling July 2021

 this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leaves to "true".

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible" statements to determine whether two module revisions are
 backwards-compatible, and MUST also consider whether the status of
 any nodes has changed to "deprecated" and whether those nodes are
 implemented by the server.

6. Versioning of YANG instance data

 Instance data sets [I-D.ietf-netmod-yang-instance-file-format] do not
 directly make use of the updated revision handling rules described in
 this document, as compatibility for instance data is undefined.

 However, instance data specifies the content-schema of the data-set.
 This schema SHOULD make use of versioning using revision dates and/or
 revision labels for the individual YANG modules that comprise the
 schema or potentially for the entire schema itself (e.g.,
 [I-D.ietf-netmod-yang-packages]).

 In this way, the versioning of a content-schema associated with an
 instance data set may help a client to determine whether the instance
 data could also be used in conjunction with other revisions of the
 YANG schema, or other revisions of the modules that define the
 schema.

7. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

7.1. Guidelines for YANG module authors

 All IETF YANG modules MUST include revision-label statements for all
 newly published YANG modules, and all newly published revisions of
 existing YANG modules. The revision-label MUST take the form of a
 YANG semantic version number [I-D.ietf-netmod-yang-semver].

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors are
 RECOMMENDED to minimize NBC changes and keep changes BC whenever
 possible.

Wilton, et al. Expires January 13, 2022 [Page 17]

Internet-Draft Updated YANG Module Revision Handling July 2021

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible" statement MUST be added if there are
 NBC changes relative to the previous revision.

 Removing old revision statements from a module’s revision history
 could break import by revision, and hence it is RECOMMENDED to retain
 them. If all depencencies have been updated to not import specific
 revisions of a module, then the corresponding revision statements can
 be removed from that module. An alternative solution, if the
 revision section is too long, would be to remove, or curtail, the
 older description statements associated with the previous revisions.

 The "rev:revision-or-derived" extension should be used in YANG module
 imports to indicate revision dependencies between modules in
 preference to the "revision-date" statement, which causes overly
 strict import dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed. The revision-label substatement used in the new module
 revision MUST indicate the nature of the change, i.e. NBC or BC, to
 the module’s schema tree.

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 o A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

7.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are the different ways in which this
 can be done:

 o NBC changes can be sometimes be done incrementally using the
 "deprecated" status to provide clients time to adapt to NBC
 changes.

Wilton, et al. Expires January 13, 2022 [Page 18]

Internet-Draft Updated YANG Module Revision Handling July 2021

 o NBC changes are done at once, i.e. without using "status"
 statements. Depending on the change, this may have a big impact
 on clients.

 o If the server can support multiple revisions of the YANG module or
 of YANG packages(as specified in [I-D.ietf-netmod-yang-packages]),
 and allows the client to select the revision (as per
 [I-D.ietf-netmod-yang-ver-selection]), then NBC changes MAY be
 done without using "status" statements. Clients would be required
 to select the revision which they support and the NBC change would
 have no impact on them.

 Here are some guidelines on how non-backwards-compatible changes can
 be made incrementally, with the assumption that deprecated nodes are
 implemented by the server, and obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated" and then when support is removed its status
 MUST be changed to "obsolete". Instead of using the "obsolete"
 status, the data node MAY be removed from the model but this has
 the risk of breaking modules which import the modified module.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due

Wilton, et al. Expires January 13, 2022 [Page 19]

Internet-Draft Updated YANG Module Revision Handling July 2021

 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

 See Appendix B for examples on how NBC changes can be made.

7.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 o Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 o Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 o Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

8. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,
 revision label, revision label scheme, and importing by revision.

<CODE BEGINS> file "ietf-yang-revisions@2021-06-30.yang"
module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 // RFC Ed.: We need the bis version to get the new type revision-identifier
 // If 6991-bis is not yet an RFC we need to copy the definition here
 import ietf-yang-types {
 prefix yang;
 reference
 "XXXX [ietf-netmod-rfc6991-bis]: Common YANG Data Types";
 }

Wilton, et al. Expires January 13, 2022 [Page 20]

Internet-Draft Updated YANG Module Revision Handling July 2021

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

Wilton, et al. Expires January 13, 2022 [Page 21]

Internet-Draft Updated YANG Module Revision Handling July 2021

 revision 2021-06-30 {
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 typedef revision-label {
 type string {
 length "1..255";
 pattern ’[a-zA-Z0-9,\-_.+]+’;
 pattern ’\d{4}-\d{2}-\d{2}’ {
 modifier invert-match;
 }
 }
 description
 "A label associated with a YANG revision.

 Alphanumeric characters, comma, hyphen, underscore, period
 and plus are the only accepted characters. MUST NOT match
 revision-date.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 typedef revision-date-or-label {
 type union {
 type yang:revision-identifier;
 type revision-label;
 }
 description
 "Represents either a YANG revision date or a revision label";
 }

 extension nbc-changes {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the module update rules defined in RFC-XXX, then

Wilton, et al. Expires January 13, 2022 [Page 22]

Internet-Draft Updated YANG Module Revision Handling July 2021

 the ’non-backwards-compatible’ statement MUST be added as a
 substatement to the revision statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,
 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards compatible SHOULD NOT include the
 ’non-backwards-compatible’ statement. An example of when
 an author might add the ’non-backwards-compatible’ statement
 is if they believe a change could negatively impact clients
 even though the backwards compatibility rules defined in
 RFC-XXXX classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2, nbc-changes revision extension statement";
 }

 extension revision-label {
 argument revision-label;
 description
 "The revision label can be used to provide an additional
 versioning identifier associated with a module or submodule
 revision. E.g., one option for a versioning scheme that
 could be used is [XXXX: ietf-netmod-yang-semver].

 The format of the revision-label argument MUST conform to the
 pattern defined for the revision-label typedef.

 The statement MUST only be a substatement of the revision
 statement. Zero or one revision-label statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Revision labels MUST be unique amongst all revisions of a
 module or submodule.

 Adding a revision label is a backwards-compatible version
 change. Changing or removing an existing revision label in
 the revision history is a non-backwards-compatible version
 change, because it could impact any references to that
 revision label.";

Wilton, et al. Expires January 13, 2022 [Page 23]

Internet-Draft Updated YANG Module Revision Handling July 2021

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 extension revision-label-scheme {
 argument revision-label-scheme-identity;
 description
 "The revision label scheme specifies which revision-label scheme
 the module or submodule uses.

 The mandatory revision-label-scheme-identity argument MUST be an
 identity derived from revision-label-scheme-base.

 This extension is only valid as a top-level statement, i.e.,
 given as as a substatement to ’module’ or ’submodule’. No
 substatements for this extension have been standardized.

 This extension MUST be used if there is a revision-label
 statement in the module or submodule.

 Adding a revision label scheme is a backwards-compatible version
 change. Changing a revision label scheme is a
 non-backwards-compatible version change, unless the new revision
 label scheme is backwards-compatible with the replaced revision
 label scheme. Removing a revision label scheme is a
 non-backwards-compatible version change.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }

 extension revision-or-derived {
 argument revision-date-or-label;
 description
 "Restricts the revision of the module that may be imported to
 one that matches or is derived from the specified
 revision-date or revision-label.

 The argument value MUST conform to the
 ’revision-date-or-label’ defined type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’revision-or-derived’ statements
 per parent statement are allowed. No substatements for this
 extension have been standardized.

Wilton, et al. Expires January 13, 2022 [Page 24]

Internet-Draft Updated YANG Module Revision Handling July 2021

 If specified multiple times, then any module revision that
 satisfies at least one of the ’revision-or-derived’ statements
 is an acceptable revision for import.

 An ’import’ statement MUST NOT contain both a
 ’revision-or-derived’ extension statement and a
 ’revision-date’ statement.

 A particular revision of an imported module satisfies an
 import’s ’revision-or-derived’ extension statement if the
 imported module’s revision history contains a revision
 statement with a matching revision date or revision label.

 The ’revision-or-derived’ extension statement does not
 guarantee that all module revisions that satisfy an import
 statement are necessarily compatible, it only gives an
 indication that the revisions are more likely to be
 compatible.

 Adding, removing or updating a ’revision-or-derived’
 statement to an import is a backwards-compatible change.
 ";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 4, Import by derived revision";
 }

 identity revision-label-scheme-base {
 description
 "Base identity from which all revision label schemes are
 derived.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";

 }
}
<CODE ENDS>

 YANG module with augmentations to YANG Library to revision labels

<CODE BEGINS> file "ietf-yang-library-revisions@2021-06-30.yang"
module ietf-yang-library-revisions {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions";

Wilton, et al. Expires January 13, 2022 [Page 25]

Internet-Draft Updated YANG Module Revision Handling July 2021

 prefix yl-rev;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-library {
 prefix yanglib;
 reference "RFC 8525: YANG Libary";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 level revision label and to provide an indication of how
 deprecated and obsolete nodes are handled by the server.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

Wilton, et al. Expires January 13, 2022 [Page 26]

Internet-Draft Updated YANG Module Revision Handling July 2021

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace revision-label version with 1.0.0 and
 // remove this note.
 revision 2021-06-30 {
 rev:revision-label 0.2.0;
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Augmentation modules with a revision label";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the rev:label value in the specific
 revision of the module loaded in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module/"
 + "yanglib:submodule" {
 description
 "Augment submodule information with a revision label";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:label value in the specific

Wilton, et al. Expires January 13, 2022 [Page 27]

Internet-Draft Updated YANG Module Revision Handling July 2021

 revision of the submodule included by the module loaded in
 this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Augment submodule information with a revision label";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:label value in the specific
 revision of the submodule included by the
 import-only-module loaded in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled for each datastore
 schema supported by the server.";

 leaf deprecated-nodes-implemented {
 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes with
 a status ’deprecated’ child statement are implemented
 equivalently as if they had status ’current’, or otherwise
 deviations MUST be used to explicitly remove ’deprecated’
 nodes from the schema. If this leaf is absent or set to false,
 then the behavior is unspecified.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }

Wilton, et al. Expires January 13, 2022 [Page 28]

Internet-Draft Updated YANG Module Revision Handling July 2021

 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ nodes. If this leaf is
 absent or set to false, then the behaviour is unspecified.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }
 }
}
<CODE ENDS>

9. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The following individuals are (or have been)
 members of the design team and have worked on the YANG versioning
 project:

 o Balazs Lengyel

 o Benoit Claise

 o Ebben Aries

 o Jan Lindblad

 o Jason Sterne

 o Joe Clarke

 o Juergen Schoenwaelder

 o Mahesh Jethanandani

 o Michael (Wangzitao)

 o Qin Wu

 o Reshad Rahman

 o Rob Wilton

 o Bo Wu

Wilton, et al. Expires January 13, 2022 [Page 29]

Internet-Draft Updated YANG Module Revision Handling July 2021

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update].

 Discussons on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, Kent Watsen for
 their contributions and review comments.

10. Security Considerations

 The document does not define any new protocol or data model. There
 are no security considerations beyond those specified in [RFC7950].

11. IANA Considerations

11.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-library-revisions module:

Wilton, et al. Expires January 13, 2022 [Page 30]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Name: ietf-yang-library-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 revisions

 Prefix: yl-rev

 Reference: [RFCXXXX]

11.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example, "iana-if-
 type.yang" [IfTypeYang] is derived from the "Interface Types (ifType)
 IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang
 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible"
 substatement to the latest revision statement whenever an IANA
 maintained module is updated in a non-backwards-compatible way, as
 described in Section 3.2.

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible" substatement
 retrospectively added to any revisions containing non-backwards-
 compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,

Wilton, et al. Expires January 13, 2022 [Page 31]

Internet-Draft Updated YANG Module Revision Handling July 2021

 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

12. References

12.1. Normative References

 [I-D.ietf-netmod-rfc6991-bis]
 Schoenwaelder, J., "Common YANG Data Types", draft-ietf-
 netmod-rfc6991-bis-06 (work in progress), April 2021.

 [I-D.ietf-netmod-yang-semver]
 Claise, B., Clarke, J., Rahman, R., Wilton, R., Lengyel,
 B., Sterne, J., and K. D’Souza, "YANG Semantic
 Versioning", draft-ietf-netmod-yang-semver-02 (work in
 progress), February 2021.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Wilton, et al. Expires January 13, 2022 [Page 32]

Internet-Draft Updated YANG Module Revision Handling July 2021

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

12.2. Informative References

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", draft-clacla-netmod-yang-
 model-update-06 (work in progress), July 2018.

 [I-D.ietf-netmod-yang-instance-file-format]
 Lengyel, B. and B. Claise, "YANG Instance Data File
 Format", draft-ietf-netmod-yang-instance-file-format-13
 (work in progress), March 2021.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", draft-ietf-netmod-yang-packages-01 (work
 in progress), November 2020.

Wilton, et al. Expires January 13, 2022 [Page 33]

Internet-Draft Updated YANG Module Revision Handling July 2021

 [I-D.ietf-netmod-yang-solutions]
 Wilton, R., "YANG Versioning Solution Overview", draft-
 ietf-netmod-yang-solutions-01 (work in progress), November
 2020.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", draft-ietf-netmod-yang-ver-
 selection-00 (work in progress), March 2020.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", draft-
 ietf-netmod-yang-versioning-reqs-04 (work in progress),
 January 2021.

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

Wilton, et al. Expires January 13, 2022 [Page 34]

Internet-Draft Updated YANG Module Revision Handling July 2021

 o Deleting a data node, or changing it to status obsolete.

 o Changing the name, type, or units of a data node.

 o Modifying the description in a way that changes the semantic
 meaning of the data node.

 o Any changes that change or reduce the allowed value set of the
 data node, either through changes in the type definition, or the
 addition or changes to "must" statements, or changes in the
 description.

 o Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 o Making the statement conditional on if-feature.

Appendix B. Examples of applying the NBC change guidelines

 The following sections give guidance for how some of these NBC
 changes could be made to a YANG module. The examples are all for
 "config true" nodes.

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

 1. The node’s status is changed to "deprecated" and it is supported
 for at least one year. This is a BC change.

 2. When the node is not available anymore, its status is changed to
 "obsolete" and the "description" updated, this is an NBC change.

 If the server can support NBC revisions of the YANG module
 simultaneously using version selection
 [I-D.ietf-netmod-yang-ver-selection], then the changes can be done
 immediately:

 1. The new revision of the YANG module has the node’s status changed
 to "obsolete" and the "description" updated, this is an NBC
 change.

 2. Clients which require the data node select the YANG package
 containing the schema version they use.

Wilton, et al. Expires January 13, 2022 [Page 35]

Internet-Draft Updated YANG Module Revision Handling July 2021

B.2. Changing the type of a leaf node

 Changing the type of a leaf-node. e.g., consider a "vpn-id" node of
 type integer being changed to a string:

 1. The status of node "vpn-id" is changed to "deprecated" and the
 node should be available for at least one year. This is a BC
 change.

 2. A new node, e.g., "vpn-name", of type string is added to the same
 location as the existing node "vpn-id". This new node has status
 "current" and its description explains that it is replacing node
 "vpn-id".

 3. During the period of time when both nodes are available, how the
 server behaves when either node is set is outside the scope of
 this document and will vary on a case by case basis. Here are
 some options:

 1. A server may prevent the new node from being set if the old
 node is already set (and vice-versa). The new node may have
 a when statement to achieve this. The old node must not have
 a when statement since this would be an NBC change, but the
 server could reject the old node from being set if the new
 node is already set.

 2. If the new node is set and a client does a get or get-config
 operation on the old node, the server could map the value.
 For example, if the new node "vpn-name" has value "123" then
 the server could return integer value 123 for the old node
 "vpn-id". However, if the value can not be mapped then the
 configuration would be incomplete, this is outside the scope
 of this document.

 4. When node "vpn-id" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

 If the server can support NBC revisions of the YANG module
 simultaneously using version selection
 [I-D.ietf-netmod-yang-ver-selection], then the changes can be done
 immediately:

 1. In the new revision of the YANG module, the status of node "vpn-
 id" is changed to "obsolete". This is an NBC change.

 2. New node "vpn-name" is added to the same location as described
 above.

Wilton, et al. Expires January 13, 2022 [Page 36]

Internet-Draft Updated YANG Module Revision Handling July 2021

 3. Clients which require the data node select the YANG package
 containing the schema version they use

 4. A server should not map between the nodes "vpn-id" and "vpn-
 name", i.e. if a client creates a data instance with "vpn-name"
 then that data instance should not be visible to a client using a
 module revision which has "vpn-id" (and vice-versa).

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" node of type integer being changed from type uint32 to type
 uint16:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 65536 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 65536 was accepted previously, this is an
 NBC change for the YANG model. Clients using the old YANG model
 will be impacted, so a change of this nature should be done
 carefully, e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address", such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list should be available for at least one year. This is a BC
 change.

 2. A new list is created in the same location with the same data but
 with "dest-address" as key. Finding an appropriate name for the
 new list can be tricky especially if the name of the existing
 list was perfect. In this case the new list is called "sessions-
 address", has status "current" and its description should explain
 that it is replacing list "session".

 3. During the period of time when both lists are available, how the
 server behaves when either list is set is outside the scope of
 this document and will vary on a case by case basis. Here are
 some options:

Wilton, et al. Expires January 13, 2022 [Page 37]

Internet-Draft Updated YANG Module Revision Handling July 2021

 1. A server could prevent the new list from being set if the old
 list already has entries (and vice-versa).

 2. If the new list is set and a client does a get or get-config
 operation on the old list, the server could map the entries.
 However, if the new list has entries which would lead to
 duplicate keys in the old list, the mapping can not be done.

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

 If the server can support NBC revisions of the YANG module
 simultaneously using version selection
 [I-D.ietf-netmod-yang-ver-selection], then the changes can be done
 immediately:

 1. The new revision of the YANG module has the list "sessions"
 modified to have "dest-address" as key, this is an NBC change.

 2. Clients which require the previous functionality select the older
 module revision

B.5. Renaming a node

 A leaf-node or a container may be renamed, either due to a spelling
 error in the previous name or because of a better name. For example
 a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and the node should be available for at least one
 year. This is a BC change.

 2. The new node "ip-address" is added to the same location as the
 existing node "ip-adress". This new node has status "current"
 and its description should explain that it is replacing node "ip-
 adress".

 3. During the period of time when both nodes are available, how the
 server behaves when either node is set is outside the scope of
 this document and will vary on a case by case basis. Here are
 some options:

 1. A server could prevent the new node from being set if the old
 node is already set (and vice-versa). The new node could
 have a when statement to achieve this. The old node must not
 have a when statement since this would be an NBC change, but

Wilton, et al. Expires January 13, 2022 [Page 38]

Internet-Draft Updated YANG Module Revision Handling July 2021

 the server could reject the old node from being set if the
 new node is already set.

 2. If the new node is set and a client does a get or get-config
 operation on the old node, the server could use the value of
 the new node. For example, if the new node "ip-address" has
 value X then the server may return value X for the old node
 "ip-adress".

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

 If the server can support NBC revisions of the YANG module
 simultaneously using version selection
 [I-D.ietf-netmod-yang-ver-selection], then the changes can be done
 immediately:

 1. The new revision of the YANG module has the node with the new
 name replacing the node with the old name, this is an NBC change.

 2. Clients which require the previous node name select the older
 module revision

B.6. Changing a default value

Appendix C. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v00 - v01

 o Removed status-description

 o Allowed both revision-date and revision-label in the filename.

 o New extension revision-label-scheme

 o To include submodules, inclusion by revision-date changed from
 MUST to SHOULD

 o Submodules can use revision label scheme and it can be same or
 different as the including module’s scheme

 o Addressed various comments provided at WG adoption on rev-00

Authors’ Addresses

Wilton, et al. Expires January 13, 2022 [Page 39]

Internet-Draft Updated YANG Module Revision Handling July 2021

 Robert Wilton (editor)
 Cisco Systems, Inc.

 Email: rwilton@cisco.com

 Reshad Rahman (editor)

 Email: reshad@yahoo.com

 Balazs Lengyel (editor)
 Ericsson

 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.

 Email: jclarke@cisco.com

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Wilton, et al. Expires January 13, 2022 [Page 40]

Network Working Group R. Wilton, Ed.
Internet-Draft R. Rahman
Intended status: Standards Track J. Clarke
Expires: May 6, 2021 Cisco Systems, Inc.
 J. Sterne
 Nokia
 B. Wu, Ed.
 Huawei
 November 2, 2020

 YANG Packages
 draft-ietf-netmod-yang-packages-01

Abstract

 This document defines YANG packages, a versioned organizational
 structure holding a set of related YANG modules that collectively
 define a YANG schema. It describes how packages: are represented on
 a server, can be defined in offline YANG instance data files, and can
 be used to define the schema associated with YANG instance data
 files.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Wilton, et al. Expires May 6, 2021 [Page 1]

Internet-Draft YANG Packages November 2020

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology and Conventions 3
 2. Introduction . 4
 3. Background on YANG packages 4
 4. Objectives . 5
 5. YANG Package Definition 6
 5.1. Package definition rules 7
 5.2. Package versioning 8
 5.2.1. Updating a package with a new version 8
 5.2.1.1. Non-Backwards-compatible changes 8
 5.2.1.2. Backwards-compatible changes 9
 5.2.1.3. Editorial changes 9
 5.2.2. YANG Semantic Versioning for packages 9
 5.2.3. Revision history 10
 5.3. Package conformance 10
 5.3.1. Use of YANG semantic versioning 10
 5.3.2. Package checksums 11
 5.3.3. The relationship between packages and datastores . . 12
 5.4. Schema referential completeness 13
 5.5. Package name scoping and uniqueness 14
 5.5.1. Globally scoped packages 14
 5.5.2. Server scoped packages 14
 5.6. Submodules packages considerations 14
 5.7. Package tags . 14
 5.8. YANG Package Usage Guidance 15
 5.8.1. Use of deviations in YANG packages 15
 5.8.2. Use of features in YANG modules and YANG packages . . 16
 5.9. YANG package core definition 16
 6. Package Instance Data Files 17
 7. Package Definitions on a Server 18
 7.1. Package List . 18
 7.2. Tree diagram . 19
 8. YANG Library Package Bindings 19
 9. YANG packages as schema for YANG instance data document . . . 20
 10. YANG Modules . 20
 11. Security Considerations 41
 12. IANA Considerations . 42
 13. Open Questions/Issues . 44
 14. Acknowledgements . 44
 15. References . 44

Wilton, et al. Expires May 6, 2021 [Page 2]

Internet-Draft YANG Packages November 2020

 15.1. Normative References 44
 15.2. Informative References 46
 Appendix A. Examples . 46
 A.1. Example IETF Network Device YANG package 47
 A.2. Example IETF Basic Routing YANG package 49
 A.3. Package import conflict resolution example 52
 Appendix B. Possible alternative solutions 55
 B.1. Using module tags . 55
 B.2. Using YANG library 56
 Authors’ Addresses . 56

1. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses terminology introduced in the YANG versioning
 requirements draft [I-D.ietf-netmod-yang-versioning-reqs].

 This document also makes of the following terminology introduced in
 the Network Management Datastore Architecture [RFC8342]:

 o datastore schema

 This document also makes of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 o data node

 In addition, this document defines the following terminology:

 o YANG schema: A datastore schema, not bound to any particular
 datastore.

 o YANG package: An organizational structure containing a collection
 of YANG modules, normally defined in a YANG instance data file. A
 YANG package defines a YANG schema by specifying a set of YANG
 modules and their revisions, other packages and their revisions,
 mandatory features, and deviations. YANG packages are defined in
 Section 5.

 o backwards-compatible (BC) change: When used in the context of a
 YANG module, it follows the definition in Section 3.1.1 of
 [I-D.ietf-netmod-yang-module-versioning]. When used in the

Wilton, et al. Expires May 6, 2021 [Page 3]

Internet-Draft YANG Packages November 2020

 context of a YANG package, it follows the definition in
 Section 5.2.1.2.

 o non-backwards-compatible (NBC) change: When used in the context of
 a YANG module, it follows the definition in Section 3.1.2 of
 [I-D.ietf-netmod-yang-module-versioning]. When used in the
 context of a YANG package, it follows the definition in
 Section 5.2.1.2.

 o editorial change: When used in the context of a YANG module, it
 follows the definition of an ’editorial change’ in 3.2 of
 [I-D.ietf-netmod-yang-module-versioning]. When used in the
 context of a YANG package, it follows the definition in
 Section 5.2.1.3.

2. Introduction

 This document defines and describes the YANG [RFC7950] constructs
 that are used to define and use YANG packages.

 A YANG package is an organizational structure that groups a set of
 YANG modules together into a consistent versioned definition. For
 example, a YANG package could define the set of YANG modules required
 to implement an L2VPN service on a network device. YANG packages can
 themselves refer to, and reuse, other package definitions.

 Non-normative examples of YANG packages are provided in the
 appendices.

3. Background on YANG packages

 It has long been acknowledged within the YANG community that network
 management using YANG requires a unit of organization and conformance
 that is broader in scope than individual YANG modules.

 ’The YANG Package Statement’ [I-D.bierman-netmod-yang-package]
 proposed a YANG package mechanism based on new YANG language
 statements, where a YANG package is defined in a file similar to how
 YANG modules are defined, and would require enhancements to YANG
 compilers to understand the new statements used to define packages.

 OpenConfig [openconfigsemver] describes an approach to versioning
 ’bundle releases’ based on git tags. I.e. a set of modules, at
 particular versions, can be marked with the same release tag to
 indicate that they are known to interoperate together.

 The NETMOD WG in general, and the YANG versioning design team in
 particular, are exploring solutions [I-D.ietf-netmod-yang-solutions]

Wilton, et al. Expires May 6, 2021 [Page 4]

Internet-Draft YANG Packages November 2020

 to the YANG versioning requirements,
 [I-D.ietf-netmod-yang-versioning-reqs]. Solutions to the versioning
 requirements can be split into several distinct areas.
 [I-D.ietf-netmod-yang-module-versioning] is focused on YANG
 versioning scoped to individual modules. The overall solution must
 also consider YANG versioning and conformance scoped to YANG schema.
 YANG packages provide part of the solution for versioning YANG
 schema.

4. Objectives

 The main goals of YANG package definitions include, but are not
 restricted to:

 o To provide an alternative, simplified, YANG conformance mechanism.
 Rather than conformance being performed against a set of
 individual YANG module revisions, features, and deviations,
 conformance can be more simply stated in terms of YANG packages,
 with a set of modifications (e.g. additional modules, deviations,
 or features).

 o To allow YANG schema to be specified in a concise way rather than
 having each server explicitly list all modules, revisions, and
 features. YANG package definitions can be defined in documents
 that are available offline, and accessible via a URL, rather than
 requiring explicit lists of modules to be shared between client
 and server. Hence, a YANG package must contain sufficient
 information to allow a client or server to precisely construct the
 schema associated with the package.

 o To define a mainly linear versioned history of sets of modules
 versions that are known to work together. I.e. to help mitigate
 the problem where a client must manage devices from multiple
 vendors, and vendor A implements version 1.0.0 of module foo and
 version 2.0.0 of module bar, and vendor B implements version 2.0.0
 of module foo and version 1.0.0 of module bar. For a client,
 trying to interoperate with multiple vendors, and many YANG
 modules, finding a consistent lowest common denominator set of
 YANG module versions may be difficult, if not impossible.

 Protocol mechanisms of how clients can negotiate which packages or
 package versions are to be used for NETCONF/RESTCONF communications
 are outside the scope of this document, and are defined in
 [I-D.ietf-netmod-yang-ver-selection].

 Finally, the package definitions proposed by this document are
 intended to be relatively basic in their definition and the
 functionality that they support. As industry gains experience using

Wilton, et al. Expires May 6, 2021 [Page 5]

Internet-Draft YANG Packages November 2020

 YANG packages, the standard YANG mechanisms of updating, or
 augmenting YANG modules could also be used to extend the
 functionality supported by YANG packages, if required.

5. YANG Package Definition

 This document specifies an approach to defining YANG packages that is
 different to either of the approaches described in the background.

 A YANG package is a versioned organizational structure defining a set
 of related YANG modules, packages, features, and deviations. A YANG
 package collectively defines a YANG schema.

 Each YANG package has a name that SHOULD end with the suffix "-pkg".
 Package names are normally expected to be globally unique, but in
 some cases the package name may be locally scoped to a server or
 device, as described in Section 5.5.

 YANG packages are versioned using the same approaches described in
 [I-D.ietf-netmod-yang-module-versioning] and
 [I-D.ietf-netmod-yang-semver]. This is described in further detail
 in Section 5.2.

 Each YANG package version, defines:

 o some metadata about the package, e.g., description, tags, scoping,
 referential completeness, location information.

 o a set of YANG modules, at particular revisions, that are
 implemented by servers that implement the package. The modules
 may contain deviations.

 o a set of import-only YANG modules, at particular revisions, that
 are used ’import-only’ by the servers that implement the package.

 o a set of included YANG packages, at particular revisions, that are
 also implemented by servers that implement the package.

 o a set of YANG module features that must be supported by servers
 that implement the package.

 The structure for YANG package definitions uses existing YANG
 language statements, YANG Data Structure Extensions
 [I-D.ietf-netmod-yang-data-ext], and YANG Instance Data File Format
 [I-D.ietf-netmod-yang-instance-file-format].

Wilton, et al. Expires May 6, 2021 [Page 6]

Internet-Draft YANG Packages November 2020

 YANG package definitions are available offline in YANG instance data
 files. Client applications can be designed to support particular
 package versions that they expect to interoperate with.

 YANG package definitions are available from the server via
 augmentations to YANG Library [RFC8525]. Rather than client
 applications downloading the entire contents of YANG library to
 confirm that the server schema is compatible with the client, they
 can check, or download, a much shorter YANG package definition, and
 validate that it conforms to the expected schema.

 YANG package definitions can also be used to define the schema
 associated with YANG instance data files holding other, e.g., non
 packages related, instance data.

5.1. Package definition rules

 Packages are defined using the following rules:

 1. A YANG package MAY represent a complete YANG schema or only part
 of a YANG schema with some module import dependencies missing, as
 described in Section 5.4.

 2. Packages definitions are hierarchical. A package can include
 other packages. Only a single version of a package can be
 included, and conflicting package includes (e.g. from descendant
 package includes) MUST be explicitly resolved by indicating which
 version takes precedence, and which versions are being replaced.

 3. For each module implemented by a package, only a single revision
 of that module MUST be implemented. Multiple revisions of a
 module MAY be listed as import-only dependencies.

 4. The revision of a module listed in the package ’module’ list
 supersedes any ’implemented’ revision of the module listed in an
 included package module list. The ’replaces-revision’ leaf-list
 is used to indicate which ’implemented’ or ’import-only’ module
 revisions are replaces by this module revision. This allows a
 package to explicitly resolve conflicts between implemented
 module revisions in included packages.

 5. The ’replaces-revision’ leaf-list in the ’import-only-module’
 list can be used to exclude duplicate revisions of import-only
 modules from included packages. Otherwise, the import-only-
 modules for a package are the import-only-modules from all
 included packages combined with any modules listed in the
 packages import-only-module list.

Wilton, et al. Expires May 6, 2021 [Page 7]

Internet-Draft YANG Packages November 2020

 6. YANG packages definitions MAY include modules containing
 deviation statements, but those deviation statements MUST only be
 used in an RFC 7950 compatible way to indicate where a server, or
 class of servers, deviates from a published standard. Deviations
 MUST NOT be included in a package definition that is part of a
 published standard. See section 5.8.1 for further guidance on
 the use of deviations in YANG packages.

5.2. Package versioning

 Individual versions of a YANG package are versioned using the
 "revision-label" scheme defined in section 3.3 of
 [I-D.ietf-netmod-yang-module-versioning].

5.2.1. Updating a package with a new version

 Package compatibility is fundamentally defined by how the YANG schema
 between two package versions has changed.

 When a package definition is updated, the version associated with the
 package MUST be updated appropriately, taking into consideration the
 scope of the changes as defined by the rules below.

 A package definition SHOULD define the previous version of the
 package in the ’previous-version’ leaf unless it is the initial
 version of the package. If the ’previous-version’ leaf is provided
 then the package definition MUST set the ’nbc-changes’ leaf if the
 new version is non-backwards-compatible with respect to the package
 version defined in the ’previous-version’ leaf.

5.2.1.1. Non-Backwards-compatible changes

 The following changes classify as non-backwards-compatible changes to
 a package definition:

 o Changing an ’included-package’ list entry to select a package
 version that is non-backwards-compatible to the prior package
 version, or removing a previously included package.

 o Changing a ’module’ or ’import-only-module’ list entry to select a
 module revision that is non-backwards-compatible to the prior
 module revision, or removing a previously implemented module.

 o Removing a feature from the ’mandatory-feature’ leaf-list.

 o Adding, changing, or removing a deviation that is considered a
 non-backwards-compatible change to the affected data node in the
 schema associated with the prior package version.

Wilton, et al. Expires May 6, 2021 [Page 8]

Internet-Draft YANG Packages November 2020

5.2.1.2. Backwards-compatible changes

 The following changes classify as backwards-compatible changes to a
 package definition:

 o Changing an ’included-package’ list entry to select a package
 version that is backwards-compatible to the prior package version,
 or including a new package that does not conflict with any
 existing included package or module.

 o Changing a ’module’ or ’import-only-module’ list entry to select a
 module revision that is backwards-compatible to the prior module
 revision, or including a new module to the package definition.

 o Adding a feature to the ’mandatory-feature’ leaf-list.

 o Adding, changing, or removing a deviation that is considered a
 backwards-compatible change to the affected data node in the
 schema associated with the prior package version.

5.2.1.3. Editorial changes

 The following changes classify as editorial changes to a package
 definition:

 o Changing a ’included-package’ list entry to select a package
 version that is classified as an editorial change relative to the
 prior package version.

 o Changing a ’module’ or ’import-only-module’ list entry to select a
 module revision that is classified as an editorial change relative
 to the prior module revision.

 o Any change to any metadata associated with a package definition
 that causes it to have a different checksum value.

5.2.2. YANG Semantic Versioning for packages

 YANG Semantic Versioning [I-D.ietf-netmod-yang-semver] MAY be used as
 an appropriate type of revision-label for the package version leaf.

 If the format of the leaf matches the ’yangver:version’ type
 specified in ietf-yang-semver.yang, then the package version leaf
 MUST be interpreted as a YANG semantic version number.

 For YANG packages defined by the IETF, YANG semantic version numbers
 MUST be used as the version scheme for YANG packages.

Wilton, et al. Expires May 6, 2021 [Page 9]

Internet-Draft YANG Packages November 2020

 The rules for incrementing the YANG package version number are
 equivalent to the semantic versioning rules used to version
 individual YANG modules, defined in section 3.2 of
 [I-D.ietf-netmod-yang-semver], but use the rules defined previously
 in Section 5.2.1 to determine whether a change is classified as non-
 backwards-compatible, backwards-compatible, or editorial. Where
 available, the semantic version number of the referenced elements in
 the package (included packages or modules) can be used to help
 determine the scope of changes being made.

5.2.3. Revision history

 YANG packages do not contain a revision history. This is because
 packages may have many revisions and a long revision history would
 bloat the package definition. By recursively examining the
 ’previous-version’ leaf of a package definition, a full revision
 history (including where non-backwards-compatible changes have
 occurred) can be dynamically constructed, if all package versions are
 available.

5.3. Package conformance

 YANG packages allows for conformance to be checked at a package level
 rather than requiring a client to download all modules, revisions,
 and deviations from the server to ensure that the datastore schema
 used by the server is compatible with the client.

 YANG package conformance is analogous to how YANG [RFC7950] requires
 that servers either implement a module faithfully, or otherwise use
 deviations to indicate areas of non-conformance.

 For a top level package representing a datastore schema, servers MUST
 implement the package definition faithfully, including all mandatory
 features.

 Package definitions MAY modify the schema for directly or
 hierarchically included packages through the use of different module
 revisions or module deviations. If the schema of any included
 package is modified in a non-backwards-compatible way then it MUST be
 indicated by setting the ’nbc-modified’ leaf to true.

5.3.1. Use of YANG semantic versioning

 Using the YANG semantic versioning scheme for package version numbers
 and module revision labels can help with conformance. In the general
 case, clients should be able to determine the nature of changes
 between two package versions by comparing the version number.

Wilton, et al. Expires May 6, 2021 [Page 10]

Internet-Draft YANG Packages November 2020

 This usually means that a client does not have to be restricted to
 working only with servers that advertise exactly the same version of
 a package in YANG library. Instead, reasonable clients should be
 able to interoperate with any server that supports a package version
 that is backwards compatible to version that the client is designed
 for, assuming that the client is designed to ignore operational
 values for unknown data nodes.

 For example, a client coded to support ’foo’ package at version 1.0.0
 should interoperate with a server implementing ’foo’ package at
 version 1.3.5, because the YANG semantic versioning rules require
 that package version 1.3.5 is backwards compatible to version 1.0.0.

 This also has a relevance on servers that are capable of supporting
 version selection because they need not support every version of a
 YANG package to ensure good client compatibility. Choosing suitable
 minor versions within each major version number should generally be
 sufficient, particular if they can avoid non-backwards-compatible
 patch level changes.

5.3.2. Package checksums

 Each YANG package definition may have a checksum associated with it
 to allow a client to validate that the package definition of the
 server matches the expected package definition without downloading
 the full package definition from the server.

 The checksum for a package is calculated using the SHA-256 hash (XXX,
 reference) of the full file contents of the YANG package instance
 data file. This means that the checksum includes all whitespace and
 formatting, encoding, and all meta-data fields associated with the
 package and the instance data file).

 The checksum for a module is calculated using the SHA-256 hash of the
 YANG module file definition. This means that the checksum includes
 all whitespace, formatting, and comments within the YANG module.

 Packages that are locally scoped to a server may not have an offline
 instance data file available, and hence MAY not have a checksum.

 The package definition allows URLs and checksums to be specified for
 all included packages, modules and submodules within the package
 definition. Checksums SHOULD be included in package definitions to
 validate the full integrity of the package.

 On a server, package checksums SHOULD also be provided for the top
 level packages associated with the datastore schema.

Wilton, et al. Expires May 6, 2021 [Page 11]

Internet-Draft YANG Packages November 2020

5.3.3. The relationship between packages and datastores

 As defined by NMDA [RFC8342], each datastore has an associated
 datastore schema. Sections 5.1 and 5.3 of NMDA defines further
 constraints on the schema associated with datastores. These
 constraints can be summarized thus:

 o The schema for all conventional datastores is the same.

 o The schema for non conventional configuration datastores (e.g.,
 dynamic datastores) may completely differ (i.e. no overlap at all)
 from the schema associated with the conventional configuration
 datastores, or may partially or fully overlap with the schema of
 the conventional configuration datastores. A dynamic datastore,
 for example, may support different modules than conventional
 datastores, or may support a subset or superset of modules,
 features, or data nodes supported in the conventional
 configuration datastores. Where a data node exists in multiple
 datastore schema it has the same type, properties and semantics.

 o The schema for the operational datastore is intended to be a
 superset of all the configuration datastores (i.e. includes all
 the schema nodes from the conventional configuration datastores),
 but data nodes can be omitted if they cannot be accurately
 reported. The operational datastore schema can include additional
 modules containing only config false data nodes, but there is no
 harm in including those modules in the configuration datastore
 schema as well.

 Given that YANG packages represent a YANG schema, it follows that
 each datastore schema can be represented using packages. In
 addition, the schema for most datastores on a server are often
 closely related. Given that there are many ways that a datastore
 schema could be represented using packages, the following guidance
 provides a consistent approach to help clients understand the
 relationship between the different datastore schema supported by a
 device (e.g., which parts of the schema are common and which parts
 have differences):

 o Any datastores (e.g., conventional configuration datastores) that
 have exactly the same datastore schema MUST use the same package
 definitions. This is to avoid, for example, the creation of a
 ’running-cfg’ package and a separate ’intended-cfg’ package that
 have identical schema.

 o Common package definitions SHOULD be used for those parts of the
 datastore schema that are common between datastores, when those
 datastores do not share exactly the same datastore schema. E.g.,

Wilton, et al. Expires May 6, 2021 [Page 12]

Internet-Draft YANG Packages November 2020

 if a substantial part of the schema is common between the
 conventional, dynamic, and operational datastores then a single
 common package can be used to describe the common parts, along
 with other packages to describe the unique parts of each datastore
 schema.

 o YANG modules that do not contain any configuration data nodes
 SHOULD be included in the package for configuration datastores if
 that helps unify the package definitions.

 o The packages for the operational datastore schema MUST include all
 packages for all configuration datastores, along with any required
 modules defining deviations to mark unsupported data nodes. The
 deviations MAY be defined directly in the packages defining the
 operational datastore schema, or in separate non referentially
 complete packages.

 o The schema for a datastore MAY be represented using a single
 package or as the union of a set of compatible packages, i.e.,
 equivalently to a set of non-conflicting packages being included
 together in an overarching package definition.

5.4. Schema referential completeness

 A YANG package may represent a schema that is ’referentially
 complete’, or ’referentially incomplete’, indicated in the package
 definition by the ’complete’ flag.

 If all import statements in all YANG modules included in the package
 (either directly, or through included packages) can be resolved to a
 module revision defined with the YANG package definition, then the
 package is classified as referentially complete. Conversely, if one
 or more import statements cannot be resolved to a module specified as
 part of the package definition, then the package is classified as
 referentially incomplete.

 A package that represents the exact contents of a datastore schema
 MUST always be referentially complete.

 Referentially incomplete packages can be used, along with locally
 scoped packages, to represent an update to a device’s datastore
 schema as part of an optional software hot fix. E.g., the base
 software is made available as a complete globally scoped package.
 The hot fix is made available as an incomplete globally scoped
 package. A device’s datastore schema can define a local package that
 implements the base software package updated with the hot fix
 package.

Wilton, et al. Expires May 6, 2021 [Page 13]

Internet-Draft YANG Packages November 2020

 Referentially incomplete packages could also be used to group sets of
 logically related modules together, but without requiring a fixed
 dependency on all imported ’types’ modules (e.g., iana-if-
 types.yang), instead leaving the choice of specific revisions of
 ’types’ modules to be resolved when the package definition is used.

5.5. Package name scoping and uniqueness

 YANG package names can be globally unique, or locally scoped to a
 particular server or device.

5.5.1. Globally scoped packages

 The name given to a package MUST be globally unique, and it MUST
 include an appropriate organization prefix in the name, equivalent to
 YANG module naming conventions.

 Ideally a YANG instance data file defining a particular package
 version would be publicly available at one or more URLs.

5.5.2. Server scoped packages

 Package definitions may be scoped to a particular server by setting
 the ’is-local’ leaf to true in the package definition.

 Locally scoped packages MAY have a package name that is not globally
 unique.

 Locally scoped packages MAY have a definition that is not available
 offline from the server in a YANG instance data file.

5.6. Submodules packages considerations

 As defined in [RFC7950] and [I-D.ietf-netmod-yang-semver], YANG
 conformance and versioning is specified in terms of particular
 revisions of YANG modules rather than for individual submodules.

 However, YANG package definitions also include the list of submodules
 included by a module, primarily to provide a location of where the
 submodule definition can be obtained from, allowing a YANG schema to
 be fully constructed from a YANG package instance data file
 definition.

5.7. Package tags

 [I-D.ietf-netmod-module-tags] defines YANG module tags as a mechanism
 to annotate a module definition with additional metadata. Tags MAY
 also be associated to a package definition via the ’tags’ leaf-list.

Wilton, et al. Expires May 6, 2021 [Page 14]

Internet-Draft YANG Packages November 2020

 The tags use the same registry and definitions used by YANG module
 tags.

5.8. YANG Package Usage Guidance

 It is RECOMMENDED that organizations that publish YANG modules also
 publish YANG package definition that group and version those modules
 into units of related functionality. This increases
 interoperability, by encouraging implementations to use the same
 collections of YANG modules versions. Using packages also makes it
 easier to understand relationship between modules, and enables
 functionality to be described on a more abstract level than
 individual modules.

5.8.1. Use of deviations in YANG packages

 [RFC7950] section 5.6.3 defines deviations as the mechanism to allow
 servers to indicate where they do not conform to a published YANG
 module that is being implemented.

 In cases where implementations contain deviations from published
 packages, then those implementations SHOULD define a package that
 includes both the published packages and all modules containing
 deviations. This implementation specific package accurately reflects
 the schema used by the device and allows clients to determine how the
 implementation differs from the published package schema in an
 offline consumable way, e.g., when published in an instance data file
 (see section 6).

 Organizations may wish to reuse YANG modules and YANG packages
 published by other organizations for new functionality. Sometimes,
 they may desire to modify the published YANG modules. However, they
 MUST NOT use deviations in an attempt to achieve this because such
 deviations cause two problems:

 They prevent implementations from reporting their own deviations
 for the same nodes.

 They fracture the ecosystem by preventing implementations from
 conforming to the standards specified by both organizations. This
 hurts the interoperability in the YANG community, promotes
 development of disconnected functional silos, and hurts creativity
 in the market.

Wilton, et al. Expires May 6, 2021 [Page 15]

Internet-Draft YANG Packages November 2020

5.8.2. Use of features in YANG modules and YANG packages

 The YANG language supports feature statements as the mechanism to
 make parts of a schema optional. Published standard YANG modules
 SHOULD make use of appropriate feature statements to provide
 flexibility in how YANG modules may be used by implementations and
 used by YANG modules published by other organizations.

 YANG packages support ’mandatory features’ which allow a package to
 specify features that MUST be implemented by any conformant
 implementation of the package as a mechanism to simplify and manage
 the schema represented by a YANG package.

5.9. YANG package core definition

 The ietf-yang-package-types.yang module defines a grouping to specify
 the core elements of the YANG package structure that is used within
 YANG package instance data files (ietf-yang-package-instance.yang)
 and also on the server (ietf-yang-packages.yang).

 The "ietf-yang-package-types" YANG module has the following
 structure:

 module: ietf-yang-package-types

 grouping yang-pkg-identification-leafs
 +-- name pkg-name
 +-- version pkg-version

 grouping yang-pkg-instance
 +-- name pkg-name
 +-- version pkg-version
 +-- timestamp? yang:date-and-time
 +-- organization? string
 +-- contact? string
 +-- description? string
 +-- reference? string
 +-- complete? boolean
 +-- local? boolean
 +-- previous-version? pkg-version
 +-- nbc-changes? boolean
 +-- tag* tags:tag
 +-- mandatory-feature* scoped-feature
 +-- included-package* [name version]
 | +-- name pkg-name
 | +-- version pkg-version
 | +-- replaces-version* pkg-version

Wilton, et al. Expires May 6, 2021 [Page 16]

Internet-Draft YANG Packages November 2020

 | +-- nbc-modified? boolean
 | +-- location* inet:uri
 | +-- checksum? pkg-types:sha-256-hash
 +-- module* [name]
 | +-- name yang:yang-identifier
 | +-- revision? rev:revision-date-or-label
 | +-- replaces-revision* rev:revision-date-or-label
 | +-- namespace? inet:uri
 | +-- location* inet:uri
 | +-- checksum? pkg-types:sha-256-hash
 | +-- submodule* [name]
 | +-- name? yang:yang-identifier
 | +-- revision yang:revision-identifier
 | +-- location* inet:uri
 | +-- checksum? pkg-types:sha-256-hash
 +-- import-only-module* [name revision]
 +-- name? yang:yang-identifier
 +-- revision? rev:revision-date-or-label
 +-- replaces-revision* rev:revision-date-or-label
 +-- namespace? inet:uri
 +-- location* inet:uri
 +-- checksum? pkg-types:sha-256-hash
 +-- submodule* [name]
 +-- name? yang:yang-identifier
 +-- revision yang:revision-identifier
 +-- location* inet:uri
 +-- checksum? pkg-types:sha-256-hash

6. Package Instance Data Files

 YANG packages SHOULD be available offline from the server, defined as
 YANG instance data files [I-D.ietf-netmod-yang-instance-file-format]
 using the YANG schema below to define the package data.

 The following rules apply to the format of the YANG package instance
 files:

 1. The file SHOULD be encoded in JSON.

 2. The name of the file SHOULD follow the format "<package-
 name>@<version>.json".

 3. The package name MUST be specified in both the instance-data-set
 ’name’ and package ’name’ leafs.

 4. The ’description’ field of the instance-data-set SHOULD be "YANG
 package definition".

Wilton, et al. Expires May 6, 2021 [Page 17]

Internet-Draft YANG Packages November 2020

 5. The ’timestamp’, "organization’, ’contact’ fields are defined in
 both the instance-data-set metadata and the YANG package
 metadata. Package definitions SHOULD only define these fields as
 part of the package definition. If any of these fields are
 populated in the instance-data-set metadata then they MUST
 contain the same value as the corresponding leaves in the package
 definition.

 6. The ’revision’ list in the instance data file SHOULD NOT be used,
 since versioning is handled by the package definition.

 7. The instance data file for each version of a YANG package SHOULD
 be made available at one of more locations accessible via URLs.
 If one of the listed locations defines a definitive reference
 implementation for the package definition then it MUST be listed
 as the first entry in the list.

 The "ietf-yang-package" YANG module has the following structure:

 module: ietf-yang-package

 structure package:
 // Uses the yang-package-instance grouping defined in
 // ietf-yang-package-types.yang
 +-- name pkg-name
 +-- version pkg-version
 ... remainder of yang-package-instance grouping ...

7. Package Definitions on a Server

7.1. Package List

 A top level ’packages’ container holds the list of all versions of
 all packages known to the server. Each list entry uses the common
 package definition, but with the addition of package location and
 checksum information that cannot be contained within a offline
 package definition contained in an instance data file.

 The ’/packages/package’ list MAY include multiple versions of a
 particular package. E.g. if the server is capable of allowing
 clients to select which package versions should be used by the
 server.

Wilton, et al. Expires May 6, 2021 [Page 18]

Internet-Draft YANG Packages November 2020

7.2. Tree diagram

 The "ietf-yang-packages" YANG module has the following structure:

 module: ietf-yang-packages
 +--ro packages
 +--ro package* [name version]
 // Uses the yang-package-instance grouping defined in
 // ietf-yang-package-types.yang, with location and checksum:
 +--ro name pkg-name
 +--ro version pkg-version
 ... remainder of yang-package-instance grouping ...
 +--ro location* inet:uri
 +--ro checksum? pkg-types:sha-256-hash

8. YANG Library Package Bindings

 The YANG packages module also augments YANG library to allow a server
 to optionally indicate that a datastore schema is defined by a
 package, or a union of compatible packages. Since packages can
 generally be made available offline in instance data files, it may be
 sufficient for a client to only check that a compatible version of
 the package is implemented by the server without fetching either the
 package definition, or downloading and comparing the full list of
 modules and enabled features.

 If a server indicates that a datastore schema maps to a particular
 package, then it MUST exactly match the schema defined by that
 package, taking into account enabled features and any deviations.

 If a server cannot faithfully implement a package then it can define
 a new package to accurately report what it does implement. The new
 package can include the original package as an included package, and
 the new package can define additional modules containing deviations
 to the modules in the original package, allowing the new package to
 accurately describe the server’s behavior. There is no specific
 mechanism provided to indicate that a mandatory-feature in package
 definition is not supported on a server, but deviations MAY be used
 to disable functionality predicated by an if-feature statement.

Wilton, et al. Expires May 6, 2021 [Page 19]

Internet-Draft YANG Packages November 2020

 The "ietf-yl-packages" YANG module has the following structure:

 module: ietf-yl-packages
 augment /yanglib:yang-library/yanglib:schema:
 +--ro package* [name version]
 +--ro name -> /pkgs:packages/package/name
 +--ro version leafref
 +--ro checksum? leafref

9. YANG packages as schema for YANG instance data document

 YANG package definitions can be used as the schema definition for
 YANG instance data files. When using a package schema, the name and
 version of the package MUST be specified, a package checksum and/or
 URL to the package definition MAY also be provided.

 The "ietf-yang-inst-data-pkg" YANG module has the following
 structure:

 module: ietf-yang-inst-data-pkg

 augment-structure /yid:instance-data-set/yid:content-schema-spec:
 +--:(pkg-schema)
 +-- pkg-schema
 +-- name pkg-name
 +-- version pkg-version
 +-- location* inet:uri
 +-- checksum? pkg-types:sha-256-hash

10. YANG Modules

 The YANG module definitions for the modules described in the previous
 sections.

 <CODE BEGINS> file "ietf-yang-package-types@2020-01-21.yang"
 module ietf-yang-package-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-package-types";
 prefix "pkg-types";

 import ietf-yang-revisions {
 prefix rev;
 reference "XXXX: Updated YANG Module Revision Handling";

Wilton, et al. Expires May 6, 2021 [Page 20]

Internet-Draft YANG Packages November 2020

 }

 import ietf-yang-types {
 prefix yang;
 rev:revision-or-derived 2019-07-21;
 reference "RFC 6991bis: Common YANG Data Types.";
 }

 import ietf-inet-types {
 prefix inet;
 rev:revision-or-derived 2013-07-15;
 reference "RFC 6991: Common YANG Data Types.";
 }

 import ietf-module-tags {
 prefix tags;
 // RFC Ed. Fix revision once revision date of
 // ietf-module-tags.yang is known.
 reference "RFC XXX: YANG Module Tags.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

Wilton, et al. Expires May 6, 2021 [Page 21]

Internet-Draft YANG Packages November 2020

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 revision 2020-01-21 {
 rev:revision-label 0.2.0;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Typedefs
 */

 typedef pkg-name {
 type yang:yang-identifier;
 description
 "Package names are typed as YANG identifiers.";
 }

 typedef pkg-version {
 type rev:revision-date-or-label;
 description
 "Package versions SHOULD be a revision-label (e.g. perhaps a
 YANG Semver version string). Package versions MAY also be a
 revision-date";

 }

 typedef pkg-identifier {
 type rev:name-revision;
 description
 "Package identifiers combine a pkg-name and a pkg-version";
 }

 typedef scoped-feature {
 type string {
 pattern ’[a-zA-Z_][a-zA-Z0-9\-_.]*:[a-zA-Z_][a-zA-Z0-9\-_.]*’;
 }

Wilton, et al. Expires May 6, 2021 [Page 22]

Internet-Draft YANG Packages November 2020

 description
 "Represents a feature name scoped to a particular module,
 identified as the ’<module-name>:<feature-name>’, where both
 <module-name> and <feature-name> are YANG identifier strings,
 as defiend by Section 12 or RFC 6020.";
 reference
 "RFC XXXX, YANG Packages.";
 }

 typedef sha-256-hash {
 type string {
 length "64";
 pattern "[0-9a-fA-F]*";
 }
 description
 "A SHA-256 hash represented as a hexadecimal string.

 Used as the checksum for modules, submodules and packages in a
 YANG package definition.

 For modules and submodules the SHA-256 hash is calculated on
 the contents of the YANG file defining the module/submodule.

 For packages the SHA-256 hash is calculated on the file
 containing the YANG instance data document holding the package
 definition";
 }

 /*
 * Groupings
 */
 grouping yang-pkg-identification-leafs {
 description
 "Parameters for identifying a specific version of a YANG
 package";

 leaf name {
 type pkg-name;
 mandatory true;
 description
 "The YANG package name.";
 }

 leaf version {
 type pkg-version;
 mandatory true;
 description

Wilton, et al. Expires May 6, 2021 [Page 23]

Internet-Draft YANG Packages November 2020

 "Uniquely identies a particular version of a YANG package.

 Follows the definition for revision labels defined in
 draft-verdt-nemod-yang-module-versioning, section XXX";
 }
 }

 grouping yang-pkg-instance {
 description
 "Specifies the data node for a full YANG package instance
 represented either on a server or as a YANG instance data
 document.";
 uses yang-pkg-identification-leafs;

 leaf timestamp {
 type yang:date-and-time;

 description
 "An optional timestamp for when this package was created.
 This does not need to be unique across all versions of a
 package.";
 }

 leaf organization {
 type string;

 description "Organization responsible for this package";
 }

 leaf contact {
 type string;

 description
 "Contact information for the person or organization to whom
 queries concerning this package should be sent.";
 }

 leaf description {
 type string;

 description "Provides a description of the package";
 }

 leaf reference {
 type string;

 description "Allows for a reference for the package";
 }

Wilton, et al. Expires May 6, 2021 [Page 24]

Internet-Draft YANG Packages November 2020

 leaf complete {
 type boolean;
 default true;
 description
 "Indicates whether the schema defined by this package is
 referentially complete. I.e. all module imports can be
 resolved to a module explicitly defined in this package or
 one of the included packages.";
 }

 leaf local {
 type boolean;
 default false;
 description
 "Defines that the package definition is local to the server,
 and the name of the package MAY not be unique, and the
 package definition MAY not be available in an offline file.

 Local packages can be used when the schema for the device
 can be changed at runtime through the addition or removal of
 software packages, or hot fixes.";
 }

 leaf previous-version {
 type pkg-version;
 description
 "The previous package version that this version has been
 derived from. This leaf allows a full version history graph
 to be constructed if required.";
 }

 leaf nbc-changes {
 type boolean;
 default false;
 description
 "Indicates whether the defined package version contains
 non-backwards-compatible changes relative to the package
 version defined in the ’previous-version’ leaf.";
 }

 leaf-list tag {
 type tags:tag;
 description
 "Tags associated with a YANG package. Module tags defined in
 XXX, ietf-netmod-module-tags can be used here but with the
 modification that the tag applies to the entire package
 rather than a specific module. See the IANA ’YANG Module
 Tag Prefix’ registry for reserved prefixes and the IANA

Wilton, et al. Expires May 6, 2021 [Page 25]

Internet-Draft YANG Packages November 2020

 ’YANG Module IETF Tag’ registry for IETF standard tags.";
 }

 leaf-list mandatory-feature {
 type scoped-feature;
 description
 "Lists features from any modules included in the package that
 MUST be supported by any server implementing the package.

 Features already specified in a ’mandatory-feature’ list of
 any included package MUST also be supported by server
 implementations and do not need to be repeated in this list.

 All other features defined in modules included in the
 package are OPTIONAL to implement.

 Features are identified using <module-name>:<feature-name>";
 }

 list included-package {
 key "name version";
 description
 "An entry in this list represents a package that is included
 as part of the package definition, or an indirectly included
 package that is changed in a non backwards compatible way.

 It can be used to resolve inclusion of conflicting package
 versions by explicitly specifying which package version is
 used.

 If included packages implement different revisions or
 versions of the same module, then an explicit entry in the
 module list MUST be provided to select the specific module
 version ’implemented’ by this package definition.

 If the schema for any packages that are included, either
 directly or indirectly via another package include, are
 changed in any non-backwards-compatible way then they MUST
 be explicitly listed in the included-packages list with the
 ’nbc-modified’ leaf set to true.

 For import-only modules, the ’replaces-revision’ leaf-list
 can be used to select the specific module versions used by
 this package.";
 reference
 "XXX";

 uses yang-pkg-identification-leafs;

Wilton, et al. Expires May 6, 2021 [Page 26]

Internet-Draft YANG Packages November 2020

 leaf-list replaces-version {
 type pkg-version;
 description
 "Gives the version of an included package version that
 is replaced by this included package revision.";
 }

 leaf nbc-modified {
 type boolean;
 default false;
 description
 "Set to true if any data nodes in this package are modified
 in a non backwards compatible way, either through the use
 of deviations, or because one of the modules has been
 replaced by an incompatible revision. This could also
 occur if a module’s revision was replaced by an earlier
 revision that had the effect of removing some data
 nodes.";
 }

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents where an instance data file
 for this YANG package can be found.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.

 If multiple locations are provided, then the first
 location in the leaf-list MUST be the definitive location
 that uniquely identifies this package";
 }

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The SHA-256 hash calculated on the textual package
 definition, represented as a hexadecimal string.";
 }
 }

 list module {
 key "name";
 description
 "An entry in this list represents a module that must be
 implemented by a server implementing this package, as per
 RFC 7950 section 5.6.5, with a particular set of supported

Wilton, et al. Expires May 6, 2021 [Page 27]

Internet-Draft YANG Packages November 2020

 features and deviations.

 A entry in this list overrides any module revision
 ’implemented’ by an included package. Any replaced module
 revision SHOULD also be listed in the ’replaces-revision’
 list.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language.";

 leaf name {
 type yang:yang-identifier;
 mandatory true;
 description
 "The YANG module name.";
 }

 leaf revision {
 type rev:revision-date-or-label;
 description
 "The YANG module revision date or revision-label.

 If no revision statement is present in the YANG module,
 this leaf is not instantiated.";
 }

 leaf-list replaces-revision {
 type rev:revision-date-or-label;
 description
 "Gives the revision of an module (implemented or
 import-only) defined in an included package that is
 replaced by this implemented module revision.";
 }

 leaf namespace {
 type inet:uri;
 description
 "The XML namespace identifier for this module.";
 }

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this module.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.";
 }

Wilton, et al. Expires May 6, 2021 [Page 28]

Internet-Draft YANG Packages November 2020

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The SHA-256 hash calculated on the textual module
 definition, represented as a hexadecimal string.";
 }

 list submodule {
 key "name";
 description
 "Each entry represents one submodule within the
 parent module.";

 leaf name {
 type yang:yang-identifier;
 description
 "The YANG submodule name.";
 }

 leaf revision {
 type yang:revision-identifier;
 mandatory true;
 description
 "The YANG submodule revision date. If the parent module
 include statement for this submodule includes a revision
 date then it MUST match this leaf’s value.";
 }

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The SHA-256 hash calculated on the textual submodule
 definition, represented as a hexadecimal string.";
 }
 }
 }

 list import-only-module {

Wilton, et al. Expires May 6, 2021 [Page 29]

Internet-Draft YANG Packages November 2020

 key "name revision";
 description
 "An entry in this list indicates that the server imports
 reusable definitions from the specified revision of the
 module, but does not implement any protocol accessible
 objects from this revision.

 Multiple entries for the same module name MAY exist. This
 can occur if multiple modules import the same module, but
 specify different revision-dates in the import statements.";

 leaf name {
 type yang:yang-identifier;
 description
 "The YANG module name.";
 }

 leaf revision {
 type rev:revision-date-or-label;
 description
 "The YANG module revision date or revision-label.

 If no revision statement is present in the YANG module,
 this leaf is not instantiated.";
 }

 leaf-list replaces-revision {
 type rev:revision-date-or-label;
 description
 "Gives the revision of an import-only-module defined in an
 included package that is replaced by this
 import-only-module revision.";
 }

 leaf namespace {
 type inet:uri;
 description
 "The XML namespace identifier for this module.";
 }

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this module.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.";

Wilton, et al. Expires May 6, 2021 [Page 30]

Internet-Draft YANG Packages November 2020

 }

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The SHA-256 hash calculated on the textual submodule
 definition, represented as a hexadecimal string.";
 }

 list submodule {
 key "name";
 description
 "Each entry represents one submodule within the
 parent module.";

 leaf name {
 type yang:yang-identifier;
 description
 "The YANG submodule name.";
 }

 leaf revision {
 type yang:revision-identifier;
 mandatory true;
 description
 "The YANG submodule revision date. If the parent module
 include statement for this submodule includes a revision
 date then it MUST match this leaf’s value.";
 }

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The SHA-256 hash calculated on the textual submodule
 definition, represented as a hexadecimal string.";
 }
 }
 }

Wilton, et al. Expires May 6, 2021 [Page 31]

Internet-Draft YANG Packages November 2020

 }
 }
 <CODE ENDS>

 <CODE BEGINS> file "ietf-yang-package-instance@2020-01-21.yang"
 module ietf-yang-package-instance {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-package-instance";
 prefix pkg-inst;

 import ietf-yang-revisions {
 prefix rev;
 reference "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-package-types {
 prefix pkg-types;
 rev:revision-or-derived 0.2.0;
 reference "RFC XXX: YANG Schema Versioning.";
 }

 import ietf-yang-structure-ext {
 prefix sx;
 reference "RFC XXX: YANG Data Structure Extensions.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module provides a definition of a YANG package, which is
 used as the schema for an YANG instance data document specifying
 a YANG package.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject

Wilton, et al. Expires May 6, 2021 [Page 32]

Internet-Draft YANG Packages November 2020

 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 revision 2020-01-21 {
 rev:revision-label 0.2.0;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Top-level structure
 */

 sx:structure package {
 description
 "Defines the YANG package structure for use in a YANG instance
 data document.";

 uses pkg-types:yang-pkg-instance;
 }
 }
 <CODE ENDS>

 <CODE BEGINS> file "ietf-yang-package@2020-01-21.yang"
 module ietf-yang-packages {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-packages";
 prefix pkgs;

Wilton, et al. Expires May 6, 2021 [Page 33]

Internet-Draft YANG Packages November 2020

 import ietf-yang-revisions {
 prefix rev;
 reference "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-package-types {
 prefix pkg-types;
 rev:revision-or-derived 0.2.0;
 reference "RFC XXX: YANG Packages.";
 }

 import ietf-inet-types {
 prefix inet;
 rev:revision-or-derived 2013-07-15;
 reference "RFC 6991: Common YANG Data Types.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module defines YANG packages on a server implementation.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

Wilton, et al. Expires May 6, 2021 [Page 34]

Internet-Draft YANG Packages November 2020

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 revision 2020-01-21 {
 rev:revision-label 0.2.0;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Groupings
 */

 grouping yang-pkg-ref {
 description
 "Defines the leaves used to reference a single YANG package";

 leaf name {
 type leafref {
 path ’/pkgs:packages/pkgs:package/pkgs:name’;
 }
 description
 "The name of the references package.";
 }

 leaf version {
 type leafref {
 path ’/pkgs:packages’
 + ’/pkgs:package[pkgs:name = current()/../name]’
 + ’/pkgs:version’;
 }

 description
 "The version of the referenced package.";
 }

 leaf checksum {
 type leafref {
 path ’/pkgs:packages’
 + ’/pkgs:package[pkgs:name = current()/../name]’
 + ’[pkgs:version = current()/../version]/pkgs:checksum’;
 }

 description

Wilton, et al. Expires May 6, 2021 [Page 35]

Internet-Draft YANG Packages November 2020

 "The checksum of the referenced package.";
 }
 }

 grouping yang-ds-pkg-ref {
 description
 "Defines the list used to reference a set of YANG packages that
 collectively represent a datastore schema.";

 list package {
 key "name version";

 description
 "Identifies the YANG packages that collectively defines the
 schema for the associated datastore.

 The datastore schema is defined as the union of all
 referenced packages, that MUST represent a referentially
 complete schema.

 All of the referenced packages must be compatible with no
 conflicting module versions or dependencies.";

 uses yang-pkg-ref;
 }
 }

 /*
 * Top level data nodes.
 */

 container packages {
 config false;
 description "All YANG package definitions";

 list package {
 key "name version";

 description
 "YANG package instance";

 uses pkg-types:yang-pkg-instance;

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents where an instance data file

Wilton, et al. Expires May 6, 2021 [Page 36]

Internet-Draft YANG Packages November 2020

 for this YANG package can be found.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.

 If multiple locations are provided, then the first
 location in the leaf-list MUST be the definitive location
 that uniquely identifies this package";
 }

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The checksum of the package this schema relates to,
 calculated on the ’YANG instance data file’ package
 definition available in the ’location’ leaf list.

 This leaf MAY be omitted if the referenced package is
 locally scoped without an associated checksum.";
 }
 }
 }
 }
 <CODE ENDS>

 <CODE BEGINS> file "ietf-yl-package@2020-01-21.yang"
 module ietf-yl-packages {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yl-packages";
 prefix yl-pkgs;

 import ietf-yang-revisions {
 prefix rev;
 reference "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-packages {
 prefix pkgs;
 rev:revision-or-derived 0.2.0;
 reference "RFC XXX: YANG Packages.";
 }

 import ietf-yang-library {
 prefix yanglib;
 rev:revision-or-derived 2019-01-04;
 reference "RFC 8525: YANG Library";

Wilton, et al. Expires May 6, 2021 [Page 37]

Internet-Draft YANG Packages November 2020

 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module provides defined augmentations to YANG library to
 allow a server to report YANG package information.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 revision 2020-01-21 {
 rev:revision-label 0.2.0;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

Wilton, et al. Expires May 6, 2021 [Page 38]

Internet-Draft YANG Packages November 2020

 /*
 * Augmentations
 */

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Allow datastore schema to be related to a set of YANG
 packages";

 uses pkgs:yang-ds-pkg-ref;
 }
 }
 <CODE ENDS>

 <CODE BEGINS> file "ietf-yang-inst-data-pkg@2020-01-21.yang"
 module ietf-yang-inst-data-pkg {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-inst-data-pkg";
 prefix yid-pkg;

 import ietf-yang-revisions {
 prefix rev;
 reference "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-package-types {
 prefix pkg-types;
 rev:revision-or-derived 0.2.0;
 reference "RFC XXX: YANG Schema Versioning.";
 }

 import ietf-yang-structure-ext {
 prefix sx;
 reference "RFC XXX: YANG Data Structure Extensions.";
 }

 import ietf-yang-instance-data {
 prefix yid;
 reference "RFC XXX: YANG Instance Data File Format.";
 }

 import ietf-inet-types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types.";
 }

Wilton, et al. Expires May 6, 2021 [Page 39]

Internet-Draft YANG Packages November 2020

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";

 description
 "The module augments ietf-yang-instance-data to allow package
 definitions to be used to define schema in YANG instance data
 documents.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 revision 2020-01-21 {
 rev:revision-label 0.2.0;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Augmentations

Wilton, et al. Expires May 6, 2021 [Page 40]

Internet-Draft YANG Packages November 2020

 */

 sx:augment-structure
 "/yid:instance-data-set/yid:content-schema-spec" {
 description
 "Add package reference to instance data set schema
 specification";
 case pkg-schema {
 container pkg-schema {
 uses pkg-types:yang-pkg-identification-leafs;

 leaf checksum {
 type pkg-types:sha-256-hash;
 description
 "The SHA-256 hash of the package, calculated on
 the textual package definition, represented as a
 hexadecimal string.";
 }

 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents where an instance data
 file for this YANG package can be found.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.

 If multiple locations are provided, then the first
 location in the leaf-list MUST be the definitive
 location that uniquely identifies this package";
 }
 }
 }
 }
 }
 <CODE ENDS>

11. Security Considerations

 The YANG modules specified in this document defines a schema for data
 that is accessed by network management protocols such as NETCONF
 [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

Wilton, et al. Expires May 6, 2021 [Page 41]

Internet-Draft YANG Packages November 2020

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 Similarly to YANG library [I-D.ietf-netconf-rfc7895bis], some of the
 readable data nodes in these YANG modules may be considered sensitive
 or vulnerable in some network environments. It is thus important to
 control read access (e.g., via get, get-config, or notification) to
 these data nodes.

 One additional key different to YANG library, is that the ’ietf-yang-
 package’ YANG module defines a schema to allow YANG packages to be
 defined in YANG instance data files, that are outside the security
 controls of the network management protocols. Hence, it is important
 to also consider controlling access to these package instance data
 files to restrict access to sensitive information. SHA-256 checksums
 are used to ensure the integrity of YANG package definitions,
 imported modules, and sub-modules.

 As per the YANG library security considerations, the module, revision
 and version information in YANG packages may help an attacker
 identify the server capabilities and server implementations with
 known bugs since the set of YANG modules supported by a server may
 reveal the kind of device and the manufacturer of the device. Server
 vulnerabilities may be specific to particular modules, module
 revisions, module features, or even module deviations. For example,
 if a particular operation on a particular data node is known to cause
 a server to crash or significantly degrade device performance, then
 the YANG packages information will help an attacker identify server
 implementations with such a defect, in order to launch a denial-of-
 service attack on the device.

12. IANA Considerations

 It is expected that a central registry of standard YANG package
 definitions is required to support this solution.

 It is unclear whether an IANA registry is also required to manage
 specific package versions. It is highly desirable to have a specific
 canonical location, under IETF control, where the definitive YANG
 package versions can be obtained from.

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-package-types.yang

Wilton, et al. Expires May 6, 2021 [Page 42]

Internet-Draft YANG Packages November 2020

 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-package-instance.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-packages.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yl-packages.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-inst-data-pkg.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 This document requests that the following YANG modules are added in
 the "YANG Module Names" registry [RFC6020]:

 Name: ietf-yang-package-types.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-package-
 types.yang
 Prefix: pkg-types
 Reference: RFC XXXX

 Name: ietf-yang-package-instance.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-package-
 instance.yang
 Prefix: pkg-inst
 Reference: RFC XXXX

 Name: ietf-yang-packages.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-packages.yang
 Prefix: pkgs
 Reference: RFC XXXX

 Name: ietf-yl-packages.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yl-packages.yang
 Prefix: yl-pkgs
 Reference: RFC XXXX

 Name: ietf-yang-inst-data-pkg.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-inst-data-
 pkg.yang
 Prefix: yid-pkg

Wilton, et al. Expires May 6, 2021 [Page 43]

Internet-Draft YANG Packages November 2020

 Reference: RFC XXXX

13. Open Questions/Issues

 All issues, along with the draft text, are currently being tracked at
 https://github.com/rgwilton/YANG-Packages-Draft/issues/

14. Acknowledgements

 Feedback helping shape this document has kindly been provided by Andy
 Bierman, James Cumming, Mahesh Jethanandani, Balazs Lengyel, Ladislav
 Lhotka,and Jan Lindblad.

15. References

15.1. Normative References

 [I-D.ietf-netconf-rfc7895bis]
 Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", draft-ietf-netconf-
 rfc7895bis-07 (work in progress), October 2018.

 [I-D.ietf-netmod-module-tags]
 Hopps, C., Berger, L., and D. Bogdanovic, "YANG Module
 Tags", draft-ietf-netmod-module-tags-10 (work in
 progress), February 2020.

 [I-D.ietf-netmod-yang-data-ext]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Data
 Structure Extensions", draft-ietf-netmod-yang-data-ext-05
 (work in progress), December 2019.

 [I-D.ietf-netmod-yang-instance-file-format]
 Lengyel, B. and B. Claise, "YANG Instance Data File
 Format", draft-ietf-netmod-yang-instance-file-format-12
 (work in progress), April 2020.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., Sterne,
 J., Claise, B., and K. D’Souza, "Updated YANG Module
 Revision Handling", draft-ietf-netmod-yang-module-
 versioning-01 (work in progress), July 2020.

 [I-D.ietf-netmod-yang-semver]
 Claise, B., Clarke, J., Rahman, R., Wilton, R., Lengyel,
 B., Sterne, J., and K. D’Souza, "YANG Semantic
 Versioning", draft-ietf-netmod-yang-semver-01 (work in
 progress), July 2020.

Wilton, et al. Expires May 6, 2021 [Page 44]

Internet-Draft YANG Packages November 2020

 [I-D.ietf-netmod-yang-solutions]
 Wilton, R., "YANG Versioning Solution Overview", draft-
 ietf-netmod-yang-solutions-00 (work in progress), March
 2020.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and W. Bo,
 "YANG Schema Selection", draft-ietf-netmod-yang-ver-
 selection-00 (work in progress), March 2020.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", draft-
 ietf-netmod-yang-versioning-reqs-03 (work in progress),
 June 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

Wilton, et al. Expires May 6, 2021 [Page 45]

Internet-Draft YANG Packages November 2020

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

15.2. Informative References

 [I-D.bierman-netmod-yang-package]
 Bierman, A., "The YANG Package Statement", draft-bierman-
 netmod-yang-package-00 (work in progress), July 2015.

 [I-D.ietf-netmod-artwork-folding]
 Watsen, K., Auerswald, E., Farrel, A., and Q. WU,
 "Handling Long Lines in Inclusions in Internet-Drafts and
 RFCs", draft-ietf-netmod-artwork-folding-12 (work in
 progress), January 2020.

 [openconfigsemver]
 "Semantic Versioning for OpenConfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
 Classification", RFC 8199, DOI 10.17487/RFC8199, July
 2017, <https://www.rfc-editor.org/info/rfc8199>.

Appendix A. Examples

 This section provides various examples of YANG packages, and as such
 this text is non-normative. The purpose of the examples is to only
 illustrate the file format of YANG packages, and how package
 dependencies work. It does not imply that such packages will be

Wilton, et al. Expires May 6, 2021 [Page 46]

Internet-Draft YANG Packages November 2020

 defined by IETF, or which modules would be included in those packages
 even if they were defined. For brevity, the examples exclude
 namespace declarations, and use a shortened URL of "tiny.cc/ietf-
 yang" as a replacement for
 "https://raw.githubusercontent.com/YangModels/yang/master/standard/
 ietf/RFC".

A.1. Example IETF Network Device YANG package

 This section provides an instance data file example of an IETF
 Network Device YANG package formatted in JSON.

 This example package is intended to represent the standard set of
 YANG modules, with import dependencies, to implement a basic network
 device without any dynamic routing or layer 2 services. E.g., it
 includes functionality such as system information, interface and
 basic IP configuration.

 As for all YANG packages, all import dependencies are fully resolved.
 Because this example uses YANG modules that have been standardized
 before YANG semantic versioning, they modules are referenced by
 revision date rather than version number.

 <CODE BEGINS> file "example-ietf-network-device-pkg.json"
 ========= NOTE: ’\’ line wrapping per BCP XX (RFC XXXX) ===========

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-ietf-network-device-pkg",
 "pkg-schema": {
 package: "ietf-yang-package-defn-pkg@0.1.0.json"
 },
 "description": "YANG package definition",
 "content-data": {
 "ietf-yang-package-instance:yang-package": {
 "name": "example-ietf-network-device-pkg",
 "version": "1.1.2",
 "timestamp": "2018-12-13T17:00:00Z",
 "organization": "IETF NETMOD Working Group",
 "contact" : "WG Web: <http://tools.ietf.org/wg/netmod/>, \
 WG List: <mailto:netmod@ietf.org>",
 "description": "Example IETF network device YANG package.\
 \
 This package defines a small sample set of \
 YANG modules that could represent the basic set of \
 modules that a standard network device might be expected \
 to support.",

Wilton, et al. Expires May 6, 2021 [Page 47]

Internet-Draft YANG Packages November 2020

 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "location": ["file://example.org/yang/packages/\
 ietf-network-device@v1.1.2.json"],
 "module": [
 {
 "name": "iana-crypt-hash",
 "revision": "2014-08-06",
 "location": ["https://tiny.cc/ietf-yang/\
 iana-crypt-hash%402014-08-06.yang"],
 "checksum": "fa9fde408ddec2c16bf2c6b9e4c2f80b\
 813a2f9e48c127016f3fa96da346e02d"
 },
 {
 "name": "ietf-system",
 "revision": "2014-08-06",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-system%402014-08-06.yang"],
 "checksum": "8a692ee2521b4ffe87a88303a61a1038\
 79ee26bff050c1b05a2027ae23205d3f"
 },
 {
 "name": "ietf-interfaces",
 "revision": "2018-02-20",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-interfaces%402018-02-20.yang"],
 "checksum": "f6faea9938f0341ed48fda93dba9a69a\
 a32ee7142c463342efec3d38f4eb3621"
 },
 {
 "name": "ietf-netconf-acm",
 "revision": "2018-02-14",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-netconf-acm%402018-02-14.yang"],
 "checksum": "e03f91317f9538a89296e99df3ff0c40\
 03cdfea70bf517407643b3ec13c1ed25"
 },
 {
 "name": "ietf-key-chain",
 "revision": "2017-06-15",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-key-chain@2017-06-15.yang"],
 "checksum": "6250705f59fc9ad786e8d74172ce90d5\
 8deec437982cbca7922af40b3ae8107c"
 },
 {
 "name": "ietf-ip",
 "revision": "2018-02-22",
 "location": ["https://tiny.cc/ietf-yang/\

Wilton, et al. Expires May 6, 2021 [Page 48]

Internet-Draft YANG Packages November 2020

 ietf-ip%402018-02-22.yang"],
 "checksum": "b624c84a66c128ae69ab107a5179ca8e\
 20e693fb57dbe5cb56c3db2ebb18c894"
 }
],
 "import-only-module": [
 {
 "name": "ietf-yang-types",
 "revision": "2013-07-15",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-yang-types%402013-07-15.yang"],
 "checksum": "a04cdcc875764a76e89b7a0200c6b9d8\
 00b10713978093acda7840c7c2907c3f"
 },
 {
 "name": "ietf-inet-types",
 "revision": "2013-07-15",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-inet-types%402013-07-15.yang"],
 "checksum": "12d98b0143a5ca5095b36420f9ebc1ff\
 a61cfd2eaa850080244cadf01b86ddf9"
 }
]
 }
 }
 }
 }
 <CODE ENDS>

A.2. Example IETF Basic Routing YANG package

 This section provides an instance data file example of a basic IETF
 Routing YANG package formatted in JSON.

 This example package is intended to represent the standard set of
 YANG modules, with import dependencies, that builds upon the example-
 ietf-network-device YANG package to add support for basic dynamic
 routing and ACLs.

 As for all YANG packages, all import dependencies are fully resolved.
 Because this example uses YANG modules that have been standardized
 before YANG semantic versioning, they modules are referenced by
 revision date rather than version number. Locations have been
 excluded where they are not currently known, e.g., for YANG modules
 defined in IETF drafts. In a normal YANG package, locations would be
 expected to be provided for all YANG modules.

Wilton, et al. Expires May 6, 2021 [Page 49]

Internet-Draft YANG Packages November 2020

 <CODE BEGINS> file "example-ietf-routing-pkg.json"
 ========== NOTE: ’\’ line wrapping per BCP XX (RFC XXXX) ===========

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-ietf-routing-pkg",
 "module": ["ietf-yang-package@2019-09-11.yang"],
 "description": "YANG package definition",
 "content-data": {
 "ietf-yang-package-instance:yang-package": {
 "name": "example-ietf-routing",
 "version": "1.3.1",
 "timestamp": "2018-12-13T17:00:00Z",
 "description": "This package defines a small sample set of \
 IETF routing YANG modules that could represent the set of \
 IETF routing functionality that a basic IP network device \
 might be expected to support.",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "imported-packages": [
 {
 "name": "ietf-network-device",
 "version": "1.1.2",
 "location": ["http://example.org/yang/packages/\
 ietf-network-device@v1.1.2.json"],
 "checksum": ""
 }
],
 "module": [
 {
 "name": "ietf-routing",
 "revision": "2018-03-13",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-routing@2018-03-13.yang"],
 "checksum": ""
 },
 {
 "name": "ietf-ipv4-unicast-routing",
 "revision": "2018-03-13",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-ipv4-unicast-routing@2018-03-13.yang"],
 "checksum": ""
 },
 {
 "name": "ietf-ipv6-unicast-routing",
 "revision": "2018-03-13",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-ipv6-unicast-routing@2018-03-13.yang"],
 "checksum": ""

Wilton, et al. Expires May 6, 2021 [Page 50]

Internet-Draft YANG Packages November 2020

 },
 {
 "name": "ietf-isis",
 "revision": "2018-12-11",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-interfaces-common",
 "revision": "2018-07-02",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-if-l3-vlan",
 "revision": "2017-10-30",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-routing-policy",
 "revision": "2018-10-19",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-bgp",
 "revision": "2018-05-09",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-access-control-list",
 "revision": "2018-11-06",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 }
],
 "import-only-module": [
 {
 "name": "ietf-routing-types",
 "revision": "2017-12-04",

Wilton, et al. Expires May 6, 2021 [Page 51]

Internet-Draft YANG Packages November 2020

 "location": ["https://tiny.cc/ietf-yang/\
 ietf-routing-types@2017-12-04.yang"],
 "checksum": ""
 },
 {
 "name": "iana-routing-types",
 "revision": "2017-12-04",
 "location": ["https://tiny.cc/ietf-yang/\
 iana-routing-types@2017-12-04.yang"],
 "checksum": ""
 },
 {
 "name": "ietf-bgp-types",
 "revision": "2018-05-09",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-packet-fields",
 "revision": "2018-11-06",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 },
 {
 "name": "ietf-ethertypes",
 "revision": "2018-11-06",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 "checksum": ""
 }
]
 }
 }
 }
 }
 <CODE ENDS>

A.3. Package import conflict resolution example

 This section provides an example of how a package can resolve
 conflicting module versions from imported packages.

 In this example, YANG package ’example-3-pkg’ imports both ’example-
 import-1’ and ’example-import-2’ packages. However, the two imported
 packages implement different versions of ’example-module-A’ so the

Wilton, et al. Expires May 6, 2021 [Page 52]

Internet-Draft YANG Packages November 2020

 ’example-3-pkg’ package selects version ’1.2.3’ to resolve the
 conflict. Similarly, for import-only modules, the ’example-3-pkg’
 package does not require both versions of example-types-module-C to
 be imported, so it indicates that it only imports revision
 ’2018-11-26’ and not ’2018-01-01’.

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-import-1-pkg",
 "description": "First imported example package",
 "content-data": {
 "ietf-yang-package-instance:yang-package": {
 "name": "example-import-1",
 "version": "1.0.0",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "revision-date": "2018-01-01",
 "module": [
 {
 "name": "example-module-A",
 "version": "1.0.0"
 },
 {
 "name": "example-module-B",
 "version": "1.0.0"
 }
],
 "import-only-module": [
 {
 "name": "example-types-module-C",
 "revision": "2018-01-01"
 },
 {
 "name": "example-types-module-D",
 "revision": "2018-01-01"
 }
]
 }
 }
 }
 }

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-import-2-pkg",
 "description": "Second imported example package",
 "content-data": {
 "ietf-yang-package:yang-package": {

Wilton, et al. Expires May 6, 2021 [Page 53]

Internet-Draft YANG Packages November 2020

 "name": "example-import-2",
 "version": "2.0.0",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "revision-date": "2018-11-26",
 "module": [
 {
 "name": "example-module-A",
 "version": "1.2.3"
 },
 {
 "name": "example-module-E",
 "version": "1.1.0"
 }
],
 "import-only-module": [
 {
 "name": "example-types-module-C",
 "revision": "2018-11-26"
 },
 {
 "name": "example-types-module-D",
 "revision": "2018-11-26"
 }
]
 }
 }
 }
 }

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-3-pkg",
 "description": "Importing example package",
 "content-data": {
 "ietf-yang-package:yang-package": {
 "name": "example-3",
 "version": "1.0.0",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "revision-date": "2018-11-26",
 "included-package": [
 {
 "name": "example-import-1",
 "version": "1.0.0"
 },
 {
 "name": "example-import-2",
 "version": "2.0.0"
 }

Wilton, et al. Expires May 6, 2021 [Page 54]

Internet-Draft YANG Packages November 2020

],
 "module": [
 {
 "name": "example-module-A",
 "version": "1.2.3"
 }
],
 "import-only-module": [
 {
 "name": "example-types-module-C",
 "revision": "2018-11-26",
 "replaces-revision": ["2018-01-01 "]
 }
]
 }
 }
 }
 }

Appendix B. Possible alternative solutions

 This section briefly describes some alternative solutions. It can be
 removed if this document is adopted as a WG draft.

B.1. Using module tags

 Module tags have been suggested as an alternative solution, and
 indeed that can address some of the same requirements as YANG
 packages but not all of them.

 Module tags can be used to group or organize YANG modules. However,
 this raises the question of where this tag information is stored.
 Module tags either require that the YANG module files themselves are
 updated with the module tag information (creating another versioning
 problem), or for the module tag information to be hosted elsewhere,
 perhaps in a centralize YANG Catalog, or in instance data files
 similar to how YANG packages have been defined in this draft.

 One of the principle aims of YANG packages is to be a versioned
 object that defines a precise set of YANG modules versions that work
 together. Module tags cannot meet this aim without an explosion of
 module tags definitions (i.e. a separate module tag must be defined
 for each package version).

 Module tags cannot support the hierachical scheme to construct YANG
 schema that is proposed in this draft.

Wilton, et al. Expires May 6, 2021 [Page 55]

Internet-Draft YANG Packages November 2020

B.2. Using YANG library

 Another question is whether it is necessary to define new YANG
 modules to define YANG packages, and whether YANG library could just
 be reused in an instance data file. The use of YANG packages offers
 several benefits over just using YANG library:

 1. Packages allow schema to be built in a hierarchical fashion.
 [I-D.ietf-netconf-rfc7895bis] only allows one layer of hierarchy
 (using module sets), and there must be no conflicts between
 module revisions in different module-sets.

 2. Packages can be made available off the box, with a well defined
 unique name, avoiding the need for clients to download, and
 construct/check the entire YANG schema for each device. Instead
 they can rely on the named packages with secure checksums. YANG
 library’s use of a ’content-id’ is unique only to the device that
 generated them.

 3. Packages may be versioned using a semantic versioning scheme,
 YANG library does not provide a schema level semantic version
 number.

 4. For a YANG library instance data file to contain the necessary
 information, it probably needs both YANG library and various
 augmentations (e.g. to include each module’s semantic version
 number), unless a new version of YANG library is defined
 containing this information. The module definition for a YANG
 package is specified to contain all of the ncessary information
 to solve the problem without augmentations

 5. YANG library is designed to publish information about the
 modules, datastores, and datastore schema used by a server. The
 information required to construct an off box schema is not
 precisely the same, and hence the definitions might deviate from
 each other over time.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.

 Email: rwilton@cisco.com

Wilton, et al. Expires May 6, 2021 [Page 56]

Internet-Draft YANG Packages November 2020

 Reshad Rahman
 Cisco Systems, Inc.

 Email: rrahman@cisco.com

 Joe Clarke
 Cisco Systems, Inc.

 Email: jclarke@cisco.com

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

 Bo Wu (editor)
 Huawei

 Email: lana.wubo@huawei.com

Wilton, et al. Expires May 6, 2021 [Page 57]

Network Working Group B. Claise
Internet-Draft Huawei
Updates: 8407 (if approved) J. Clarke, Ed.
Intended status: Standards Track R. Rahman
Expires: 13 January 2022 R. Wilton, Ed.
 Cisco Systems, Inc.
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 K. D’Souza
 AT&T
 12 July 2021

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-03

Abstract

 This document specifies a scheme and guidelines for applying a
 modified set of semantic versioning rules to revisions of YANG
 modules. Additionally, this document defines a revision-label for
 this modified semver scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 January 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Claise, et al. Expires 13 January 2022 [Page 1]

Internet-Draft YANG Semver July 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology and Conventions 3
 3. YANG Semantic Versioning 3
 3.1. YANG Semantic Versioning Pattern 3
 3.2. Semantic Versioning Scheme for YANG Artifacts 4
 3.2.1. Examples for YANG semantic version numbers 6
 3.3. YANG Semantic Version Update Rules 8
 3.4. Examples of the YANG Semver Label 10
 3.4.1. Example Module Using YANG Semver 10
 3.4.2. Example of Package Using YANG Semver 12
 4. Import Module by Semantic Version 12
 5. Guidelines for Using Semver During Module Development 13
 5.1. Pre-release Version Precedence 14
 5.2. YANG Semver in IETF Modules 15
 6. YANG Module . 16
 7. Contributors . 17
 8. Security Considerations 18
 9. IANA Considerations . 18
 9.1. YANG Module Registrations 18
 9.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 19
 10. References . 19
 10.1. Normative References 19
 10.2. Informative References 20
 Appendix A. Example IETF Module Development 21
 Authors’ Addresses . 22

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a versioning scheme that uses the revision
 history as a lineage for determining from where a specific revision
 of a YANG module or submodule is derived. Additionally, section 3.3
 of [I-D.ietf-netmod-yang-module-versioning] defines a revision label

Claise, et al. Expires 13 January 2022 [Page 2]

Internet-Draft YANG Semver July 2021

 which can be used as an overlay or alias to provide additional
 context or an additional way to refer to a specific revision.

 This document defines a revision-label scheme that uses modified
 [semver] rules for YANG artifacts (i.e., YANG modules, YANG
 submodules, and YANG packages [I-D.ietf-netmod-yang-packages]) as
 well as the revision label definition for using this scheme. The
 goal of this is to add a human readable version label that provides
 compatibility information for the YANG artifact without one needing
 to compare or parse its body. The label and rules defined herein
 represent the RECOMMENDED revision label scheme for IETF YANG
 artifacts.

 Note that a specific revision of the Semver 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] , and YANG schema elements are
 examples of YANG artifacts for the purposes of this document.

3. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and the rules associated with changing an
 artifact’s semantic version number when its contents are updated.

3.1. YANG Semantic Versioning Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version string (e.g., in revision-label or as a
 package version) that corresponds to the following pattern:
 X.Y.Z_COMPAT. Where:

Claise, et al. Expires 13 January 2022 [Page 3]

Internet-Draft YANG Semver July 2021

 * X, Y and Z are mandatory non-negative integers that are each less
 than 2147483647 (i.e., the maximum signed 32-bit integer value)
 and MUST NOT contain leading zeroes

 * The ’.’ is a literal period (ASCII character 0x2e)

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only present if the following COMPAT element is
 included

 * COMPAT, if it is specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible"

 Additionally, [semver] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a semver string after a trailing ’-’ character.
 Build metadata MAY be appended after a trailing ’+’ character. If
 both pre-release and build metadata are present, then build metadata
 MUST follow pre-release metadata. While build metadata MUST be
 ignored by YANG semver parsers, pre-release metadata MUST be used
 during module and submodule development and MUST be considered base
 on Section 5 . Both pre-release and build metadata are allowed in
 order to support all of the [semver] rules. Thus, a version lineage
 that follows strict [semver] rules is allowed for a YANG artifact.

 To signal the use of this versioning scheme, modules and submodules
 MUST set the revision-label-scheme extension as defined in
 [I-D.ietf-netmod-yang-module-versioning] to the identity "yang-
 semver". That identity value is defined in the ietf-yang-semver
 module below.

 Additionally, this ietf-yang-semver module defines a typedef that
 formally specifies the syntax of the YANG semver version string.

3.2. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts that employ the YANG semver label. The
 versioning scheme has the following properties:

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [semver]
 to cover the additional requirements for the management of YANG
 artifact lifecyles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

Claise, et al. Expires 13 January 2022 [Page 4]

Internet-Draft YANG Semver July 2021

 * Unlike the [semver] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning] .

 * YANG artifacts that follow the [semver] versioning scheme are
 fully compatible with implementations that understand the YANG
 semantic versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version numbers used by the YANG semantic
 versioning scheme are exactly the same as those defined by the
 [semver] versioning scheme.

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version number as the argument to the ’rev:revision-label’ statement.

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version label. For example,
 the first revision of a module or submodule may have been produced
 before this scheme was available.

 YANG packages that make use of this semantic versioning scheme will
 have their semantic version as the value of the "revision_label"
 property.

 As stated above, the YANG semver version number is expressed as a
 string of the form: ’X.Y.Z_COMPAT’; where X, Y, and Z each represent
 non-negative integers smaller than 2147483647 without leading zeroes,
 and _COMPAT represents an optional suffix of either "_compatible" or
 "_non_compatible".

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no PATCH "_compatible" or "_non_compatible" modifier.

Claise, et al. Expires 13 January 2022 [Page 5]

Internet-Draft YANG Semver July 2021

 * ’Z_COMPAT’ is the PATCH version and modifier. Changes in the
 PATCH version number can indicate editorial, backwards-compatible,
 or non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier "_COMPAT" takes:

 - If the modifier string is absent, the change represents an
 editorial change. An editorial change is defined to be a
 change in the YANG artifact’s content that does not affect the
 semantic meaning or functionality provided by the artifact in
 any way. Some examples include correcting a spelling mistake
 in the description of a leaf within a YANG module or submodule,
 non-significant whitespace changes (e.g. realigning
 description statements, or changing indendation), or changes to
 YANG comments. Note: restructuring how a module uses, or does
 not use, submodules is treated as an editorial level change on
 the condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The YANG artifact name and YANG semantic version number uniquely
 identify a revision of said artifact. There MUST NOT be multiple
 instances of a YANG artifact definition with the same name and YANG
 semantic version number but different content (and in the case of
 modules and submodules, different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

3.2.1. Examples for YANG semantic version numbers

 The following diagram and explanation illustrates how YANG semantic
 version numbers work.

 Example YANG semantic version numbers for an example artifact:

Claise, et al. Expires 13 January 2022 [Page 6]

Internet-Draft YANG Semver July 2021

 0.1.0
 |
 0.2.0
 |
 1.0.0
 | \
 | 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 | |
 | 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | |
 | 1.3.0 -> 1.3.1
 |
 2.0.0
 |
 3.0.0
 \
 3.1.0

 Assume the tree diagram above illustrates how an example YANG
 module’s version history might evolve. For example, the tree might
 represent the following changes, listed in chronological order from
 oldest revision to newest:

 0.1.0 - first beta module version

 0.2.0 - second beta module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.3.1 - improve description wording for "foo-64" (Editorial)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0 (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

Claise, et al. Expires 13 January 2022 [Page 7]

Internet-Draft YANG Semver July 2021

 1.2.1_non_compatible - backport NBC fix, changing "baz" to "bar"

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky.

 3.1.0 - introduce new leaf "wobble" (BC)

 The partial ordering relationships based on the semantic versioning
 numbers can be defined as follows:

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 2.0.0 < 3.0.0 < 3.1.0

 1.0.0 < 1.1.0 < 1.1.1_compatible < 1.1.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.2.1_non_compatible <
 1.2.2_non_compatible

 There is no ordering relationship between 1.1.1_non_compatible and
 either 1.2.0 or 1.2.1_non_compatible, except that they share the
 common ancestor of 1.1.0.

 Looking at the version number alone, the module definition in 2.0.0
 does not necessarily contain the contents of 1.3.0. However, the
 module revision history in 2.0.0 may well indicate that it was edited
 from module version 1.3.0.

3.3. YANG Semantic Version Update Rules

 When a new revision of an artifact is produced, then the following
 rules define how the YANG semantic version number for the new
 artifact revision is calculated, based on the changes between the two
 artifact revisions, and the YANG semantic version number of the base
 artifact revision from which the changes are derived.

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version number:

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

Claise, et al. Expires 13 January 2022 [Page 8]

Internet-Draft YANG Semver July 2021

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible"" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 3. If an artifact is being updated in an editorial way, then the
 next version number depends on the format of the current version
 number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version numbers beginning with 0, i.e.,
 "0.X.Y", are regarded as beta definitions and need not follow the
 rules above. Either the MINOR or PATCH version numbers may be
 updated, regardless of whether the changes are non-backwards-
 compatible, backwards-compatible, or editorial. See Section 5
 for more details on using this notation during module and
 submodule development.

 5. XXX - Add some text about pre-release labels, or perhaps as a
 rule 5 above.

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version number, the following rules MAY be applied when choosing a
 new version number:

 1. An artifact author MAY update the version number with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

Claise, et al. Expires 13 January 2022 [Page 9]

Internet-Draft YANG Semver July 2021

 2. An artifact author MAY skip version numbers. That is, an
 artifact’s revision history could be 1.0.0, 1.1.0, and 1.3.0
 where 1.2.0 is skipped. Note that skipping versions has an
 impact when importing modules by revision-or-derived. See
 Section 4 for more details on importing modules with revision-
 label version gaps.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison] , also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:nbc-
 changes" extension statement to indicate where non-backwards-
 compatible changes have occurred in the module revision history. If
 a revision entry in a module’s revision history includes the
 "rev:nbc-changes" statement then that MUST be reflected in any YANG
 Semver version associated with that revision. However, the reverse
 does not necessarily hold, i.e., if the MAJOR version has been
 incremented it does not necessarily mean that a "rev:nbc-changes"
 statement would be present.

3.4. Examples of the YANG Semver Label

3.4.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses the YANG semver revision
 label based on the rules defined in this document.

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2018-02-28 {
 description "Added leaf ’wobble’";
 rev:revision-label "3.1.0";

Claise, et al. Expires 13 January 2022 [Page 10]

Internet-Draft YANG Semver July 2021

 }

 revision 2017-12-31 {
 description "Rename ’baz’ to ’bar’, added leaf ’wibble’";
 rev:revision-label "3.0.0";
 rev:nbc-changes;
 }

 revision 2017-10-30 {
 description "Change the module structure";
 rev:revision-label "2.0.0";
 rev:nbc-changes;
 }

 revision 2017-08-30 {
 description "Clarified description of ’foo-64’ leaf";
 rev:revision-label "1.3.1";
 }

 revision 2017-07-30 {
 description "Added leaf foo-64";
 rev:revision-label "1.3.0";
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 rev:revision-label "1.2.0";
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 rev:revision-label "1.1.0";
 }

 revision 2017-04-03 {
 description "First release version.";
 rev:revision-label "1.0.0";
 }

 // Note: semver rules do not apply to 0.X.Y labels.

 revision 2017-01-30 {
 description "NBC changes to initial revision";
 semver:module-version "0.2.0";
 }

 revision 2017-01-26 {
 description "Initial module version";

Claise, et al. Expires 13 January 2022 [Page 11]

Internet-Draft YANG Semver July 2021

 semver:module-version "0.1.0";
 }

 //YANG module definition starts here

3.4.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the semver revision label
 based on the rules defined in this document.

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "target-ptr": "TBD",
 "timestamp": "2018-09-06T17:00:00Z",
 "description": "Example IETF package definition",
 "content-data": {
 "ietf-yang-package:yang-package": {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }

4. Import Module by Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on a module or a derived revision of a module. The
 rev:revision-or-derived statement can specify either a revision date
 or a revision label. When importing by semver, the YANG semver
 revision label value MAY be used as an argument to rev:revision-or-
 derived. When used as such, any module which has that semver label
 as its latest revision label or has that label in its revision
 history can be used to satisfy the import requirement. For example:

 import example-module {
 rev:revision-or-derived "3.0.0";
 }

 Note: the import lookup does not stop when a non-backward-compatible
 change is encountered. That is, if module B imports a module A at or
 derived from version 2.0.0, resolving that import will pass through a
 revision of module A with version 2.1.0_non_compatible in order to
 determine if the present instance of module A derives from 2.0.0.

Claise, et al. Expires 13 January 2022 [Page 12]

Internet-Draft YANG Semver July 2021

 If an import by revision-or-derived cannot locate the specified
 revision-label in a given module’s revision history, that import will
 fail. This is noted in the case of version gaps. That is, if a
 module’s history includes 1.0.0, 1.1.0, and 1.3.0, an import from
 revision-or-derived at 1.2.0 will be unable to locate the specified
 revision entry and thus the import cannot be satisfied.

5. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407] .

 Development of a brand new YANG module or submodule outside of the
 IETF that uses YANG semver as its revision-label scheme SHOULD begin
 with a 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict semver rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the semver
 pre-release syntax instead with a 1 for the MAJOR version component.
 For example, an initial module or submodule revision-label might be
 either 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0
 MAJOR version component scheme, they MAY switch to the pre-release
 scheme with a MAJOR version component of 1 when the module or
 submodule is nearing initial release (e.g., a module’s or submodule’s
 revision label may transition from 0.3.0 to 1.0.0-beta.1 to indicate
 it is more mature and ready for testing).

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ and then one or more
 digits. These alphanumeric components will be used when deciding
 pre-release precedence. The following are examples of valid pre-
 release versions

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

 When developing a new revision of an existing module or submodule
 using the YANG semver revision-label scheme, the intended target
 semver version MUST be used along with pre-release notation. For
 example, if a released module or submodule which has a current
 revision-label of 1.0.0 is being modified with the intent to make
 non-backwards-compatible changes, the first development MAJOR version

Claise, et al. Expires 13 January 2022 [Page 13]

Internet-Draft YANG Semver July 2021

 component must be 2 with some pre-release notation such as -alpha.1,
 making the version 2.0.0-alpha.1. That said, every publicly
 available release of a module or submodule MUST have a unique YANG
 semver revision-label (where a publicly available release is one that
 could be implemented by a vendor or consumed by an end user).
 Therefore, it may be prudent to include the year or year and month
 development began (e.g., 2.0.0-201907-alpha.1). As a module or
 submodule undergoes development, it is possible that the original
 intent changes. For example, a 1.0.0 version of a module or
 submodule that was destined to become 2.0.0 after a development cycle
 may have had a scope change such that the final version has no non-
 backwards-compatible changes and becomes 1.1.0 instead. This change
 is acceptable to make during the development phase so long as pre-
 release notation is present in both versions (e.g., 2.0.0-alpha.3
 becomes 1.1.0-alpha.4). However, on the next development cycle
 (after 1.1.0 is released), if again the new target release is 2.0.0,
 new pre-release components must be used such that every revision-
 label for a given module or submodule MUST be unique throughout its
 entire lifecycle (e.g., the first pre-release version might be
 2.0.0-202005-alpha.1 if keeping the same year and month notation
 mentioned above).

5.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a ratified module or submodule with revision-
 label 1.0.0 is initially intended to become 2.0.0 in its next
 ratified version, the scope of work may change such that the final
 version is 1.1.0. During the development cycle, the pre-release
 versions could move from 2.0.0-some-pre-release-tag to 1.1.0-some-
 pre-release-tag. This downwards changing of version numbers makes it
 difficult to evaluate semver rules between pre-release versions.
 However, taken independently, each pre-release version can be
 compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

Claise, et al. Expires 13 January 2022 [Page 14]

Internet-Draft YANG Semver July 2021

5.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions for their revision-labels. For IETF YANG modules and
 submodules that have already been published, revision labels MUST be
 retrospectively applied to all existing revisions when the next new
 revision is created, starting at version "1.0.0" for the initial
 published revision, and then incrementing according to the YANG
 Semver version rules specified in Section 3.3 .

 Net new module or submodule development within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the revision-label MUST use the
 target (i.e., intended) MAJOR and MINOR version components with a 0
 PATCH version component. If the intended ratified release will be
 non-backward-compatible with the current ratified release, the MINOR
 version component MUST be 0.

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version string, including the current
 document revision. For example, if a module or submodule which is
 currently released at version 1.0.0 is being revised to include non-
 backwards-compatible changes in draft-user-netmod-foo, its
 development revision-labels MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

 If a module or submodule is being revised and the original module or
 submodule never had a revision-label (i.e., you wish to start using
 YANG semver in future module or submodule revisions), choose a semver
 value that makes the most sense based on the module’s or submodule’s
 history. For example, if a module or submodule started out in the
 pre-NMDA ([RFC8342]) world, and then had NMDA support added without
 removing any legacy "state" branches -- and you are looking to add
 additional new features -- a sensible choice for the target YANG
 semver would be 1.2.0 (since 1.0.0 would have been the initial, pre-
 NMDA release, and 1.1.0 would have been the NMDA revision).

 See Appendix A for a detailed example of IETF pre-release versions.

Claise, et al. Expires 13 January 2022 [Page 15]

Internet-Draft YANG Semver July 2021

6. YANG Module

 This YANG module contains the typedef for the YANG semantic version.

 <CODE BEGINS> file "ietf-yang-semver@2020-06-30.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix yangver;
 rev:revision-label-scheme "yang-semver";

 import ietf-yang-revisions {
 prefix rev;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2020 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 revision 2020-06-30 {
 rev:revision-label "1.0.0-draft-ietf-netmod-yang-semver-01";
 description

Claise, et al. Expires 13 January 2022 [Page 16]

Internet-Draft YANG Semver July 2021

 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Identities
 */

 identity yang-semver {
 base rev:revision-label-scheme-base-identity;
 description
 "The revision-label scheme corresponds to the YANG semver scheme
 which is defined by the pattern in the ’version’ typedef below.
 The rules governing this revision-label scheme are defined in the
 reference for this identity.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Typedefs
 */

 typedef version {
 type string {
 pattern ’\d+[.]\d+[.]\d+(_(non_)?compatible)?(-[\w\d.]+)?([+][\w\d\.]+
)?’;
 }
 description
 "Represents a YANG semantic version number. The rules governing the
 use of this revision label scheme are defined in the reference for
 this typedef.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

7. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The design team consists of the following
 members whom have worked on the YANG versioning project:

 * Balazs Lengyel

 * Benoit Claise

Claise, et al. Expires 13 January 2022 [Page 17]

Internet-Draft YANG Semver July 2021

 * Ebben Aries

 * Jason Sterne

 * Joe Clarke

 * Juergen Schoenwaelder

 * Mahesh Jethanandani

 * Michael (Wangzitao)

 * Qin Wu

 * Reshad Rahman

 * Rob Wilton

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update] .

 Discussons on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver] . We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

8. Security Considerations

 The document does not define any new protocol or data model. There
 are no security impacts.

9. IANA Considerations

9.1. YANG Module Registrations

 The following YANG module is requested to be registred in the "IANA
 Module Names" registry:

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: yangver

 Reference: [RFCXXXX]

Claise, et al. Expires 13 January 2022 [Page 18]

Internet-Draft YANG Semver July 2021

9.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang] .

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning] ,
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver revision label for all new revisions, as defined in Section 3
 .

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 3.3 .

 Note: For IANA maintained YANG modules and submodules that have
 already been published, revision labels MUST be retrospectively
 applied to all existing revisions when the next new revision is
 created, starting at version "1.0.0" for the initial published
 revision, and then incrementing according to the YANG Semver version
 rules specified in Section 3.3 .

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible major changes are made.

 Given that IANA maintained YANG modules and submodules are versioned
 with a linear history, it is anticipated that it should not be
 necessary to use the "_compatible" or "_non_compatible" modifiers to
 the "Z_COMPAT" version element.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Claise, et al. Expires 13 January 2022 [Page 19]

Internet-Draft YANG Semver July 2021

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., Sterne,
 J., Claise, B., and K. D’Souza, "Updated YANG Module
 Revision Handling", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-module-versioning-02, 22 February
 2021, <https://tools.ietf.org/html/draft-ietf-netmod-yang-
 module-versioning-02>.

10.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://tools.ietf.org/html/draft-clacla-netmod-
 yang-model-update-06>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-01, 2 November 2020,
 <https://tools.ietf.org/html/draft-ietf-netmod-yang-
 packages-01>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Wilton, R., "YANG Schema Comparison", Work in Progress,
 Internet-Draft, draft-ietf-netmod-yang-schema-comparison-
 01, 2 November 2020, <https://tools.ietf.org/html/draft-
 ietf-netmod-yang-schema-comparison-01>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

Claise, et al. Expires 13 January 2022 [Page 20]

Internet-Draft YANG Semver July 2021

 [semver] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 revision-label) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version lineage after adoption:

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

 At this point, the draft is ratified and becomes RFC12345 and the
 YANG module version number becomes 1.0.0.

Claise, et al. Expires 13 January 2022 [Page 21]

Internet-Draft YANG Semver July 2021

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-jadoe-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision:

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00 || 1.1.0-draft-jadoe-netmod-e
xmod-changes-00
 | |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01 || 1.1.0-draft-jadoe-netmod-e
xmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in jadoe’s draft as draft-ietf-netmod-exmod-changes. A
 single version lineage continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is ratified, and the new module version becomes 1.1.0.

Authors’ Addresses

 Benoit Claise
 Huawei

 Email: benoit.claise@huawei.com

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America

 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Reshad Rahman
 Cisco Systems, Inc.

Claise, et al. Expires 13 January 2022 [Page 22]

Internet-Draft YANG Semver July 2021

 Email: rrahman@cisco.com

 Robert Wilton (editor)
 Cisco Systems, Inc.

 Email: rwilton@cisco.com

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary

 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

 Kevin D’Souza
 AT&T
 200 S. Laurel Ave
 Middletown, NJ
 United States of America

 Email: kd6913@att.com

Claise, et al. Expires 13 January 2022 [Page 23]

NETMOD Q. Ma, Ed.
Internet-Draft C. Feng
Updates: RFC6241, RFC8040, RFC8342 (if approved) Q. Wu
Intended status: Standards Track Huawei
Expires: 28 April 2022 25 October 2021

 System-defined Configuration
 draft-ma-netmod-with-system-00

Abstract

 This document updates NMDA [RFC 8342] to define a read-only
 conventional configuration datastore called "system" to hold system-
 defined configurations. To support non-NMDA servers, a "with-system"
 parameter has been defined to return <running> and system-defined
 configuration combined. The solution enables clients to reference
 nodes defined in <system>, overwrite values of configurations defined
 in <system>, and configure descendant nodes of system-defined nodes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ma, et al. Expires 28 April 2022 [Page 1]

Internet-Draft System-defined Configuration October 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Requirements Language 4
 1.3. Updates to RFC 6241 4
 1.4. Updates to RFC 8040 5
 2. Kinds of System Configuration 5
 2.1. Immediately-Active 5
 2.2. Conditionally-Active 6
 2.3. Inactive-Until-Referenced 6
 3. Static Characteristics 6
 3.1. Read-only to Clients 6
 3.2. May Change via Software Upgrades 6
 3.3. No Impact to <operational> 7
 4. Dynamic Behavior . 7
 4.1. Conceptual Model . 7
 4.2. Modifying (overriding) system configuration 8
 4.3. Explicit declaration of system configuration 8
 4.4. Examples . 9
 4.4.1. Modifying A System-instantiated Leaf’s Value 9
 4.4.2. Configuring Descendant Nodes of A System-defined
 Node . 11
 4.4.3. Declaring A System-defined Node in <running>
 Explicitly . 13
 5. Discovering System Configuration 13
 5.1. The "with-system" Query Parameter 14
 5.2. The <system> Configuration Datastore 14
 6. The "ietf-netconf-with-system" Module 15
 6.1. Data Model Overview 15
 6.2. Example Usage . 16
 6.3. YANG Module . 17
 7. The "ietf-system-datastore" Module 19
 7.1. Data Model Overview 19
 7.2. Example Usage . 20
 7.3. YANG Module . 20
 8. IANA Considerations . 21
 8.1. The "IETF XML" Registry 21
 8.2. The "YANG Module Names" Registry 22

Ma, et al. Expires 28 April 2022 [Page 2]

Internet-Draft System-defined Configuration October 2021

 9. Security Considerations 22
 9.1. Regarding the "ietf-netconf-with-system" YANG Module . . 22
 9.2. Regarding the "ietf-system-datastore" YANG Module 23
 10. Contributors . 23
 Acknowledgements . 23
 References . 23
 Normative References . 23
 Informative References . 24
 Appendix A. Key Use Cases 24
 A.1. Device Powers On . 24
 A.2. Client Commits Configuration 25
 A.3. Operator Installs Card into a Chassis 26
 Appendix B. Changes between Revisions 27
 Appendix C. Open Issues tracking 28
 Authors’ Addresses . 28

1. Introduction

 NMDA Architecture [RFC8342] defines system configuration as the
 configuration that is supplied by the device itself and should be
 present in <operational> when it is in use.

 However, there is a desire to enable a server to better document the
 system configuration. Clients can benefit from a standard mechanism
 to see what system configuration is available in a server.

 In some cases, a client or offline tool may consider the
 configuration in <running> or <intended> invalid due to references
 (e.g. leafref) to system configuration data that isn’t returned when
 the datastore is read. The server may accept a configuration (i.e.
 by internally merging the client specified contents of <running> with
 the server-provided system configuration and validating the result),
 but the client or offline tool would consider the datastore contents
 as invalid.

 Having to copy the entire contents of the system configuration into
 <running> should be avoided or reduced when possible.

 In some other cases, configuration of descendant nodes of system
 defined configuration needs to be supported. For example, the system
 configuration may contain an almost empty physical interface, while
 the client needs to be able to add, modify, remove a number of
 descendant nodes. Some descendant nodes may not be modifiable (e.g.
 "name" and "type" set by the system).

 In all cases, the clients should have control over the configurations
 ,i.e., read-back of <running> should contain only what was explicitly
 set by clients.

Ma, et al. Expires 28 April 2022 [Page 3]

Internet-Draft System-defined Configuration October 2021

 This document updates NMDA [RFC 8342] to define a read-only
 conventional configuration datastore called "system" to hold system-
 defined configurations. To support non-NMDA servers, a "with-system"
 parameter has been defined to return <running> and system-defined
 configuration combined. The solution enables clients to reference
 nodes defined in <system>, overwrite values of configurations defined
 in <system>, and configure descendant nodes of system-defined nodes.

1.1. Terminology

 This document assumes that the reader is familiar with the contents
 of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and uses
 terminologies from those documents.

 The following terms are defined in this document as follows:

 System configuration: Configuration that is provided by the system
 itself [RFC8342].

 Conventional configuration datastore: One of the following set of
 configuration datastores: <running>, <startup>, <candidate>,
 <system>, and <intended>. These datastores share a common
 datastore schema, and protocol operations allow copying data
 between these datastores. The term "conventional" is chosen as a
 generic umbrella term for these datastores.

 System configuration datastore: A configuration datastore holding
 the complete configuration provided by the system itself. This
 datastore is referred to as "<system>".

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Updates to RFC 6241

 The <get> and <get-config> RPC operations defined in [RFC6241] are
 augmented to accept additional new input parameter "with-system"
 which carries no value. The retrieval of implicit hidden system
 configuration in <running> can be used through <get> or <get-config>
 operation with the presence of "with-system" parameter.

Ma, et al. Expires 28 April 2022 [Page 4]

Internet-Draft System-defined Configuration October 2021

 The implicit hidden system configuration will contain all three types
 of system configurations defined in Section 2.

 Note that the <get-data> RPC operation defined in [RFC8526] can also
 be augmented to retrieve the system configuration from <running>.
 But not sure whether the new client only supports <get-data>
 operation or supports both <get-config> operation and <get-data>
 operation.

1.4. Updates to RFC 8040

 This document extends Section 4.8 of [RFC8040] to add a new query
 parameter "with-system".

 The "with-system" parameter controls whether implicitly hidden system
 configuration will be returned in the reply. This parameter is only
 allowed with no values carried. If this parameter has any unexpected
 value, then a "400 Bad Request" status-line is returned.

 +------------+---------+---+
 | Name | Methods | Description |
 +-------------+---------+---+
with-system	GET,	indicates that the implicitly hidden
	HEAD	system configuration should be returned.
		If not specified, then no implicitly
		hidden system configuration should be
		returned. This parameter can be given
		in any order.
 +-------------+---------+---+

2. Kinds of System Configuration

 There are three types of system configurations: immediately-activated
 system configuration, conditionally-activated system configuration
 and inactivated-until-referenced system configuration.

2.1. Immediately-Active

 Immediately-active system configurations are those applied and active
 immediately (e.g., a loop-back interface) , irrespective of physical
 resource present or not, a special functionality enabled or not.

Ma, et al. Expires 28 April 2022 [Page 5]

Internet-Draft System-defined Configuration October 2021

2.2. Conditionally-Active

 System configurations which are provided and activated based on
 specific conditions being met in a system, e.g.,if a physical
 resource is present (e.g., insert interface card), the system will
 automatically detect it and load pre-provisioned configuration; when
 the physical resource is not present(remove interface card), the
 system configuration will be automatically cleared. Another example
 is when a special functionality is enabled, e.g., when QoS function
 is enabled, QoS policies are automatically created by the system.

2.3. Inactive-Until-Referenced

 There are some predefined objects(e.g., application ids, anti-x
 signatures, trust anchor certs, etc) as a convenience for the
 clients. The clients can also define their own data objects for
 their unique requirements. Inactive-until-referenced system
 configurations are not applied and active immediately but only after
 they are referenced by client defined configuration.

3. Static Characteristics

3.1. Read-only to Clients

 From the clients’ perspective, the contents of the <system> datastore
 are read-only. There is no way to delete system configuration from a
 server. Any deletable system-provided configuration must be defined
 in <factory-default> [RFC 8808], which is used to initialize
 <running> when the device is first-time powered on or reset to its
 factory default condition.

3.2. May Change via Software Upgrades

 System configuration MAY change dynamically, e.g., depending on
 factors like during device upgrade or system-controlled
 resources(e.g., HW available) . In some implementations, when QoS
 function is enabled, QoS-related predefined policies are created by
 system. If the system configuration gets changed, YANG notification
 (e.g., "push-change-update" notification)[RFC8641][RFC8639][RFC6470]
 can be used to notify the client.

Ma, et al. Expires 28 April 2022 [Page 6]

Internet-Draft System-defined Configuration October 2021

3.3. No Impact to <operational>

 This work intends to have no impact to <operational>. As always,
 system configuration will appear in <operational> with
 "origin=system". This work enables a subset of those system
 generated nodes to be defined like configuration, i.e., made visible
 to clients in order for being referenced or configurable prior to
 present in <operational>. "Config false" nodes are completely out of
 scope, hence existing "config false" nodes are not impacted by this
 work.

4. Dynamic Behavior

4.1. Conceptual Model

 This document introduces an optional datastore named "system" which
 is used to hold all three types of system configurations defined in
 Section 2.

 When the device is powered on, immediately-activated system
 configuration will be provided and activated immediately but
 inactivated-until-referenced system configuration only becomes active
 if it is referenced by client defined configuration. While
 conditionally-activated system configuration will be created and
 immediately activated if the condition on system resources is met
 when the device is powered on or running.

 All these system configuration will be implicitly hidden in the
 <running>, hence the client can retrieve them through standard
 operations defined in YANG-driven management protocols such as
 NETCONF and RESTCONF with a "with-system" query parameter. So that
 the client can get a merged view from the server.

 If the <system> datastore exists, all above three types of system
 configurations will also go into <system>. Then the server will
 merge <running> and <system> to create <intended>, in which process,
 <running> MAY overwrite and/or extend <system>. If a server
 implements <intended>, <system> MUST be merged into <intended>.

 When the client needs to configure the descendant nodes of system
 configuration(e.g., a physical interfaces), the ancestor system
 configuration needs to be configured in <running> explicitly.

Ma, et al. Expires 28 April 2022 [Page 7]

Internet-Draft System-defined Configuration October 2021

4.2. Modifying (overriding) system configuration

 In some cases, a server may allow some parts of system configuration
 to be modified. List keys in system configuration can’t be changed
 by a client, but other descendant nodes in a list entry may be
 modifiable or non-modifiable. Leafs and leaf-lists outside of lists
 may also be modifiable or non-modifiable. Modification of system
 configuration is achieved by the client writing configuration to
 <running> that overrides the system configuration. Client
 configuration statements in <running> take precedence over system
 configuration nodes in <system> if the server allows the nodes to be
 modified. If a system configuration node is non-modifiable, then
 writing a value for that node in <running> returns an error.

 A server may also allow a client to add data nodes to a list entry in
 <system> by writing those additional nodes in <running>. Those
 additional data nodes may not exist in <system> (i.e. an *addition*
 rather than an override).

 While modifying (overriding) system configuration nodes may be
 supported by a server, there is no mechanism for deleting a system
 configuration node. A "mandatory true" leaf, for example, may have a
 value in <system> which can be modified (overridden) by a client
 setting that leaf to a value in <running>. But the leaf could not be
 deleted.

 Comment 1: What if <System> contains a set of values for a leaf-list,
 and a client configures another set of values for that leaf-list in
 <running>, will the set of values in <running> completely replace the
 set of values in <system>? Or the two sets of values are merged
 together?

 Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do
 the <running> values go before or after, or is this a case where a
 full-replace is needed.

4.3. Explicit declaration of system configuration

 In addition to modifying system configuration, and adding nodes to
 lists in system configuration as described above, a client can also
 explicitly declare system configuration nodes in <running> with the
 same values as in <system>. When a client configures a node (list
 entry, leaf, etc) in <running> that matches the same node & value in
 <system>, then that node becomes part of <running>. A read of
 <running> returns those explicitly configured nodes.

Ma, et al. Expires 28 April 2022 [Page 8]

Internet-Draft System-defined Configuration October 2021

 This explicit configuration of system configuration in <running> can
 be useful, for example, when an operator’s workflow requires a client
 or offline tool to see the <running> configuration as valid. The
 client can explicitly declare (i.e. configure in <running>) the list
 entries (with at least the keys) for any system configuration list
 entries that are referenced elsewhere in <running>. The client does
 not necessarily need to declare all the contents of the list entry
 (i.e. the descendant nodes) - only the parts that are required to
 make the <running> appear valid offline.

4.4. Examples

 The examples within this document use the fictional interface YANG
 module defined in Appendix C.3 of [RFC8342]. In addition, a
 fictional QoS data model example is provided.

4.4.1. Modifying A System-instantiated Leaf’s Value

 In this subsection, we will use this fictional QoS data model:

 container qos-policies {
 list policy {
 key "name";
 leaf name {
 type string;
 }
 list queue {
 key "queue-id";
 description "Enter the queue list instance";
 leaf queue-id {
 type int32 {
 range "1..32";
 }
 }
 leaf maximum-burst-size {
 type int32 {
 range "0..100";
 }
 }
 }
 }
 }

 Suppose a client creates a qos policy "my-policy" with 4 system
 instantiated queues(1˜4). The Configuration of qos-policies is
 present in <system> as follows:

Ma, et al. Expires 28 April 2022 [Page 9]

Internet-Draft System-defined Configuration October 2021

 <qos-policies>
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>50</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

 A client modifies the value of maximum-burst-size to 55 in queue-id
 1:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <qos-policies>
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 </qos-policies>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of qos-policies is present in <operational> as
 follows:

Ma, et al. Expires 28 April 2022 [Page 10]

Internet-Draft System-defined Configuration October 2021

 <qos-policies xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

4.4.2. Configuring Descendant Nodes of A System-defined Node

 Suppose the system provides a loopback interface (named "lo0") with a
 default IPv4 address of "127.0.0.1" and a default IPv6 address of
 "::1".

 The configuration of "lo0" interface is present in <system> as
 follows:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 The configuration of "lo0" interface is present in <operational> as
 follows:

Ma, et al. Expires 28 April 2022 [Page 11]

Internet-Draft System-defined Configuration October 2021

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 Later on, the client further configures the description node of a
 "lo0" interface as follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of interface "lo0" is present in <operational>
 as follows:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 <ip-address or:origin="or:system">127.0.0.1</ip-address>
 <ip-address or:origin="or:system">::1</ip-address>
 </interface>
 </interfaces>

Ma, et al. Expires 28 April 2022 [Page 12]

Internet-Draft System-defined Configuration October 2021

4.4.3. Declaring A System-defined Node in <running> Explicitly

 In the environment which offline validation of <running> is required,
 a client need to declare the system-defined configurations that are
 actually referenced. Here is an example of a client explicitly
 declaring "lo0" in <running>. The client configures a "lo0"
 interface only with the list key "name" as follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

 A read-back of <running> should looks like:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

5. Discovering System Configuration

 There are two ways to discover system configuration: a "with-system"
 query parameter and a <system> configuration datastore.

Ma, et al. Expires 28 April 2022 [Page 13]

Internet-Draft System-defined Configuration October 2021

5.1. The "with-system" Query Parameter

 As defined in Section 1.3 and Section 1.4, All the system
 configuration will be implicitly hidden in <running>, hence the
 client can retrieve them through standard operations defined in YANG-
 driven management protocols such as NETCONF and RESTCONF with a
 "with-system" parameter to get a merged view.

 All servers MUST implement a "with-system" parameter.

5.2. The <system> Configuration Datastore

 This section is not applicable to non-NMDA servers. NMDA servers
 SHOULD implement a <system> configuration datastore, and they SHOULD
 also implement the <intended> datastore, which can be used as an
 alternative to "with-system" parameter.

 Following guidelines for defining datastores in the appendix A of
 [RFC8342], this document introduces a new optional datastore resource
 named ’system’ that represents the system configuration. A device
 MAY implement the mechanism defined in this document without
 implementing the "system" datastore, which would only eliminate the
 ability to programmatically determine the system configuration.

 * Name: "system"

 * YANG modules: all

 * YANG nodes: all "config true" data nodes

 * Management operations: The content of the datastore is set by the
 server in an implementation dependent manner. The content can not
 be changed by management operations via NETCONF, RESTCONF,the CLI,
 etc, but may change itself by upgrades and/or when resource-
 conditions are met. The datastore can be read using the standard
 NETCONF/RESTCONF protocol operations.

 * Origin: This document does not define any new origin identity when
 it interacts with <intended> datastore and finally flows into
 <operational>. The "system" origin Metadata Annotation [RFC7952]
 is used to indicate the origin of a data item.

 Comment: Should we define any new origin identity to indicate new
 source of system configuration datastore?

 * Protocols: YANG-driven management protocols, such as NETCONF and
 RESTCONF.

Ma, et al. Expires 28 April 2022 [Page 14]

Internet-Draft System-defined Configuration October 2021

 * Defining YANG module: "ietf-system".

 The datastore’s content is populated by the server and read-only to
 clients. Upon the content is created or changed, it will be merged
 into <intended> datastore. Unlike <factory-default>[RFC8808], it MAY
 change dynamically, e.g., depending on factors like during device
 upgrade or system-controlled resources(e.g., HW available) and the
 <system> datastore does not have to persist across reboots. <factory-
 reset> RPC operation defined in [RFC8088] can reset it to its factory
 default configuration without including configuration generated due
 to the system update or client-enabled functionality.

6. The "ietf-netconf-with-system" Module

6.1. Data Model Overview

 This YANG module augments NETCONF <get> and <get-config> operation,
 which is designed to make implicitly hidden system configuration
 visible via a "with-system" parameter.

 The following tree diagram [RFC8340] illustrates the "ietf-netconf-
 with-system" module:

 module: ietf-netconf-with-system
 augment /nc:get-config/nc:input:
 +---w with-system? empty
 augment /nc:get/nc:input:
 +---w with-system? empty

 The following tree diagram [RFC8340] illustrates "get" and "get-
 config" rpcs defined in "ietf-netconf" augmented by "ietf-netconf-
 with-system" module :

Ma, et al. Expires 28 April 2022 [Page 15]

Internet-Draft System-defined Configuration October 2021

 rpcs:
 +---x get-config
 | +---w input
 | | +---w source
 | | | +---w (config-source)
 | | | +--:(candidate)
 | | | | +---w candidate? empty {candidate}?
 | | | +--:(running)
 | | | | +---w running? empty
 | | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +---w filter? <anyxml>
 | | +---w with-system? empty
 | +--ro output
 | +--ro data? <anyxml>
 +---x get
 | +---w input
 | | +---w filter? <anyxml>
 | | +---w with-system? empty
 | +--ro output
 | +--ro data? <anyxml>

6.2. Example Usage

 This section gives an example of request/response pairs with and
 without the "with-system" query parameter. The YANG module used are
 shown in Appendix C.2 of [RFC8342].

 Suppose the following data is added to <running>:

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3"
 }
 }
 }

 All the messages are presented in a protocol-independent manner.
 JSON is used only for its conciseness.

 REQUEST(without a "with-system" query parameter):

 Target:/bgp
 Query Parameter:
 with-defaults: report-all

Ma, et al. Expires 28 April 2022 [Page 16]

Internet-Draft System-defined Configuration October 2021

 RESPONSE(both bgp/peer/local-as and bgp/peer/peer-as have default
 values for a peer. "local-port" leaf is not present in <running>):

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3",
 "local-as": "64501",
 "peer-as": "64502",
 "remote-port": "179",
 "state": "established"
 }
 }
 }

 REQUEST(with a "with-system" query parameter):

 Target:/bgp
 Query Parameter:
 with-system
 with-defaults: report-all

 RESPONSE(local-port leaf value is supplied by the system):

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3",
 "local-as": "64501",
 "peer-as": "64502",
 "local-port": "60794",
 "remote-port": "179",
 "state": "established"
 }
 }
 }

6.3. YANG Module

Ma, et al. Expires 28 April 2022 [Page 17]

Internet-Draft System-defined Configuration October 2021

 <CODE BEGINS>
 file="ietf-netconf-with-system@2021-05-14.yang"
 module ietf-netconf-with-system {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-with-system";
 prefix ncws;

 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>";
 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control how system configuration
 data are handled by the server in particular NETCONF operations.

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 revision 2021-05-14 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System configuration Data handling Behavior";
 }

 augment /nc:get-config/nc:input {
 description " Allows the get-config operation to use
 with-system to retrieve the complete system configuration.";

Ma, et al. Expires 28 April 2022 [Page 18]

Internet-Draft System-defined Configuration October 2021

 leaf with-system {
 type empty ;
 description
 "Support system configuration retrieval on
 conventional configuration datastore. ";
 }
 }

 augment /nc:get/nc:input {
 description " Allows the get operation to use
 with-system to retrieve the complete system configuration.";
 leaf with-system {
 type empty ;
 description
 "Support system configuration retrieval on
 running datastore.";
 }
 }
 }
 <CODE ENDS>

7. The "ietf-system-datastore" Module

7.1. Data Model Overview

 This YANG module defines a new YANG identity named "system" that uses
 the "ds:datastore" identity defined in [RFC8342]. Note that no new
 origin identity is defined in this document, the "or:system" origin
 Metadata Annotation [RFC7952] is used to indicate the origin of a
 data item.

 The following diagram illustrates the relationship amongst the
 "identity" statements defined in the "ietf-system-datastore" and
 "ietf-datastores" YANG modules

Identities:
 +--- datastore
 | +--- conventional
 | | +--- running
 | | +--- candidate
 | | +--- startup
 | | +--- system
 | | +--- intended
 | +--- dynamic
 | +--- operational
 The diagram above uses syntax that is similar to but not defined in [RFC8340].

Ma, et al. Expires 28 April 2022 [Page 19]

Internet-Draft System-defined Configuration October 2021

7.2. Example Usage

 This section gives an example of data retrieval from <system>.

 Suppose the following data is added to <running>:

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3"
 }
 }
 }

 All the messages are presented in a protocol-independent manner.
 JSON is used only for its conciseness.

 REQUEST:

 Datastore: <system>
 Target:/bgp

 RESPONSE("local-port" leaf value is supplied by the system):

 {
 "bgp": {
 "peer": {
 "local-port": "60794"
 }
 }
 }

7.3. YANG Module

 <CODE BEGINS>
 file="ietf-system-datastore@2021-05-14.yang"
 module ietf-system-datastore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";
 prefix sysds;

 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture(NMDA)";
 }

Ma, et al. Expires 28 April 2022 [Page 20]

Internet-Draft System-defined Configuration October 2021

 organization
 "IETF NETMDOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>";
 description
 "This module defines a new YANG identity that uses the
 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 revision 2021-05-14 {
 description

 "Initial version.";
 reference
 "RFC XXXX: System configuration Data handling Behavior";
 }

 identity system {
 base ds:conventional;
 description
 "This read-only datastore contains the complete configuration
 provided by the system itself.";
 }
 }
 <CODE ENDS>

8. IANA Considerations

8.1. The "IETF XML" Registry

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

Ma, et al. Expires 28 April 2022 [Page 21]

Internet-Draft System-defined Configuration October 2021

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-with-system
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

8.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-netconf-with-system
 prefix: ncws
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-with-system
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-system-datastore
 prefix: sys
 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

9. Security Considerations

9.1. Regarding the "ietf-netconf-with-system" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241] apply to the new extended RPC operations
 defined in this document.

Ma, et al. Expires 28 April 2022 [Page 22]

Internet-Draft System-defined Configuration October 2021

9.2. Regarding the "ietf-system-datastore" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

10. Contributors

 Chongfeng Xie
 China Telecom
 Beijing
 China

 Email: xiechf@chinatelecom.cn

 Kent Watsen
 Watsen Networks

 Email: kent+ietf@watsen.net

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Acknowledgements

 Thanks to Robert Wilton, Balazs Lengyel, Andy Bierman, Jan Lindbland,
 Juergen Schoenwaelder, Alex Clemm, Timothy Carey for reviewing, and
 providing important input to, this document.

References

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Ma, et al. Expires 28 April 2022 [Page 23]

Internet-Draft System-defined Configuration October 2021

Informative References

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8808] Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for
 Factory Default Settings", RFC 8808, DOI 10.17487/RFC8808,
 August 2020, <https://www.rfc-editor.org/info/rfc8808>.

Appendix A. Key Use Cases

 Following provides three use cases related to system-defined
 configuration lifecycle management. The simple interface data model
 defined in Appendix C.3 of [RFC8342] is used. For each use case,
 snippets of <running>, <system>, <intended> and <operational> are
 shown.

A.1. Device Powers On

 <running>:

 No configuration for lo0 appears in <running>;

Ma, et al. Expires 28 April 2022 [Page 24]

Internet-Draft System-defined Configuration October 2021

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

A.2. Client Commits Configuration

 If a client creates an interface "et-0/0/0" but the interface does
 not physically exist at this point:

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

Ma, et al. Expires 28 April 2022 [Page 25]

Internet-Draft System-defined Configuration October 2021

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

A.3. Operator Installs Card into a Chassis

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

Ma, et al. Expires 28 April 2022 [Page 26]

Internet-Draft System-defined Configuration October 2021

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <mtu>1500</mtu>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu>1500</mtu>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name or:origin>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu or:origin="or:system">1500</mtu>
 </interface>
 <interface>
 </interfaces>

Appendix B. Changes between Revisions

 v02 - v00

Ma, et al. Expires 28 April 2022 [Page 27]

Internet-Draft System-defined Configuration October 2021

 * Restructure the document content based on input in the system
 defined configuration interim meeting.

 * Updates NMDA to define a read-only conventional configuration
 datastore called "system".

 * Retrieval of implicit hidden system configuration via <get><get-
 config> with "with-system" parameter to support non-NMDA servers.

 * Provide system defined configuration classification.

 * Define Static Characteristics and dynamic behavior for system
 defined configuration.

 * Separate "ietf-system-datastore" Module from "ietf-netconf-with-
 system" Module.

 * Provide usage examples for dynamic behaviors.

 * Provide usage examples for two YANG modules.

 * Provide three use cases related to system-defined configuration
 lifecycle management.

 * Classify the relation with <factory-default>.

Appendix C. Open Issues tracking

 * Backward compatibility:consider the communication between the
 server and the new client or the old client simultaneously.

 * Running always be valid? The client might need to understand how
 to merge if offline validation on running is used.

 * Immutable flag

Authors’ Addresses

 Qiufang Ma (editor)
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China

 Email: maqiufang1@huawei.com

Ma, et al. Expires 28 April 2022 [Page 28]

Internet-Draft System-defined Configuration October 2021

 Feng Chong
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China

 Email: frank.fengchong@huawei.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China

 Email: bill.wu@huawei.com

Ma, et al. Expires 28 April 2022 [Page 29]

CCAMP Working Group C. Yu
Internet-Draft I. Busi
Intended status: Standards Track Huawei Technologies
Expires: 28 April 2022 A. Guo
 Futurewei Technologies
 S. Belotti
 Nokia
 J-F. Bouquier
 Vodafone
 F. Peruzzini
 TIM
 O.G.d. Dios
 Telefonica
 V. Lopez
 Nokia
 25 October 2021

 A YANG Data Model for Optical Network Inventory
 draft-yg3bp-ccamp-optical-inventory-yang-00

Abstract

 This document defines a YANG data model for optical network inventory
 data information.

 The YANG data model presented in this document is intended to be used
 as the basis toward a generic YANG data model for network inventory
 data information which can be augmented, when required, with
 technology-specific (e.g., optical) inventory data, to be defined
 either in a future version of this document or in another document.

 The YANG data model defined in this document conforms to the Network
 Management Datastore Architecture (NMDA).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Yu, et al. Expires 28 April 2022 [Page 1]

Internet-Draft Optical Inventory YANG October 2021

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology and Notations 4
 1.2. Tree Diagram . 5
 1.3. Prefix in Data Node Names 5
 2. YANG Data Model for Optical Network Inventory 6
 2.1. YANG Model Overview 6
 3. Optical Network Inventory Tree Diagram 9
 4. YANG Model for Optical Network Inventory 10
 5. Manageability Considerations 16
 6. Security Considerations 17
 7. IANA Considerations . 17
 8. References . 17
 8.1. Normative References 17
 8.2. Informative References 18
 Acknowledgments . 18
 Authors’ Addresses . 18

1. Introduction

 Network inventory management is a key component in operators’ OSS
 architectures.

Yu, et al. Expires 28 April 2022 [Page 2]

Internet-Draft Optical Inventory YANG October 2021

 Network inventory is a fundamental functionality in network
 management and was specified many years ago. Given the emerging of
 data models and their deployment in operator’s management and control
 systems, the traditional function of inventory management is also
 requested to be defined as a data model.

 Network inventory management and monitoring is a critical part of
 ensuring the network stays healthy, well-planned, and functioning in
 the operator’s network. Network inventory management allows the
 operator to keep track of what physical network devices are staying
 in the network including relevant software and hardware.

 The network inventory management also helps the operator to know when
 to acquire new assets and what is needed, or to decommission old or
 faulty ones, which can help to improve network performance and
 capacity planning.

 In [I-D.ietf-teas-actn-poi-applicability] a gap was identified
 regarding the lack of a YANG data model that could be used at ACTN
 MPI interface level to report whole/partial hardware inventory
 information available at PNC level towards north-bound systems (e.g.,
 MDSC or OSS layer).

 [RFC8345] initial goal was to make possible the augmentation of the
 YANG data model with network inventory data model but this was never
 developed and the scope was kept limited to network topology data
 only.

 It is key for operators to drive the industry towards the use of a
 standard YANG data model for network inventory data instead of using
 vendors proprietary APIs (e.g., REST API).

 In the ACTN architecture, this would bring also clear benefits at
 MDSC level for packet over optical integration scenarios since this
 would enable the correlation of the inventory information with the
 links information reported in the network topology model.

 The intention is to define a generic YANG data model that would be as
 much as possible technology agnostic (valid for IP, optical and
 microwave networks) and that could be augmented, when required, to
 include some technology-specific inventory details.

 [RFC8348] defines a YANG data model for the management of the
 hardware on a single server and therefore it is more applicable to
 the PNC South Bound Interface (SBI) towards the network elements
 rather than at the PNC MPI. However, the YANG data model defined in
 [RFC8348] has been used as a reference for defining the YANG network
 inventory data model.

Yu, et al. Expires 28 April 2022 [Page 3]

Internet-Draft Optical Inventory YANG October 2021

 For optical network inventory, the network inventory YANG data model
 should support the use cases (4a and 4b) and requirements defined in
 [ONF_TR-547], in order to guarantee a seamless integration at
 MDSC/OSS/orchestration layers.

 The proposed YANG data model has been analysed to cover the
 requirements and use cases for Optical Network Inventory.

 Being based on [RFC8348], this data model should be a good starting
 point toward a generic data model and applicable to any technology.
 However, further analysis of requirements and use cases is needed to
 extend the applicability of this YANG data model to other types of
 networks (IP and microwave) and to identify which aspects are generic
 and which aspects are technology-specific for optical networks.

 This document defines one YANG module: ietf-network-inventory.yang
 (Section 4).

 Note: review in future versions of this document the related modules,
 depending on the augmentation relationship.

 The YANG data model defined in this document conforms to the Network
 Management Datastore Architecture [RFC8342].

1.1. Terminology and Notations

 Refer to [RFC7446] and [RFC7581] for the key terms used in this
 document. The following terms are defined in [RFC7950] and are not
 redefined here:

 * client

 * server

 * augment

 * data model

 * data node

 The following terms are defined in [RFC6241] and are not redefined
 here:

 * configuration data

 * state data

Yu, et al. Expires 28 April 2022 [Page 4]

Internet-Draft Optical Inventory YANG October 2021

 The terminology for describing YANG data models is found in
 [RFC7950].

 TBD: Recap the concept of chassis/slot/component/board/... in
 [TMF-MTOSI].

 Following terms are used for the representation of the hierarchies in
 the optical network inventory.

 Network Element: a device installed on one or several shelves and can
 afford some specific transmission function independently.

 Cabinet: a holder of the device and provides power supply for the
 device in it.

 Chassis: a holder of the device installation.

 Slot: a holder of the board.

 Component: holders and equipments of the network element, including
 rack, shelf, slot, sub-slot, board and port.

 Board/Card: a pluggable equipment on the network element and can
 afford a specific transmission function independently.

 Port: an interface on board

1.2. Tree Diagram

 A simplified graphical representation of the data model is used in
 Section 3 of this document. The meaning of the symbols in these
 diagrams is defined in [RFC8340].

1.3. Prefix in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in the following table.

Yu, et al. Expires 28 April 2022 [Page 5]

Internet-Draft Optical Inventory YANG October 2021

 +========+========================+===========+
 | Prefix | Yang Module | Reference |
 +========+========================+===========+
 | ianahw | iana-hardware | [RFC8348] |
 +--------+------------------------+-----------+
 | ni | ietf-network-inventory | RFCXXX |
 +--------+------------------------+-----------+
 | yang | ietf-yang-types | [RFC6991] |
 +--------+------------------------+-----------+

 Table 1: Prefixes and corresponding YANG
 modules

 RFC Editor Note: Please replace XXXX with the RFC number assigned to
 this document. Please remove this note.

2. YANG Data Model for Optical Network Inventory

2.1. YANG Model Overview

 Based on TMF classification in [TMF-MTOSI], inventory objects can be
 divided into two groups, holder group and equipment group. The
 holder group contains rack, shelf, slot, sub-slot while the equipment
 group contains network-element, board and port. With the requirement
 of GIS and on-demand domain controller selection raised, the
 equipment room becomes a new inventory object to be managed besides
 TMF classification.

 Logically, the relationship between these inventory objects can be
 described by Figure 1 below:

Yu, et al. Expires 28 April 2022 [Page 6]

Internet-Draft Optical Inventory YANG October 2021

 +-------------+
 | inventory |
 +-------------+
 ||
 || 1:N
 \/
 +----------------+
 | equipment room |
 +----------------+
 ||
 ||
 _______1:N_________||_______1:M___________
 || ||
 || ||
 \/ \/
 +------------+ +-----------------+
 | rack | /__________M:N________\| network element |
 +------------+ \---------------------/+-----------------+
 || || ||
 || 1:N || ||
 \/ || ||
 +------------+ /__________1:M____________|| ||
 | shelf | \--------------------------| ||
 +------------+ ||
 ||__________________ __________________||
 |-------------------||-------------------|
 _________1:N________||________1:M_________
 ||------------------ ------------------||
 \/ \/
 +---------------+ +-----------+
 | slot/su-bslot | | board |
 +---------------+ +-----------+
 ||
 || 1:N
 \/
 +-----------+
 | port |
 +-----------+

 Figure 1: Relationship between inventory objects

 In [RFC8348], rack, shelf, slot, sub-slot, board and port are defined
 as components of network elements with generic attributes.

 While [RFC8348] is used to manage the hardware of a single server
 (e.g., a Network Element), the Network Inventory YANG data model is
 used to retrieve the network inventory information that a controller
 discovers from multiple Network Elements under its control.

Yu, et al. Expires 28 April 2022 [Page 7]

Internet-Draft Optical Inventory YANG October 2021

 However, the YANG data model defined in [RFC8348] has been used as a
 reference for defining the YANG network inventory data model. This
 approach can simplify the implementation of this network inventory
 model when the controller uses the YANG data model defined in
 [RFC8348] to retrieve the hardware configuration from the network
 elements under its control.

 Note: review in future versions of this document which attributes
 from [RFC8348] are required also for network inventory and whether
 there are attributes not defined in [RFC8348]which are required for
 network inventory

 Note: review in future versions of this document whether to re-use
 definitions from [RFC8348] or use schema-mount.

 +--ro network-inventory
 +--ro equipment-rooms
 | +--ro equipment-room* [uuid]
 | +--ro uuid yang:uuid
 |
 | +--ro rack* [uuid]
 | +--ro uuid yang:uuid
 |
 | +--ro shelves* [uuid]
 | +--ro uuid yang:uuid
 |
 | +--ro chassis-ref
 | +--ro ne-ref? leafref
 | +--ro component-ref? leafref
 +--ro network-elements
 +--ro network-element* [uuid]
 +--ro uuid yang:uuid

 +--ro components
 +--ro component* [uuid]
 +--ro uuid yang:uuid

 The YANG data model for network inventory follows the same approach
 of [RFC8348] and reports the network inventory as a list of
 components of different types (e.g., chassis, module, port).

Yu, et al. Expires 28 April 2022 [Page 8]

Internet-Draft Optical Inventory YANG October 2021

 +--ro components
 +--ro component* [uuid]
 +--ro uuid yang:uuid
 +--ro name? string
 +--ro description? string
 +--ro class? identityref
 +--ro parent-rel-pos? int32
 +--ro children* [child-ref]
 | +--ro child-ref -> ../../../../uuid
 +--ro parent
 +--ro parent-ref? -> ../../../../uuid

 Note: review in future versions of this document whether the
 component list should be under the network-inventory instead of under
 the network-element container

 However, considering there are some special scenarios, the
 relationship between the rack and network elements is not 1 to 1 nor
 1 to n. The network element cannot be the direct parent node of the
 rack. So there should be n to m relationship between racks and
 network elements. And the shelves in the rack should have some
 reference information to the component.

 Note that in [RFC8345], topology and inventory are two subsets of
 network information. However, considering the complexity of the
 existing topology models and to have a better extension capability,
 we define a separate root for the inventory model. We will consider
 some other ways to do some associations between the topology model
 and inventory model in the future.

 Note: review in future versions of this document whether network
 inventory should be defined as an augmentation of the network model
 defined in [RFC8345] instead of under a new network-inventory root.

 The proposed YANG data model has been analysed to cover the
 requirements and use cases for Optical Network Inventory.

 Further analysis of requirements and use cases is needed to extend
 the applicability of this YANG data model to other types of networks
 (IP and microwave) and to identify which aspects are generic and
 which aspects are technology-specific for optical networks.

3. Optical Network Inventory Tree Diagram

 Figure 2 below shows the tree diagram of the YANG data model defined
 in module ietf-network-inventory.yang (Section 4).

Yu, et al. Expires 28 April 2022 [Page 9]

Internet-Draft Optical Inventory YANG October 2021

 module: ietf-network-inventory
 +--ro network-inventory
 +--ro equipment-rooms
 | +--ro equipment-room* [uuid]
 | +--ro uuid yang:uuid
 | +--ro name? string
 | +--ro location? string
 | +--ro rack* [uuid]
 | +--ro uuid yang:uuid
 | +--ro name? string
 | +--ro row-number? uint32
 | +--ro rack-number? uint32
 | +--ro shelves* [uuid]
 | +--ro uuid yang:uuid
 | +--ro name? string
 | +--ro shelf-number? uint8
 | +--ro chassis-ref
 | +--ro ne-ref? leafref
 | +--ro component-ref? leafref
 +--ro network-elements
 +--ro network-element* [uuid]
 +--ro uuid yang:uuid
 +--ro name? string
 +--ro components
 +--ro component* [uuid]
 +--ro uuid yang:uuid
 +--ro name? string
 +--ro description? string
 +--ro class? identityref
 +--ro parent-rel-pos? int32
 +--ro children* [child-ref]
 | +--ro child-ref -> ../../../../uuid
 +--ro parent
 +--ro parent-ref? -> ../../../../uuid

 Figure 2: Network inventory tree diagram

4. YANG Model for Optical Network Inventory

 <CODE BEGINS> file "ietf-network-inventory@2021-10-25.yang"
 module ietf-network-inventory {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-network-inventory";
 prefix ni;

 import ietf-yang-types {
 prefix yang;
 reference

Yu, et al. Expires 28 April 2022 [Page 10]

Internet-Draft Optical Inventory YANG October 2021

 "RFC6991: Common YANG Data Types.";
 }

 import iana-hardware {
 prefix ianahw;
 reference
 "RFC 8348: A YANG Data Model for Hardware Management.";
 }

 organization
 "IETF CCAMP Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/ccamp/>
 WG List: <mailto:ccamp@ietf.org>

 Editor: Chaode Yu
 <yuchaode@huawei.com>

 Editor: Italo Busi
 <italo.busi@huawei.com>

 Editor: Aihua Guo
 <aihuaguo.ietf@gmail.com>

 Editor: Sergio Belotti
 <sergio.belotti@nokia.com>

 Editor: Jean-Francois Bouquier
 <jeff.bouquier@vodafone.com>

 Editor: Fabio Peruzzini
 <fabio.peruzzini@telecomitalia.it>";

 description
 "This module defines a model for retrieving network inventory.

 The model fully conforms to the Network Management
 Datastore Architecture (NMDA).

 Copyright (c) 2021 IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

Yu, et al. Expires 28 April 2022 [Page 11]

Internet-Draft Optical Inventory YANG October 2021

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.

 revision 2021-10-25 {
 description
 "Initial revision.";
 reference
 "draft-yg3bp-ccamp-optical-inventory-yang-00: A YANG Data
 Model for Optical Network Inventory.";
 }

 container network-inventory {
 config false;
 description
 "The top-level container for the network inventory
 information.";
 uses equipment-rooms-grouping;
 uses network-elements-grouping;
 }

 grouping common-entity-attributes {
 description
 "A set of attributes which are common to all the entities
 (e.g., component, equipment room) defined in this module.";
 leaf uuid {
 type yang:uuid;
 description
 "Uniquely identifies an entity (e.g., component).";
 }
 leaf name {
 type string;
 description
 "A name for an entity (e.g., component), as specified by
 a network manager, that provides a non-volatile ’handle’
 for the entity and that can be modified anytime during the
 entity lifetime.

Yu, et al. Expires 28 April 2022 [Page 12]

Internet-Draft Optical Inventory YANG October 2021

 If no configured value exists, the server MAY set the value
 of this node to a locally unique value in the operational
 state.";
 }
 }
 grouping network-elements-grouping {
 description
 "The attributes of the network elements.";
 container network-elements {
 description
 "The container for the list of network elements.";
 list network-element {
 key uuid;
 description
 "The list of network elements within the network.";
 uses common-entity-attributes;
 uses components-grouping;
 }
 }
 }

 grouping equipment-rooms-grouping {
 description
 "The attributes of the equipment rooms.";
 container equipment-rooms {
 description
 "The container for the list of equipment rooms.";
 list equipment-room {
 key uuid;
 description
 "The list of equipment rooms within the network.";
 uses common-entity-attributes;
 leaf location {
 type string;
 description
 "compared with the location information of the other
 inventory objects, a GIS address is preferred for
 equipment room";
 }
 list rack {
 key uuid;
 description
 "The list of racks within an equipment room.";
 uses common-entity-attributes;
 leaf row-number {
 type uint32;
 description
 "Identifies the row within the equipment room where

Yu, et al. Expires 28 April 2022 [Page 13]

Internet-Draft Optical Inventory YANG October 2021

 the rack is located.";
 }
 leaf rack-number {
 type uint32;
 description
 "Identifies the physical location of the rack within
 the row.";
 }
 list shelves {
 key uuid;
 description
 "The list of shelves within a rack.";
 uses common-entity-attributes;
 leaf shelf-number {
 type uint8;
 description
 "Identifies the location of the shelf within the
 rack.";
 }
 container chassis-ref {
 description
 "The reference to the network element component
 representing this shelf.";
 leaf ne-ref {
 type leafref {
 path "/ni:network-inventory/ni:network-elements"
 + "/ni:network-element/ni:uuid";
 }
 description
 "The reference to the network element containing
 the component.";
 }
 leaf component-ref {
 type leafref {
 path "/ni:network-inventory/ni:network-elements"
 + "/ni:network-element[ni:uuid"
 + "=current()/../ne-ref]/ni:components"
 + "/ni:component/ni:uuid";
 }
 description
 "The reference to the component within the network
 element.";
 }
 }
 }
 }
 }
 }

Yu, et al. Expires 28 April 2022 [Page 14]

Internet-Draft Optical Inventory YANG October 2021

 }

 grouping components-grouping {
 description
 "The attributes of the hardware components.";
 container components {
 description
 "The container for the list of components.";
 list component {
 key uuid;
 description
 "The list of components within a network element.";
 uses common-entity-attributes;
 leaf description {
 type string;
 description
 "A textual description of the component.";
 reference
 "RFC 8348: A YANG Data Model for Hardware Management.";
 }
 leaf class {
 type identityref {
 base ianahw:hardware-class;
 }
 description
 "An indication of the general hardware type of the
 component.";
 reference
 "RFC 8348: A YANG Data Model for Hardware Management.";
 }
 leaf parent-rel-pos {
 type int32 {
 range "0 .. 2147483647";
 }
 description
 "An indication of the relative position of this child
 component among all its sibling components. Sibling
 components are defined as components that:

 o share the same value of the ’parent’ node and

 o share a common base identity for the ’class’ node.";
 reference
 "RFC 8348: A YANG Data Model for Hardware Management.";
 }
 list children {
 key child-ref;
 description

Yu, et al. Expires 28 April 2022 [Page 15]

Internet-Draft Optical Inventory YANG October 2021

 "The child components that are physically contained by
 this component.";

 leaf child-ref {
 type leafref {
 path "../../../../ni:uuid";
 }
 description
 "The reference to the child component.";
 }
 }
 container parent {
 description
 "The parent component that physically contains this
 component.

 If this container is not instantiated, it indicates
 that this component is not contained in any other
 component.

 In the event that a physical component is contained by
 more than one physical component (e.g., double-wide
 modules), this container contains the data of one of
 these components. An implementation MUST use the same
 component every time this container is instantiated.";
 leaf parent-ref {
 type leafref {
 path "../../../../ni:uuid";
 }
 description
 "The reference to the parent component.";
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

 Figure 3: Network inventory YANG module

5. Manageability Considerations

 <Add any manageability considerations>

Yu, et al. Expires 28 April 2022 [Page 16]

Internet-Draft Optical Inventory YANG October 2021

6. Security Considerations

 <Add any security considerations>

7. IANA Considerations

 <Add any IANA considerations>

8. References

8.1. Normative References

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku,
 "Routing and Wavelength Assignment Information Model for
 Wavelength Switched Optical Networks", RFC 7446,
 DOI 10.17487/RFC7446, February 2015,
 <https://www.rfc-editor.org/info/rfc7446>.

 [RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and
 J. Han, "Routing and Wavelength Assignment Information
 Encoding for Wavelength Switched Optical Networks",
 RFC 7581, DOI 10.17487/RFC7581, June 2015,
 <https://www.rfc-editor.org/info/rfc7581>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Yu, et al. Expires 28 April 2022 [Page 17]

Internet-Draft Optical Inventory YANG October 2021

 [RFC8348] Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
 YANG Data Model for Hardware Management", RFC 8348,
 DOI 10.17487/RFC8348, March 2018,
 <https://www.rfc-editor.org/info/rfc8348>.

 [TMF-MTOSI]
 TM Forum (TMF), "TMF MTOSI 4.0 Equipment Model", TMF
 SD2-20_EquipmentModel , 2008,
 <https://www.tmforum.org/resources/suite/mtosi-4-0/>.

8.2. Informative References

 [I-D.ietf-teas-actn-poi-applicability]
 Peruzzini, F., Bouquier, J., Busi, I., King, D., and D.
 Ceccarelli, "Applicability of Abstraction and Control of
 Traffic Engineered Networks (ACTN) to Packet Optical
 Integration (POI)", Work in Progress, Internet-Draft,
 draft-ietf-teas-actn-poi-applicability-03, 12 July 2021,
 <https://www.ietf.org/archive/id/draft-ietf-teas-actn-poi-
 applicability-03.txt>.

 [ONF_TR-547]
 Open Networking Foundation (ONF), "TAPI v2.1.3 Reference
 Implementation Agreement", ONF TR-547 TAPI RIA v1.0 , July
 2020, <https://opennetworking.org/wp-
 content/uploads/2020/08/TR-547-TAPI-v2.1.3-Reference-
 Implementation-Agreement-1.pdf>.

 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

Acknowledgments

 The authors of this document would like to thank the authors of
 [I-D.ietf-teas-actn-poi-applicability] for having identified the gap
 and requirements to trigger this work.

 This document was prepared using kramdown.

Authors’ Addresses

 Chaode Yu
 Huawei Technologies

 Email: yuchaode@huawei.com

Yu, et al. Expires 28 April 2022 [Page 18]

Internet-Draft Optical Inventory YANG October 2021

 Italo Busi
 Huawei Technologies

 Email: italo.busi@huawei.com

 Aihua Guo
 Futurewei Technologies

 Email: aihuaguo.ietf@gmail.com

 Sergio Belotti
 Nokia

 Email: sergio.belotti@nokia.com

 Jean-Francois Bouquier
 Vodafone

 Email: jeff.bouquier@vodafone.com

 Fabio Peruzzini
 TIM

 Email: fabio.peruzzini@telecomitalia.it

 Oscar Gonzalez de Dios
 Telefonica

 Email: oscar.gonzalezdedios@telefonica.com

 Victor Lopez
 Nokia

 Email: victor.lopez@nokia.com

Yu, et al. Expires 28 April 2022 [Page 19]

	draft-dbb-netmod-acl-00
	draft-ietf-netmod-yang-module-versioning-03
	draft-ietf-netmod-yang-packages-01
	draft-ietf-netmod-yang-semver-03
	draft-ma-netmod-with-system-00
	draft-yg3bp-ccamp-optical-inventory-yang-00

