
QUIC M. Duke

Internet-Draft F5 Networks, Inc.

Intended status: Standards Track 9 July 2021

Expires: 10 January 2022

 QUIC Version 2

 draft-duke-quic-v2-02

Abstract

 This document specifies QUIC version 2, which is identical to QUIC

 version 1 except for some trivial details. Its purpose is to combat

 various ossification vectors and exercise the version negotiation

 framework. Over time, it may also serve as a vehicle for needed

 protocol design changes.

 Discussion of this work is encouraged to happen on the QUIC IETF

 mailing list quic@ietf.org or on the GitHub repository which contains

 the draft: https://github.com/martinduke/draft-duke-quic-v2.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the mailing list

 (quic@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/quic/.

 Source for this draft and an issue tracker can be found at

 https://github.com/martinduke/draft-duke-quic-v2.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 January 2022.

Duke Expires 10 January 2022 [Page 1]

Internet-Draft QUICv2 July 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Conventions . 3

 3. Changes from QUIC Version 1 3

 4. Version Negotiation Considerations 4

 5. Ossification Considerations 4

 6. Applicability . 5

 7. Security Considerations 5

 8. IANA Considerations . 5

 9. References . 5

 9.1. Normative References 5

 9.2. Informative References 6

 Appendix A. Changelog . 6

 A.1. since draft-duke-quic-v2-01 6

 A.2. since draft-duke-quic-v2-00 6

 Author’s Address . 7

1. Introduction

 QUIC [RFC9000] has numerous extension points, including the version

 number that occupies the second through fifth octets of every long

 header (see [RFC8999]). If experimental versions are rare, and QUIC

 version 1 constitutes the vast majority of QUIC traffic, there is the

 potential for middleboxes to ossify on the version octets always

 being 0x00000001.

 Furthermore, version 1 Initial packets are encrypted with keys

 derived from a universally known salt, which allow observers to

 inspect the contents of these packets, which include the TLS Client

 Hello and Server Hello messages. Again, middleboxes may ossify on

 the version 1 key derivation and packet formats.

Duke Expires 10 January 2022 [Page 2]

Internet-Draft QUICv2 July 2021

 Finally [QUIC-VN] provides two mechanisms for endpoints to negotiate

 the QUIC version to use. The "incompatible" version negotiation

 method can support switching from any initial QUIC version to any

 other version with full generality, at the cost of an additional

 round-trip at the start of the connection. "Compatible" version

 negotiation eliminates the round-trip penalty but levies some

 restrictions on how much the two versions can differ semantically.

 QUIC version 2 is meant to mitigate ossification concerns and

 exercise the version negotiation mechanisms. The only change is a

 tweak to the inputs of some crypto derivation functions to enforce

 full key separation. Any endpoint that supports two versions needs

 to implement version negotiation to protect against downgrade

 attacks.

 This document may, over time, also serve as a vehicle for other

 needed changes to QUIC version 1.

 [I-D.duke-quic-version-aliasing] is a more robust, but much more

 complicated, proposal to address these ossification problems. By

 design, it requires incompatible version negotiation. QUICv2 enables

 exercise of compatible version negotiation mechanism.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Changes from QUIC Version 1

 QUIC version 2 endpoints MUST implement the QUIC version 1

 specification as described in [RFC9000], [RFC9001], and [RFC9002],

 with the following changes:

 * The version field of long headers is TBD. Note: Unless this

 document is published as an RFC, implementations should use the

 provisional value 0xff010001, which might change with each edition

 of this document.

 * The salt used to derive Initial keys in Sec 5.2 of [RFC9001]

 changes to

 initial_salt = 0xa707c203a59b47184a1d62ca570406ea7ae3e5d3

 * The labels used in [RFC9001] to derive packet protection keys (Sec

 5.1), header protection keys (Sec 5.4), Retry Integrity Tag keys

 (Sec 5.8), and key updates (Sec 6.1) change from "quic key" to

Duke Expires 10 January 2022 [Page 3]

Internet-Draft QUICv2 July 2021

 "quicv2 key", from "quic iv" to "quicv2 iv", from "quic hp" to

 "quicv2 hp", and from "quic ku" to "quicv2 ku," to meet the

 guidance for new versions in Section 9.6 of that document.

 * The key and nonce used for the Retry Integrity Tag (Sec 5.8 of

 [RFC9001]) change to:

secret = 0x3425c20cf88779df2ff71e8abfa78249891e763bbed2f13c048343d348c060e2

key = 0xba858dc7b43de5dbf87617ff4ab253db

nonce = 0x141b99c239b03e785d6a2e9f

4. Version Negotiation Considerations

 QUIC version 2 endpoints SHOULD also support QUIC version 1. Any

 QUIC endpoint that supports multiple versions MUST fully implement

 [QUIC-VN] to prevent version downgrade attacks.

 Note that version 2 meets that document’s definition of a compatible

 version with version 1. Therefore, v2-capable servers MUST use

 compatible version negotiation unless they do not support version 1.

 As version 1 support is more likely than version 2 support, a client

 SHOULD use QUIC version 1 for its original version unless it has out-

 of-band knowledge that the server supports version 2.

5. Ossification Considerations

 QUIC version 2 provides protection against some forms of

 ossification. Devices that assume that all long headers will contain

 encode version 1, or that the version 1 Initial key derivation

 formula will remain version-invariant, will not correctly process

 version 2 packets.

 However, many middleboxes such as firewalls focus on the first packet

 in a connection, which will often remain in the version 1 format due

 to the considerations above.

 Clients interested in combating firewall ossification can initiate a

 connection using version 2 if they are either reasonably certain the

 server supports it, or are willing to suffer a round-trip penalty if

 they are incorrect.

Duke Expires 10 January 2022 [Page 4]

Internet-Draft QUICv2 July 2021

6. Applicability

 This version of QUIC provides no change from QUIC version 1 relating

 to the capabilities available to applications. Therefore, all

 Application Layer Protocol Negotiation (ALPN) ([RFC7301]) codepoints

 specified to operate over QUICv1 can also operate over this version

 of QUIC.

7. Security Considerations

 QUIC version 2 introduces no changes to the security or privacy

 properties of QUIC version 1.

 The mandatory version negotiation mechanism guards against downgrade

 attacks, but downgrades have no security implications, as the version

 properties are identical.

8. IANA Considerations

 This document requests that IANA add the following entry to the QUIC

 version registry:

 Value: TBD

 Status: permanent

 Specification: This Document

 Change Controller: IETF

 Contact: QUIC WG

9. References

9.1. Normative References

 [QUIC-VN] Schinazi, D. and E. Rescorla, "Compatible Version

 Negotiation for QUIC", Work in Progress, Internet-Draft,

 draft-ietf-quic-version-negotiation-03, 4 February 2021,

 <https://www.ietf.org/archive/id/draft-ietf-quic-version-

 negotiation-03.txt>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

 Multiplexed and Secure Transport", RFC 9000,

 DOI 10.17487/RFC9000, May 2021,

 <https://www.rfc-editor.org/info/rfc9000>.

Duke Expires 10 January 2022 [Page 5]

Internet-Draft QUICv2 July 2021

 [RFC9001] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

 <https://www.rfc-editor.org/info/rfc9001>.

 [RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

 May 2021, <https://www.rfc-editor.org/info/rfc9002>.

9.2. Informative References

 [I-D.duke-quic-version-aliasing]

 Duke, M., "QUIC Version Aliasing", Work in Progress,

 Internet-Draft, draft-duke-quic-version-aliasing-04, 30

 October 2020, <https://www.ietf.org/archive/id/draft-duke-

 quic-version-aliasing-04.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8999] Thomson, M., "Version-Independent Properties of QUIC",

 RFC 8999, DOI 10.17487/RFC8999, May 2021,

 <https://www.rfc-editor.org/info/rfc8999>.

Appendix A. Changelog

 RFC Editor’s Note: Please remove this section prior to

 publication of a final version of this document.

A.1. since draft-duke-quic-v2-01

 * Made the final version number TBD.

 * Added ALPN considerations

A.2. since draft-duke-quic-v2-00

 * Added provisional versions for interop

 * Change the v1 Retry Tag secret

 * Change labels to create full key separation

Duke Expires 10 January 2022 [Page 6]

Internet-Draft QUICv2 July 2021

Author’s Address

 Martin Duke

 F5 Networks, Inc.

 Email: martin.h.duke@gmail.com

Duke Expires 10 January 2022 [Page 7]

QUIC M. Duke
Internet-Draft Google
Intended status: Standards Track N. Banks
Expires: 28 February 2026 Microsoft
 C. Huitema
 Private Octopus Inc.
 27 August 2025

 QUIC-LB: Generating Routable QUIC Connection IDs
 draft-ietf-quic-load-balancers-21

Abstract

 QUIC address migration allows clients to change their IP address
 while maintaining connection state. To reduce the ability of an
 observer to link two IP addresses, clients and servers use new
 connection IDs when they communicate via different client addresses.
 This poses a problem for traditional "layer-4" load balancers that
 route packets via the IP address and port 4-tuple. This
 specification provides a standardized means of securely encoding
 routing information in the server’s connection IDs so that a properly
 configured load balancer can route packets with migrated addresses
 correctly. As it proposes a structured connection ID format, it also
 provides a means of connection IDs self-encoding their length to aid
 some hardware offloads.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 February 2026.

Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Duke, et al. Expires 28 February 2026 [Page 1]

Internet-Draft QUIC-LB August 2025

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Terminology . 5
 1.2. Notation . 5
 2. Overview . 5
 3. First CID octet . 6
 3.1. Config Rotation . 6
 3.2. Configuration Failover 7
 3.3. Length Self-Description 8
 3.4. Format . 8
 4. Unroutable Connection IDs 8
 4.1. Definition . 8
 4.2. Load Balancer Forwarding 9
 4.3. Fallback Algorithms 10
 4.3.1. Baseline Fallback Algorithm 10
 4.3.2. Advanced Fallback Algorithm 11
 5. Server ID Encoding in Connection IDs 11
 5.1. Server ID Allocation 12
 5.2. CID format . 12
 5.3. Configuration Agent Actions 13
 5.4. Server Actions . 13
 5.4.1. Special Case: Single Pass Encryption 14
 5.4.2. General Case: Four-Pass Encryption 14
 5.5. Load Balancer Actions 19
 5.5.1. Special Case: Single Pass Encryption 19
 5.5.2. General Case: Four-Pass Encryption 19
 6. Per-connection state . 20
 7. Additional Use Cases . 21
 7.1. Load balancer chains 21
 7.2. Server Process Demultiplexing 22
 7.3. Moving connections between servers 22
 8. Version Invariance of QUIC-LB 23
 9. Security Considerations 24
 9.1. Attackers not between the load balancer and server . . . 25
 9.2. Attackers between the load balancer and server 25
 9.3. Multiple Configuration IDs 25
 9.4. Limited configuration scope 25
 9.5. Stateless Reset Oracle 26

Duke, et al. Expires 28 February 2026 [Page 2]

Internet-Draft QUIC-LB August 2025

 9.6. Connection ID Entropy 27
 9.7. Distinguishing Attacks 28
 9.8. Early deletion of load balancer connection state 28
 10. IANA Considerations . 29
 11. References . 29
 11.1. Normative References 29
 11.2. Informative References 29
 Appendix A. QUIC-LB YANG Model 30
 A.1. Tree Diagram . 36
 Appendix B. Load Balancer Test Vectors 37
 B.1. Unencrypted CIDs . 37
 B.2. Encrypted CIDs . 37
 Appendix C. Interoperability with DTLS over UDP 38
 C.1. DTLS 1.0 and 1.2 . 38
 C.2. DTLS 1.3 . 39
 C.3. Future Versions of DTLS 39
 Appendix D. Acknowledgments 39
 Appendix E. Change Log . 40
 E.1. since draft-ietf-quic-load-balancers-20 40
 E.2. since draft-ietf-quic-load-balancers-19 40
 E.3. since draft-ietf-quic-load-balancers-18 40
 E.4. since draft-ietf-quic-load-balancers-17 40
 E.5. since draft-ietf-quic-load-balancers-16 40
 E.6. since draft-ietf-quic-load-balancers-15 40
 E.7. since draft-ietf-quic-load-balancers-14 40
 E.8. since draft-ietf-quic-load-balancers-13 41
 E.9. since draft-ietf-quic-load-balancers-12 41
 E.10. since draft-ietf-quic-load-balancers-11 41
 E.11. since draft-ietf-quic-load-balancers-10 41
 E.12. since draft-ietf-quic-load-balancers-09 41
 E.13. since draft-ietf-quic-load-balancers-08 41
 E.14. since draft-ietf-quic-load-balancers-07 42
 E.15. since draft-ietf-quic-load-balancers-06 42
 E.16. since draft-ietf-quic-load-balancers-05 42
 E.17. since draft-ietf-quic-load-balancers-04 42
 E.18. since-draft-ietf-quic-load-balancers-03 43
 E.19. since-draft-ietf-quic-load-balancers-02 43
 E.20. since-draft-ietf-quic-load-balancers-01 43
 E.21. since-draft-ietf-quic-load-balancers-00 43
 E.22. Since draft-duke-quic-load-balancers-06 43
 E.23. Since draft-duke-quic-load-balancers-05 43
 E.24. Since draft-duke-quic-load-balancers-04 44
 E.25. Since draft-duke-quic-load-balancers-03 44
 E.26. Since draft-duke-quic-load-balancers-02 44
 E.27. Since draft-duke-quic-load-balancers-01 44
 E.28. Since draft-duke-quic-load-balancers-00 44
 Authors’ Addresses . 44

Duke, et al. Expires 28 February 2026 [Page 3]

Internet-Draft QUIC-LB August 2025

1. Introduction

 QUIC packets [RFC9000] usually contain a connection ID to allow
 endpoints to associate packets with different address/port 4-tuples
 to the same connection context. This feature makes connections
 robust in the event of NAT rebinding. QUIC endpoints usually
 designate the connection ID which peers use to address packets.
 Server-generated connection IDs create a potential need for out-of-
 band communication to support QUIC.

 QUIC allows servers (or load balancers) to encode useful routing
 information for load balancers in connection IDs. It also encourages
 servers, in packets protected by cryptography, to provide additional
 connection IDs to the client. This allows clients that know they are
 going to change IP address or port to use a separate connection ID on
 the new path, thus reducing linkability as clients move through the
 world.

 There is a tension between the requirements to provide routing
 information and mitigate linkability. Ultimately, because new
 connection IDs are in protected packets, they must be generated at
 the server if the load balancer does not have access to the
 connection keys. However, it is the load balancer that has the
 context necessary to generate a connection ID that encodes useful
 routing information. In the absence of any shared state between load
 balancer and server, the load balancer must maintain a relatively
 expensive table of server-generated connection IDs, and will not
 route packets correctly if they use a connection ID that was
 originally communicated in a protected NEW_CONNECTION_ID frame.

 This specification provides common algorithms for encoding the server
 mapping in a connection ID given some shared parameters. The mapping
 is generally only discoverable by observers that have the parameters,
 preserving unlinkability as much as possible.

 As this document proposes a structured QUIC Connection ID, it also
 proposes a system for self-encoding connection ID length in all
 packets, so that crypto offload can efficiently obtain key
 information.

 While this document describes a small set of configuration parameters
 to make the server mapping intelligible, the means of distributing
 these parameters between load balancers, servers, and other trusted
 intermediaries is out of its scope. There are numerous well-known
 infrastructures for distribution of configuration.

Duke, et al. Expires 28 February 2026 [Page 4]

Internet-Draft QUIC-LB August 2025

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying significance described in RFC 2119.

 In this document, "client" and "server" refer to the endpoints of a
 QUIC connection unless otherwise indicated. A "load balancer" is an
 intermediary for that connection that does not possess QUIC
 connection keys, but it may rewrite IP addresses or conduct other IP
 or UDP processing. A "configuration agent" is the entity that
 determines the QUIC-LB configuration parameters for the network and
 leverages some system to distribute that configuration.

 Note that stateful load balancers that act as proxies, by terminating
 a QUIC connection with the client and then retrieving data from the
 server using QUIC or another protocol, are treated as a server with
 respect to this specification.

 For brevity, "Connection ID" will often be abbreviated as "CID".

1.2. Notation

 All wire formats will be depicted using the notation defined in
 Section 1.3 of [RFC9000].

2. Overview

 In QUIC-LB, load balancers do not generate individual connection IDs
 for servers. Instead, they communicate the parameters of an
 algorithm to generate routable connection IDs.

 The algorithms differ in the complexity of configuration at both load
 balancer and server. Increasing complexity improves obfuscation of
 the server mapping.

 This specificationn describes three participants: the configuration
 agent, the load balancer, and the server. For any given QUIC-LB
 configuration that enables connection-ID-aware load balancing, there
 must be a choice of (1) routing algorithm, (2) server ID allocation
 strategy, and (3) algorithm parameters.

Duke, et al. Expires 28 February 2026 [Page 5]

Internet-Draft QUIC-LB August 2025

 Fundamentally, servers generate connection IDs that encode their
 server ID. Load balancers decode the server ID from the CID in
 incoming packets to route to the correct server.

 [RFC8999] specifies that endpoints generate their own connection IDs,
 implying that all QUIC versions will have a mechanism to communicate
 their connection IDs to the peer. In QUIC version 1 and 2, the
 server does so using the Source Connection ID field of its long
 header packets for the first connection ID, and NEW_CONNECTION_ID
 frames for subsequent CIDs.

 There are situations where a server pool might be operating two or
 more routing algorithms or parameter sets simultaneously. The load
 balancer uses the first three bits of the connection ID to multiplex
 incoming Destination Connection IDs (DCIDs) over these schemes (see
 Section 3.1).

3. First CID octet

 The Connection ID construction schemes defined in this document
 reserve the first octet of a CID for two special purposes: one
 mandatory (config rotation) and one optional (length self-
 description).

 Subsequent sections of this document refer to the contents of this
 octet as the "first octet."

3.1. Config Rotation

 The first three bits of any connection ID MUST encode an identifier
 for the configuration that the connection ID uses. This enables
 incremental deployment of new QUIC-LB settings (e.g., keys). A
 configuration MUST NOT use the reserved identifier 0b111 (see
 Section 3.2 below).

 When new configuration is distributed to servers, there will be a
 transition period when connection IDs reflecting old and new
 configuration coexist in the network. The rotation bits allow load
 balancers to apply the correct routing algorithm and parameters to
 incoming packets.

 Configuration Agents SHOULD deliver new configurations to load
 balancers before doing so to servers, so that load balancers are
 ready to process CIDs using the new parameters when they arrive.

Duke, et al. Expires 28 February 2026 [Page 6]

Internet-Draft QUIC-LB August 2025

 A Configuration Agent SHOULD NOT use a codepoint to represent a new
 configuration until it takes precautions to make sure that all
 connections using CIDs with an old configuration at that codepoint
 have closed or transitioned.

 Servers MUST NOT generate new connection IDs using an old
 configuration after receiving a new one from the configuration agent.
 Servers MUST use that QUIC version’s methods to update the client
 with CIDs (e.g., NEW_CONNECTION_ID frames) using the new
 configuration and retire CIDs using the old configuration.

 It also possible to use these bits for more long-lived distinction of
 different configurations, but this has privacy implications (see
 Section 9.3).

3.2. Configuration Failover

 In some deployments, an infrastructure will not receive traffic
 unless all servers have received a configuration, and load balancers
 have a superset of all configurations that are active in the server
 pool, thus guaranteeing that any CID generated by a server is
 decodable by any load balancer. Servers and load balancers deployed
 under all of these assumptions can ignore the provisions in this
 subsection.

 Load balancers treat connection IDs for which they have no
 corresponding config ID as unroutable (see Section 4). If they have
 no configuration at all, then all connection IDs are unroutable.

 Servers with no active configuration MUST issue connection IDs with
 the reserved value of the three most significant bits set to 0b111 to
 signify the connection ID is unroutable. These connection IDs MUST
 self-encode their length (see Section 3.3).

 Servers with no active configuration SHOULD provide the client
 exactly one CID over the life of the connection. In QUIC versions 1
 and 2, therefore, servers SHOULD NOT send any NEW_CONNECTION_ID
 frames, instead delivering a single CID via the Source Connection ID
 of long headers it sends.

 Servers with no active configuration SHOULD send the
 "disable_active_migration" transport parameter, or a similar message
 in future QUIC versions.

 When using codepoint 0b111, all bytes but the first SHOULD have no
 larger of a chance of collision as random bytes. The connection ID
 SHOULD be of at least length 8 to provide 7 bytes of entropy after
 the first octet with a low chance of collision.

Duke, et al. Expires 28 February 2026 [Page 7]

Internet-Draft QUIC-LB August 2025

3.3. Length Self-Description

 Local hardware cryptographic offload devices may accelerate QUIC
 servers by receiving keys from the QUIC implementation indexed to the
 connection ID. However, on physical devices operating multiple QUIC
 servers, it might be impractical to efficiently lookup keys if the
 connection ID varies in length and does not self-encode its own
 length.

 Note that this is a function of particular server devices and is
 irrelevant to load balancers. As such, load balancers MAY omit this
 from their configuration. However, the remaining 5 bits in the first
 octet of the Connection ID are reserved to express the length of the
 following connection ID, not including the first octet.

 A server not using this functionality SHOULD choose the five bits so
 as to have no observable relationship to previous connection IDs
 issued for that connection.

3.4. Format

 First Octet {
 Config Rotation (3),
 CID Len or Random Bits (5),
 }

 Figure 1: First Octet Format

 The first octet has the following fields:

 Config Rotation: Indicates the configuration used to interpret the
 CID.

 CID Len or Random Bits: Length Self-Description (if applicable), or
 random bits otherwise. Encodes the length of the Connection ID
 following the First Octet.

4. Unroutable Connection IDs

4.1. Definition

 QUIC-LB servers with a valid configuration will generate Connection
 IDs that are decodable to extract a server ID in accordance with a
 specified algorithm and parameters. However, QUIC often uses client-
 generated Connection IDs prior to receiving a packet from the server.

Duke, et al. Expires 28 February 2026 [Page 8]

Internet-Draft QUIC-LB August 2025

 Furthermore, servers without a valid configuration, or a
 configuration not present at the load balancer, will also generate
 connection IDs that are not decodable, and these CIDs are likely to
 persist for the duration of the connection.

 These CIDs might not conform to the expectations of the routing
 algorithm and therefore not be routable by the load balancer. Those
 that are not routable are "unroutable DCIDs" and receive similar
 treatment regardless of why they’re unroutable:

 * The config rotation bits (Section 3.1) do not correspond to an
 active configuration. Note: a packet with a DCID with config ID
 codepoint 0b111 (see Section 3.2) is always unroutable.

 * If the packet header encodes the DCID length, the DCID is not long
 enough for the decoder to process.

 * The extracted server mapping does not correspond to an active
 server.

 If the load balancer has knowledge that all servers in the pool are
 encoding CID length in the first octet (see Section 3.3), it MAY
 perform additional checks based on that self-encoded length:

 * In a long header, verify that the self-encoded length is
 consistent with the CID length field in the header (i.e. the self-
 encoded length is one less)

 * Verify that the self-encoded length is consistent with the QUIC
 version, if known.

 * Verify that the self-encoded length is large enough for the
 decoder to process using the indicated config ID.

 DCIDs that do not meet any of these criteria are routable.

4.2. Load Balancer Forwarding

 Load balancers execute the following steps in order until one results
 in a routing decision. The steps refer to state that some load
 balancers will maintain, depending on the deployment’s underlying
 assumptions. See Section 4.3 for further discussion of this state.

 1. If the packet contains a routable CID, route the packet
 accordingly.

Duke, et al. Expires 28 February 2026 [Page 9]

Internet-Draft QUIC-LB August 2025

 2. If the packet has a long header and matches an entry in a table
 of routing decisions indexed by a concatenation of 4-tuple and
 Source CID, route the packet accordingly.

 3. If the packet matches an entry in a table of routing decisions by
 destination CID, route the packet accordingly.

 4. If packet matches an entry in a table of routing decisions by
 4-tuple, route the packet accordingly.

 5. Use the fallback algorithm to make a routing decision and, if
 applicable, record the results in the tables indexed by 4-tuple
 and/or CID. In some cases, described below, the load balancer
 might buffer the packet to defer a decision.

4.3. Fallback Algorithms

 There are conditions described above where a load balancer routes a
 packet using a "fallback algorithm." A standardized algorithm design
 is not necessary for interoperability, so load balancers can
 implement any algorithm that meets the relevant requirements below.

 There is a baseline case that has relatively simple requirements of
 the chosen fallback algorithm, and an advanced case with more
 capabilities and more complex requirements.

4.3.1. Baseline Fallback Algorithm

 All load balancers MUST implement a baseline fallback algorithm that
 takes only the 4-tuple as an input and outputs a routing decision.

 If it is impossible for the server to generate CIDs that the load
 balancer cannot decode (see Section 3.2), there are no further
 requirements in this subsection.

 Otherwise, the load balancer SHOULD maintain a table of 4-tuples that
 carried unroutable DCIDs and the resulting routing decision.
 Provided the table does not overflow, and the load balancer does not
 lose state, this allows connections to survive when the server pool
 changes, which would sometimes change the output of the fallback
 algorithm.

 The load balancer MAY maintain a table of observed unroutable DCIDs
 and the resulting routing decision. Provided the table does not
 overflow, these connections will be robust to NAT rebinding.

 Load balancers SHOULD maintain per-flow timers to periodically purge
 state in the tables described above.

Duke, et al. Expires 28 February 2026 [Page 10]

Internet-Draft QUIC-LB August 2025

4.3.2. Advanced Fallback Algorithm

 Some architectures might require a load balancer to choose a server
 pool based on deep packet inspection of a client packet. For
 example, it may use the TLS 1.3 Server Name Indication (SNI)
 ([RFC6066]) field. The advanced fallback algorithm enables this
 capability but levies several additional requirements to make
 consistent routing decisions.

 For packets not known to belong to a QUIC version the load balancer
 can parse, load balancers MUST use the baseline fallback algorithm if
 the DCID is unroutable.

 For known QUIC versions, the fallback algorithm MAY parse packets and
 use that information to make a routing decision.

 If so, it MUST have the ability to buffer packets with unroutable
 DCIDs to await further packets that allow it to make a routing
 decision, as the fields of interest can be an arbitary number of
 packets into the connection.

 4-tuple routing is not sufficient for this use case, because a client
 can use the same 4-tuple for two connections that should be routed
 differently (e.g. because they target different SNIs), as long as the
 packet contains a source connection ID of nonzero length.

 Therefore, the load balancer SHOULD maintain two tables that map
 different values to a routing decision:

 * a table indexed by a concatenation of the 4-tuple and source CID,
 which might be zero-length, to route subsequent long header
 packets that do not contain the server-generated connection ID;

 * a table indexed by destination CID, if and only if it is possible
 for the server to generate unroutable CIDs. This table can be
 shared with the one in use for the baseline fallback algorithm.

 If either table overflows, or if the load balancer loses state, it is
 likely the load balancer will misroute packets.

 Load balancers SHOULD maintain per-flow timers to periodically purge
 state in the tables described above.

5. Server ID Encoding in Connection IDs

Duke, et al. Expires 28 February 2026 [Page 11]

Internet-Draft QUIC-LB August 2025

5.1. Server ID Allocation

 Load Balancer configurations include a mapping of server IDs to
 forwarding addresses. The corresponding server configurations
 contain one or more unique server IDs.

 The configuration agent chooses a server ID length for each
 configuration that MUST be at least one octet.

 A QUIC-LB configuration MAY significantly over-provision the server
 ID space (i.e., provide far more codepoints than there are servers)
 to increase the probability that a randomly generated Destination
 Connection ID is unroutable.

 The configuration agent SHOULD provide a means for servers to express
 the number of server IDs it can usefully employ, because a single
 routing address actually corresponds to multiple server entities (see
 Section 7.1).

 Conceptually, each configuration has its own set of server ID
 allocations, though two static configurations with identical server
 ID lengths MAY use a common allocation between them.

 A server encodes one of its assigned server IDs in any CID it
 generates using the relevant configuration.

5.2. CID format

 All connection IDs use the following format:

 QUIC-LB Connection ID {
 First Octet (8),
 Plaintext Block (40..152),
 }
 Plaintext Block {
 Server ID (8..),
 Nonce (32..),
 }

 Figure 2: CID Format

 The First Octet field serves one or two purposes, as defined in
 Section 3.

 The Server ID field encodes the information necessary for the load
 balancer to route a packet with that connection ID. It is often
 encrypted.

Duke, et al. Expires 28 February 2026 [Page 12]

Internet-Draft QUIC-LB August 2025

 The server uses the Nonce field to make sure that each connection ID
 it generates is unique, even though they all use the same Server ID.

5.3. Configuration Agent Actions

 The configuration agent assigns a server ID to every server in its
 pool in accordance with Section 5.1, and determines a server ID
 length (in octets) sufficiently large to encode all server IDs,
 including potential future servers.

 Each configuration specifies the length of the Server ID and Nonce
 fields, with limits defined for each algorithm.

 Optionally, it also defines a 16-octet key. Note that failure to
 define a key means that observers can determine the assigned server
 of any connection, significantly increasing the linkability of QUIC
 address migration.

 The nonce length MUST be at least 4 octets. The server ID length
 MUST be at least 1 octet.

 As QUIC version 1 limits connection IDs to 20 octets, the server ID
 and nonce lengths MUST sum to 19 octets or less.

5.4. Server Actions

 The server writes the first octet and its server ID into their
 respective fields.

 If there is no key in the configuration, the server MUST fill the
 Nonce field with bytes that have no observable relationship to the
 field in previously issued connection IDs. If there is a key, the
 server fills the nonce field with a nonce of its choosing. See
 Section 9.6 for details.

 The server MAY append additional bytes to the connection ID, up to
 the limit specified in that version of QUIC, for its own use. These
 bytes MUST NOT provide observers with any information that could link
 two connection IDs to the same connection, client, or server. In
 particular, all servers using a configuration MUST consistently add
 the same length to each connection ID, to preserve the linkability
 objectives of QUIC-LB. Any additional bytes SHOULD NOT provide any
 observable correlation to previous connection IDs for that connection
 (e.g., the bytes can be chosen at random).

 If there is no key in the configuration, the Connection ID is
 complete. Otherwise, there are further steps, as described in the
 two following subsections.

Duke, et al. Expires 28 February 2026 [Page 13]

Internet-Draft QUIC-LB August 2025

 Encryption below uses the AES-128-ECB cipher [NIST-AES-ECB]. Future
 standards could add new algorithms that use other ciphers to provide
 cryptographic agility in accordance with [RFC7696]. QUIC-LB
 implementations SHOULD be extensible to support new algorithms.

5.4.1. Special Case: Single Pass Encryption

 When the nonce length and server ID length sum to exactly 16 octets,
 the server MUST use a single-pass encryption algorithm. All
 connection ID octets except the first form an AES-ECB block. This
 block is encrypted once, and the result forms the second through
 seventeenth most significant bytes of the connection ID.

5.4.2. General Case: Four-Pass Encryption

 Any other field length requires four passes for encryption and at
 least three for decryption. To understand this algorithm, it is
 useful to define four functions that minimize the amount of bit-
 shifting necessary in the event that there are an odd number of
 octets.

 When configured with both a key, and a nonce length and server ID
 length that sum to any number other than 16, the server MUST follow
 the algorith below to encrypt the connection ID.

5.4.2.1. Overview

 The 4-pass algorithm is a four-round Feistel Network with the round
 function being AES-ECB. Most modern applications of Feistel Networks
 have more than four rounds. The implications of this choice, which
 is meant to limit the per-packet compute overhead at load balancers,
 are discussed in Section 9.7.

 The server concatenates the server ID and nonce into a single field,
 which is then split into equal halves. In successive passes, one of
 these halves is expanded into a 16B plaintext, encrypted with AES-
 ECB, and the result XORed with the other half. The diagram below
 shows the conceptual processing of a plaintext server ID and nonce
 into a connection ID. ’FO’ stands for ’First Octet’.

Duke, et al. Expires 28 February 2026 [Page 14]

Internet-Draft QUIC-LB August 2025

 +-----+-----------+-----------------------+
 | FO | Server ID | Nonce |
 +--+--+-----------+-----+-----------------+
 | |
 | V
 | +-----------------+-----------------+
 | | left_0 | right_0 |
 | +--+--------------+--------------+--+
 | | |
 | | |
 | | .--------. V
 | +-------->| AES-ECB +-------->â\212\225
 | | ’--------’ |
 | V .--------. | right_1
 | â\212\225<-----------+ AES-ECB |<-----+
 | | ’--------’ |
 | | left_1 .--------. V
 | +-------->| AES-ECB +-------->â\212\225
 | | ’--------’ |
 | V .--------. |
 | â\212\225<-----------+ AES-ECB |<-----+
 | | ’--------’ |
 | | |
 | V V
 | +-----------------+-----------------+
 | | left_2 | right_2 |
 | +-------+---------+--------+--------+
 | | |
 V V V
 +-----+-----------------------------------+
 | FO | Ciphertext |
 +-----+-----------------------------------+

5.4.2.2. Useful functions

 Two functions are useful to define:

 The expand(length, pass, input_bytes) function concatenates three
 arguments and outputs 16 zero-padded octets.

 The output of expand is as follows:

 ExpandResult {
 input_bytes(...),
 ZeroPad(...),
 length(8),
 pass(8)
 }

Duke, et al. Expires 28 February 2026 [Page 15]

Internet-Draft QUIC-LB August 2025

 in which:

 * ’input_bytes’ is drawn from one half of the plaintext. It forms
 the N most significant octets of the output, where N is half the
 ’length’ argument, rounded up, and thus a number between 3 and 10,
 inclusive.

 * ’Zeropad’ is a set of 14-N octets set to zero.

 * ’length’ is an 8-bit integer that reports the sum of the
 configured nonce length and server id length in octets, and forms
 the fifteenth octet of the output. The ’length’ argument MUST NOT
 exceed 19 and MUST NOT be less than 5.

 * ’pass’ is an 8-bit integer that reports the ’pass’ argument of the
 algorithm, and forms the sixteenth (least significant) octet of
 the output. It guarantees that the cryptographic input of every
 pass of the algorithm is unique.

 For example,

 expand(0x06, 0x02, 0xaaba3c) = 0xaaba3c00000000000000000000000602

 Similarly, truncate(input, n) returns the first n octets of ’input’.

 truncate(0x2094842ca49256198c2deaa0ba53caa0, 4) = 0x2094842c

 Let ’half_len’ be equal to ’plaintext_len’ / 2, rounded up.

5.4.2.3. Algorithm Description

 The example at the end of this section helps to clarify the steps
 described below.

 1. The server concatenates the server ID and nonce to create
 plaintext_CID. The length of the result in octets is
 plaintext_len.

 2. The server splits plaintext_CID into components left_0 and
 right_0 of equal length half_len. If plaintext_len is odd,
 right_0 clears its first four bits, and left_0 clears its last
 four bits. For example, 0x7040b81b55ccf3 would split into a
 left_0 of 0x7040b810 and right_0 of 0x0b55ccf3.

 3. Encrypt the result of expand(plaintext_len, 1, left_0) using an
 AES-ECB-128 cipher to obtain a ciphertext.

Duke, et al. Expires 28 February 2026 [Page 16]

Internet-Draft QUIC-LB August 2025

 4. XOR the first half_len octets of the ciphertext with right_0 to
 form right_1. Steps 3 and 4 can be summarized as

 result = AES_ECB(key, expand(plaintext_len, 1, left_0))
 right_1 = XOR(right_0, truncate(result, half_len))

 5. If the plaintext_len is odd, clear the first four bits of
 right_1.

 6. Repeat steps 3 and 4, but use them to compute left_1 by expanding
 and encrypting right_1 with pass = 2, and XOR the results with
 left_0.

 result = AES_ECB(key, expand(plaintext_len, 2, right_1))
 left_1 = XOR(left_0, truncate(result, half_len))

 7. If the plaintext_len is odd, clear the last four bits of left_1.

 8. Repeat steps 3 and 4, but use them to compute right_2 by
 expanding and encrypting left_1 with pass = 3, and XOR the
 results with right_1.

 result = AES_ECB(key, expand(plaintext_len, 3, left_1))
 right_2 = XOR(right_1, truncate(result, half_len))

 9. If the plaintext_len is odd, clear the first four bits of
 right_2.

 10. Repeat steps 3 and 4, but use them to compute left_2 by expanding
 and encrypting right_2 with pass = 4, and XOR the results with
 left_1.

 result = AES_ECB(key, expand(plaintext_len, 4, right_2))
 left_2 = XOR(left_1, truncate(result, half_len))

 11. If the plaintext_len is odd, clear the last four bits of left_2.

 12. The server concatenates left_2 with right_2 to form the
 ciphertext CID, which it appends to the first octet. If
 plaintext_len is odd, the four least significant bits of left_2
 and four most significant bits of right_2, which are all zero,
 are stripped off before concatenation to make the resulting
 ciphertext the same length as the original plaintext.

Duke, et al. Expires 28 February 2026 [Page 17]

Internet-Draft QUIC-LB August 2025

5.4.2.4. Encryption Example

 The following example executes the steps for the provided inputs.
 Note that the plaintext is of odd octet length, so the middle octet
 will be split evenly left_0 and right_0.

 server_id = 0x31441a
 nonce = 0x9c69c275
 key = 0xfdf726a9893ec05c0632d3956680baf0

 // step 1
 plaintext_CID = 0x31441a9c69c275
 plaintext_len = 7

 // step 2
 hash_len = 4
 left_0 = 0x31441a90
 right_0 = 0x0c69c275

 // step 3
 aes_input = 0x31441a90000000000000000000000701
 aes_output = 0xa255dd8cdacf01948d3a848c3c7fee23

 // step 4
 right_1 = 0x0c69c275 ^ 0xa255dd8c = 0xae3c1ff9

 // step 5 (clear bits)
 right_1 = 0x0e3c1ff9

 // step 6
 aes_input = 0x0e3c1ff9000000000000000000000702
 aes_output = 0xe5e452cb9e1bedb0b2bf830506bf4c4e
 left_1 = 0x31441a90 ^ 0xe5e452cb = 0xd4a0485b

 // step 7 (clear bits)
 left_1 = 0xd4a04850

 // step 8
 aes_input = 0xd4a04850000000000000000000000703
 aes_output = 0xb7821ab3024fed0913b6a04d18e3216f
 right_2 = 0x0e3c1ff9 ^ 0xb7821ab3 = 0xb9be054a

 // step 9 (clear bits)
 right_2 = 0x09be054a

 // step 10
 aes_input = 0x09be054a000000000000000000000704
 aes_output = 0xb334357cfdf81e3fafe180154eaf7378

Duke, et al. Expires 28 February 2026 [Page 18]

Internet-Draft QUIC-LB August 2025

 left_2 = 0xd4a04850 ^ 0xb3e4357c = 0x67947d2c

 // step 11 (clear bits)
 left_2 = 0x67947d20

 // step 12
 cid = first_octet || left_2 || right_2 = 0x0767947d29be054a

5.5. Load Balancer Actions

 On each incoming packet, the load balancer extracts consecutive
 octets, beginning with the second octet. If there is no key, the
 first octets correspond to the server ID.

 If there is a key, the load balancer takes one of two actions:

5.5.1. Special Case: Single Pass Encryption

 If server ID length and nonce length sum to exactly 16 octets, they
 form a ciphertext block. The load balancer decrypts the block using
 the AES-ECB key and extracts the server ID from the most significant
 bytes of the resulting plaintext.

5.5.2. General Case: Four-Pass Encryption

 First, split the ciphertext CID (excluding the first octet) into its
 equal- length components left_2 and right_2. Then follow the process
 below:

 result = AES_ECB(key, expand(plaintext_len, 4, right_2))
 left_1 = XOR(left_2, truncate(result, half_len))
 if (plaintext_len_is_odd()) clear_last_bits(left_1, 4)

 result = AES_ECB(key, expand(plaintext_len, 3, left_1))
 right_1 = XOR(right_2, truncate(result, half_len))
 if (plaintext_len_is_odd()) clear_first_bits(left_1, 4)

 result = AES_ECB(key, expand(plaintext_len, 2, right_1))
 left_0 = XOR(left_1, truncate(result, half_len))
 if (plaintext_len_is_odd()) clear_last_bits(left_0, 4)

 As the load balancer has no need for the nonce, it can conclude after
 3 passes as long as the server ID is entirely contained in left_0
 (i.e., the nonce is at least as large as the server ID). If the
 server ID is longer, a fourth pass is necessary:

Duke, et al. Expires 28 February 2026 [Page 19]

Internet-Draft QUIC-LB August 2025

 result = AES_ECB(key, expand(plaintext_len, 1, left_0))
 right_0 = XOR(right_1, truncate(result, half_len))
 if (plaintext_len_is_odd()) clear_first_bits(right_0, 4)

 and the load balancer has to concatenate left_0 and right_0 to obtain
 the complete server ID.

6. Per-connection state

 The CID allocation methods QUIC-LB defines no per-connection state at
 the load balancer, with a few conditional exceptions described in
 Section 4. Otherwise, the load balancer can extract the server ID
 from the connection ID of each incoming packet and route that packet
 accordingly.

 However, once a routing decision has been made, the load balancer MAY
 associate the 4-tuple or connection ID with the decision. This has
 two advantages:

 * The load balancer only extracts the server ID once until the
 4-tuple or connection ID changes. When the CID is encrypted, this
 might reduce computational load.

 * Incoming Stateless Reset packets and ICMP messages are easily
 routed to the correct origin server.

 In addition to the increased state requirements, however, load
 balancers cannot detect the packets that indicate the end of the
 connection, so they rely on a timeout to delete connection state.
 There are numerous considerations around setting such a timeout.

 In the event a connection ends, freeing an IP and port, and a
 different connection migrates to that IP and port before the timeout,
 the load balancer will misroute the different connection’s packets to
 the original server. A short timeout limits the likelihood of such a
 misrouting.

 Furthermore, if a short timeout causes premature deletion of state,
 the routing is easily recoverable by decoding an incoming Connection
 ID. However, a short timeout also reduces the chance that an
 incoming Stateless Reset is correctly routed.

Duke, et al. Expires 28 February 2026 [Page 20]

Internet-Draft QUIC-LB August 2025

 Note that some heuristics to purge state early can introduce Denial
 of Service vulnerabilities. For example, one heuristic might delete
 flow state once the load balancer observes a routable CID on that
 flow. An attacker that can observe a target flow can store a
 routable CID from a previous connection and spoof the target flow’s
 4-tuple with the routable CID, causing premature deletion of that
 state.

 Servers MAY implement the technique described in Section 14.4.1 of
 [RFC9000] in case the load balancer is stateless, to increase the
 likelihood a Source Connection ID is included in ICMP responses to
 Path Maximum Transmission Unit (PMTU) probes. Load balancers MAY
 parse the echoed packet to extract the Source Connection ID, if it
 contains a QUIC long header, and extract the Server ID as if it were
 in a Destination CID.

7. Additional Use Cases

 This section discusses considerations for some deployment scenarios
 not implied by the specification above.

7.1. Load balancer chains

 Some network architectures may have multiple tiers of low-state load
 balancers, where a first tier of devices makes a routing decision to
 the next tier, and so on, until packets reach the server. Although
 QUIC-LB is not explicitly designed for this use case, it is possible
 to support it.

 If each load balancer is assigned a range of server IDs that is a
 subset of the range of IDs assigned to devices that are closer to the
 client, then the first devices to process an incoming packet can
 extract the server ID and then map it to the correct forwarding
 address. Note that this solution is extensible to arbitrarily large
 numbers of load-balancing tiers, as the maximum server ID space is
 quite large.

 If the number of necessary server IDs per next hop is uniform, a
 simple implementation would use successively longer server IDs at
 each tier of load balancing, and the server configuration would match
 the last tier. Load balancers closer to the client can then treat
 any parts of the server ID they did not use as part of the nonce.

Duke, et al. Expires 28 February 2026 [Page 21]

Internet-Draft QUIC-LB August 2025

7.2. Server Process Demultiplexing

 QUIC servers might have QUIC running on multiple processes or threads
 listening on the same address, and have a need to demultiplex between
 them. In principle, this demultiplexer is a Layer 4 load balancer,
 and the guidance in Section 7.1 applies. However, in many
 deployments the demultiplexer lacks the capability to perform
 decryption operations. Internal server coordination is out of scope
 of this specification, but this non-normative section proposes some
 approaches that could work given certain server capabilities:

 * Some bytes of the server ID are reserved to encode the process ID.
 The demultiplexer might operate based on the 4-tuple or other
 legacy indicator, but the receiving server process extracts the
 server ID, and if it does not match the one for that process, the
 process could "toss" the packet to the correct destination
 process.

 * Each process could register the connection IDs it generates with
 the demultiplexer, which routes those connection IDs accordingly.

 * In a combination of the two approaches above, the demultiplexer
 generally routes by 4-tuple. After a migration, the process
 tosses the first flight of packets and registers the new
 connection ID with the demultiplexer. This alternative limits the
 bandwidth consumption of tossing and the memory footprint of a
 full connection ID table.

 * When generating a connection ID, the server writes the process ID
 to the random field of the first octet, or if this is being used
 for length encoding, in an octet it appends after the ciphertext.
 It then applies a keyed hash (with a key locally generated for the
 sole use of that server). The hash result is used as a bitmask to
 XOR with the bits encoding the process ID. On packet receipt, the
 demultiplexer applies the same keyed hash to generate the same
 mask and recoversthe process ID. (Note that this approach is
 conceptually similar to QUIC header protection). It is important
 that the server also appends the process ID to the server ID in
 the plaintext, so that different processes do not generate the
 same ciphertext. The load balancer will consider this data to be
 part of the nonce.

7.3. Moving connections between servers

 Some deployments may transparently move a connection from one server
 to another. The means of transferring connection state between
 servers is out of scope of this document.

Duke, et al. Expires 28 February 2026 [Page 22]

Internet-Draft QUIC-LB August 2025

 To support a handover, a server involved in the transition could
 issue CIDs that map to the new server via a NEW_CONNECTION_ID frame,
 and retire CIDs associated with the old server using the "Retire
 Prior To" field in that frame.

8. Version Invariance of QUIC-LB

 The server ID encodings, and requirements for their handling, are
 designed to be QUIC version independent (see [RFC8999]). A QUIC-LB
 load balancer will generally not require changes as servers deploy
 new versions of QUIC. However, there are several unlikely future
 design decisions that could impact the operation of QUIC-LB.

 A QUIC version might define limits on connection ID length that make
 some or all of the mechanisms in this document unusable. For
 example, a maximum connection ID length could be below the minimum
 necessary to use all or part of this specification; or, the minimum
 connection ID length could be larger than the largest value in this
 specification. Similarly, the length self-encoding specification
 cannot accommodate connection IDs longer than 32 bytes.

 The advanced fallback implementation supports a requirement to
 inspect version- specific elements of packets to make a routing
 decision, such as the Server Name Indication (SNI) extension in the
 TLS Client Hello. The format and cryptographic protection of this
 information may change in future versions or extensions of TLS or
 QUIC, and therefore this functionality is inherently version-
 dependent. Such a load balancer, when it receives packets from an
 unknown QUIC version, might misdirect initial packets to the wrong
 tenant. While this can be inefficient, the design in this document
 preserves the ability for tenants to deploy new versions provided
 they have an out-of-band means of providing a connection ID for the
 client to use.

 Section 4.2 provides guidance about how load balancers should handle
 unroutable DCIDs. This guidance, and the implementation of an
 algorithm to handle these DCIDs, rests on some assumptions about
 packets that contain client-generated DCIDs that are not specified in
 RFC 8999:

 1. they do not have short headers;

 2. the 4-tuple remains constant;

 3. if the load-balancer uses the Advanced Fallback Algorithm, the
 packets have a constant Source Connection ID.

Duke, et al. Expires 28 February 2026 [Page 23]

Internet-Draft QUIC-LB August 2025

 While this document does not update the commitments in [RFC8999], the
 additional assumptions are minimal and narrowly scoped, and provide a
 likely set of constants that load balancers can use with minimal risk
 of version- dependence.

 If these assumptions are not valid, this specification is likely to
 lead to loss of packets that contain unroutable DCIDs, and in extreme
 cases connection failure. A QUIC version that violates the
 assumptions in this section therefore cannot be safely deployed with
 a load balancer that follows this specification. An updated or
 alternative version of this specification might address these
 shortcomings for such a QUIC version.

9. Security Considerations

 QUIC-LB is intended to prevent linkability. Attacks would therefore
 attempt to subvert this purpose.

 Note that without a key for the encoding, QUIC-LB makes no attempt to
 obscure the server mapping, and therefore does not address these
 concerns. Without a key, QUIC-LB merely allows consistent CID
 encoding for compatibility across a network infrastructure, which
 makes QUIC robust to NAT rebinding. Servers that are encoding their
 server ID without a key algorithm SHOULD only use it to generate new
 CIDs for the Server Initial Packet and SHOULD NOT send CIDs in QUIC
 NEW_CONNECTION_ID frames, except that it sends one new Connection ID
 in the event of config rotation Section 3.1. Doing so might falsely
 suggest to the client that said CIDs were generated in a secure
 fashion.

 A linkability attack would find some means of determining that two
 connection IDs route to the same server. Due to the limitations of
 measures at QUIC layer, there is no scheme that strictly prevents
 linkability for all traffic patterns.

 To see why, consider two limits. At one extreme, one client is
 connected to the server pool and migrates its address. An observer
 can easily link the two addresses, and there is no remedy at the QUIC
 layer.

 At the other extreme, a very large number of clients are connected to
 each server, and they all migrate address constantly. At this limit,
 even an unencrypted server ID encoding is unlikely to definitively
 link two addresses.

 Therefore, efforts to frustrate any analysis of server ID encoding
 have diminishing returns. Nevertheless, this specification seeks to
 minimize the probability two addresses can be linked.

Duke, et al. Expires 28 February 2026 [Page 24]

Internet-Draft QUIC-LB August 2025

9.1. Attackers not between the load balancer and server

 Any attacker might open a connection to the server infrastructure and
 aggressively simulate migration to obtain a large sample of IDs that
 map to the same server. It could then apply analytical techniques to
 try to obtain the server encoding.

 An encrypted encoding provides robust protection against this. An
 unencrypted one provides none.

 Were this analysis to obtain the server encoding, then on-path
 observers might apply this analysis to correlating different client
 IP addresses.

9.2. Attackers between the load balancer and server

 Attackers in this privileged position are intrinsically able to map
 two connection IDs to the same server. These algorithms ensure that
 two connection IDs for the same connection cannot be identified as
 such as long as the server chooses the first octet and any plaintext
 nonce correctly.

9.3. Multiple Configuration IDs

 During the period in which there are multiple deployed configuration
 IDs (see Section 3.1), there is a slight increase in linkability.
 The server space is effectively divided into segments with CIDs that
 have different config rotation bits. Entities that manage servers
 SHOULD strive to minimize these periods by quickly deploying new
 configurations across the server pool.

9.4. Limited configuration scope

 A simple deployment of QUIC-LB in a cloud provider might use the same
 global QUIC-LB configuration across all its load balancers that route
 to customer servers. An attacker could then simply become a
 customer, obtain the configuration, and then extract server IDs of
 other customers’ connections at will.

 To avoid this, the configuration agent SHOULD issue QUIC-LB
 configurations to mutually distrustful servers that have different
 keys for encryption algorithms. In many cases, the load balancers
 can distinguish these configurations by external IP address.

 However, assigning multiple entities to an IP address is
 complimentary with concealing DNS requests (e.g., DoH [RFC8484]) and
 the TLS Server Name Indicator (SNI) ([I-D.ietf-tls-esni]) to obscure
 the ultimate destination of traffic. While the load balancer’s

Duke, et al. Expires 28 February 2026 [Page 25]

Internet-Draft QUIC-LB August 2025

 fallback algorithm (Section 4.3) can use the SNI to make a routing
 decision on the first packet, there are three ways to route
 subsequent packets:

 * all co-tenants can use the same QUIC-LB configuration, leaking the
 server mapping to each other as described above;

 * co-tenants can be issued one of up to seven configurations
 distinguished by the config rotation bits (Section 3.1), exposing
 information about the target domain to the entire network; or

 * tenants can use the 0b111 codepoint in their CIDs (in which case
 they SHOULD disable migration in their connections), which
 neutralizes the value of QUIC-LB but preserves privacy.

 When configuring QUIC-LB, administrators evaluate the privacy
 tradeoff by considering the relative value of each of these
 properties, given the trust model between tenants, the presence of
 methods to obscure the domain name, and value of address migration in
 the tenant use cases.

 In the case that the administrating entity also controls a reverse
 proxy between the load balancer and the tenants, this entity
 generates the external CIDs, and there is no tradeoff.

 As the plaintext algorithm makes no attempt to conceal the server
 mapping, these deployments MAY simply use a common configuration.

9.5. Stateless Reset Oracle

 Section 21.9 of [RFC9000] discusses the Stateless Reset Oracle
 attack. For a server deployment to be vulnerable, an attacking
 client must be able to cause two packets with the same Destination
 CID to arrive at two different servers that share the same
 cryptographic context for Stateless Reset tokens. As QUIC-LB
 requires deterministic routing of DCIDs over the life of a
 connection, it is a sufficient means of avoiding an Oracle without
 additional measures.

Duke, et al. Expires 28 February 2026 [Page 26]

Internet-Draft QUIC-LB August 2025

 Note also that when a server starts using a new QUIC-LB config
 rotation codepoint, new CIDs might not be unique with respect to
 previous configurations that occupied that codepoint, and therefore
 different clients may have observed the same CID and stateless reset
 token. A straightforward method of managing stateless reset keys is
 to maintain a separate key for each config rotation codepoint, and
 replace each key when the configuration for that codepoint changes.
 Thus, a server transitions from one config to another, it will be
 able to generate correct tokens for connections using either type of
 CID.

9.6. Connection ID Entropy

 If a server ever reuses a nonce in generating a CID for a given
 configuration, it risks exposing sensitive information. Given the
 same server ID, the CID will be identical (aside from a possible
 difference in the first octet). This can risk exposure of the QUIC-
 LB key. If two clients receive the same connection ID, they also
 have each other’s stateless reset token unless that key has changed
 in the interim.

 The encrypted mode needs to generate different cipher text for each
 generated Connection ID instance to protect the Server ID. To do so,
 at least four octets of the CID are reserved for a nonce that, if
 used only once, will result in unique cipher text for each Connection
 ID.

 If servers simply increment the nonce by one with each generated
 connection ID, then it is safe to use the existing keys until any
 server’s nonce counter exhausts the allocated space and rolls over.
 To maximize entropy, servers SHOULD start with a random nonce value,
 in which case the configuration is usable until the nonce value wraps
 around to zero and then reaches the initial value again.

 Whether or not it implements the counter method, the server MUST NOT
 reuse a nonce until it switches to a configuration with new keys.

 Servers are forbidden from generating linkable plaintext nonces,
 because observable correlations between plaintext nonces would
 provide trivial linkability between individual connections, rather
 than just to a common server.

 For any algorithm, configuration agents SHOULD implement an out-of-
 band method to discover when servers are in danger of exhausting
 their nonce space, and SHOULD respond by issuing a new configuration.
 A server that has exhausted its nonces MUST either switch to a
 different configuration, or if none exists, use the 4-tuple routing
 config rotation codepoint.

Duke, et al. Expires 28 February 2026 [Page 27]

Internet-Draft QUIC-LB August 2025

 When sizing a nonce that is to be randomly generated, the
 configuration agent SHOULD consider that a server generating a N-bit
 nonce will create a duplicate about every 2^(N/2) attempts, and
 therefore compare the expected rate at which servers will generate
 CIDs with the lifetime of a configuration.

9.7. Distinguishing Attacks

 The Four Pass Encryption algorithm is structured as a 4-round Feistel
 network with non-bijective round function. As such, it does not
 offer a very high security level against distinguishing attacks, as
 explained in [Patarin2008]. Attackers can mount these attacks if
 they are in possession of O(SQRT(len/2)) pairs of ciphertext and
 known corresponding plain text, where "len" is the sum of the lengths
 of the Server ID and the Nonce.

 The authors considered increasing the number of passes from 4 to 12,
 which would definitely block these attacks. However, this would
 require 12 round of AES decryption by load balancers accessing the
 CID, a cost deemed prohibitive in the planned deployments.

 The attacks described in [Patarin2008] rely on known plain text. In
 a normal deployment, the plain text is only known by the server that
 generates the ID and by the load balancer that decrypts the content
 of the CID. Attackers would have to compensate by guesses about the
 allocation of server identifiers or the generation of nonces. These
 attacks are thus mitigated by making nonces hard to guess, as
 specified in Section 9.6, and by rules related to mixed deployments
 that use both clear text CID and encrypted CID, for example when
 transitioning from clear text to encryption. Such deployments MUST
 use different server ID allocations for the clear text and the
 encrypted versions.

 These attacks cannot be mounted against the Single Pass Encryption
 algorithm.

9.8. Early deletion of load balancer connection state

 Potential vulnerabilities related to heuristics that delete per-
 connection state are described in Section 6. Under certain
 assumptions about server configuration and fallback algorithm, this
 state might be critical to maintaining connectivity. Under other
 assumptions, the state provides robustness to improbable network
 events.

Duke, et al. Expires 28 February 2026 [Page 28]

Internet-Draft QUIC-LB August 2025

10. IANA Considerations

 There are no IANA requirements.

11. References

11.1. Normative References

 [NIST-AES-ECB]
 Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Methods and Techniques", NIST Special
 Publication 800-38A, 2021,
 <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
 nistspecialpublication800-38a.pdf>.

 [RFC8999] Thomson, M., "Version-Independent Properties of QUIC",
 RFC 8999, DOI 10.17487/RFC8999, May 2021,
 <https://www.rfc-editor.org/rfc/rfc8999>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

11.2. Informative References

 [I-D.ietf-tls-esni]
 Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS
 Encrypted Client Hello", Work in Progress, Internet-Draft,
 draft-ietf-tls-esni-25, 14 June 2025,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 esni-25>.

 [Patarin2008]
 Patarin, J., "Generic Attacks on Feistel Schemes -
 Extended Version", 2008,
 <https://eprint.iacr.org/2008/036.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <https://www.rfc-editor.org/rfc/rfc4347>.

Duke, et al. Expires 28 February 2026 [Page 29]

Internet-Draft QUIC-LB August 2025

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/rfc/rfc6066>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/rfc/rfc6347>.

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",
 BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/rfc/rfc7696>.

 [RFC7983] Petit-Huguenin, M. and G. Salgueiro, "Multiplexing Scheme
 Updates for Secure Real-time Transport Protocol (SRTP)
 Extension for Datagram Transport Layer Security (DTLS)",
 RFC 7983, DOI 10.17487/RFC7983, September 2016,
 <https://www.rfc-editor.org/rfc/rfc7983>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8340>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/rfc/rfc8484>.

 [RFC9146] Rescorla, E., Ed., Tschofenig, H., Ed., Fossati, T., and
 A. Kraus, "Connection Identifier for DTLS 1.2", RFC 9146,
 DOI 10.17487/RFC9146, March 2022,
 <https://www.rfc-editor.org/rfc/rfc9146>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/rfc/rfc9147>.

Appendix A. QUIC-LB YANG Model

 These YANG models conform to [RFC6020] and express a complete QUIC-LB
 configuration. There is one model for the server and one for the
 middlebox (i.e the load balancer and/or Retry Service).

Duke, et al. Expires 28 February 2026 [Page 30]

Internet-Draft QUIC-LB August 2025

 module ietf-quic-lb-server {
 yang-version "1.1";
 namespace "urn:ietf:params:xml:ns:yang:ietf-quic-lb";
 prefix "quic-lb";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types.";
 }

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types.";
 }

 organization
 "IETF QUIC Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/quic>
 WG List: <quic@ietf.org>

 Authors: Martin Duke (martin.h.duke at gmail dot com)
 Nick Banks (nibanks at microsoft dot com)
 Christian Huitema (huitema at huitema.net)";

 description
 "This module enables the explicit cooperation of QUIC servers
 with trusted intermediaries without breaking important
 protocol features.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

Duke, et al. Expires 28 February 2026 [Page 31]

Internet-Draft QUIC-LB August 2025

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision "2023-07-14" {
 description
 "Updated to design in version 17 of the draft";
 reference
 "RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";
 }

 container quic-lb {
 presence "The container for QUIC-LB configuration.";

 description
 "QUIC-LB container.";

 typedef quic-lb-key {
 type yang:hex-string {
 length 47;
 }
 description
 "This is a 16-byte key, represented with 47 bytes";
 }

 leaf config-id {
 type uint8 {
 range "0..6";
 }
 mandatory true;
 description
 "Identifier for this CID configuration.";
 }

 leaf first-octet-encodes-cid-length {
 type boolean;
 default false;
 description
 "If true, the six least significant bits of the first
 CID octet encode the CID length minus one.";
 }

 leaf server-id-length {
 type uint8 {
 range "1..15";
 }
 must ’. <= (19 - ../nonce-length)’ {

Duke, et al. Expires 28 February 2026 [Page 32]

Internet-Draft QUIC-LB August 2025

 error-message
 "Server ID and nonce lengths must sum
 to no more than 19.";
 }
 mandatory true;
 description
 "Length (in octets) of a server ID. Further range-limited
 by nonce-length.";
 }

 leaf nonce-length {
 type uint8 {
 range "4..18";
 }
 mandatory true;
 description
 "Length, in octets, of the nonce. Short nonces mean there
 will be frequent configuration updates.";
 }

 leaf cid-key {
 type quic-lb-key;
 description
 "Key for encrypting the connection ID.";
 }

 leaf server-id {
 type yang:hex-string;
 must "string-length(.) = 3 * ../../server-id-length - 1";
 mandatory true;
 description
 "An allocated server ID";
 }
 }
 }

 module ietf-quic-lb-middlebox {
 yang-version "1.1";
 namespace "urn:ietf:params:xml:ns:yang:ietf-quic-lb";
 prefix "quic-lb";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types.";
 }

 import ietf-inet-types {

Duke, et al. Expires 28 February 2026 [Page 33]

Internet-Draft QUIC-LB August 2025

 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types.";
 }

 organization
 "IETF QUIC Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/quic>
 WG List: <quic@ietf.org>

 Authors: Martin Duke (martin.h.duke at gmail dot com)
 Nick Banks (nibanks at microsoft dot com)
 Christian Huitema (huitema at huitema.net)";

 description
 "This module enables the explicit cooperation of QUIC servers
 with trusted intermediaries without breaking important
 protocol features.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision "2021-02-11" {
 description
 "Updated to design in version 13 of the draft";
 reference
 "RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";
 }

Duke, et al. Expires 28 February 2026 [Page 34]

Internet-Draft QUIC-LB August 2025

 container quic-lb {
 presence "The container for QUIC-LB configuration.";

 description
 "QUIC-LB container.";

 typedef quic-lb-key {
 type yang:hex-string {
 length 47;
 }
 description
 "This is a 16-byte key, represented with 47 bytes";
 }

 list cid-configs {
 key "config-rotation-bits";
 description
 "List up to three load balancer configurations";

 leaf config-rotation-bits {
 type uint8 {
 range "0..2";
 }
 mandatory true;
 description
 "Identifier for this CID configuration.";
 }

 leaf server-id-length {
 type uint8 {
 range "1..15";
 }
 must ’. <= (19 - ../nonce-length)’ {
 error-message
 "Server ID and nonce lengths must sum to
 no more than 19.";
 }
 mandatory true;
 description
 "Length (in octets) of a server ID. Further range-limited
 by nonce-length.";
 }

 leaf cid-key {
 type quic-lb-key;
 description
 "Key for encrypting the connection ID.";
 }

Duke, et al. Expires 28 February 2026 [Page 35]

Internet-Draft QUIC-LB August 2025

 leaf nonce-length {
 type uint8 {
 range "4..18";
 }
 mandatory true;
 description
 "Length, in octets, of the nonce. Short nonces mean there
 will be frequent configuration updates.";
 }

 list server-id-mappings {
 key "server-id";
 description "Statically allocated Server IDs";

 leaf server-id {
 type yang:hex-string;
 must "string-length(.) = 3 * ../../server-id-length - 1";
 mandatory true;
 description
 "An allocated server ID";

 }

 leaf server-address {
 type inet:ip-address;
 mandatory true;
 description
 "Destination address corresponding to the server ID";
 }
 }
 }
 }
 }

A.1. Tree Diagram

 This summary of the YANG models uses the notation in [RFC8340].

 module: ietf-quic-lb-server
 +--rw quic-lb!
 +--rw config-id uint8
 +--rw first-octet-encodes-cid-length? boolean
 +--rw server-id-length uint8
 +--rw nonce-length uint8
 +--rw cid-key? quic-lb-key
 +--rw server-id yang:hex-string

Duke, et al. Expires 28 February 2026 [Page 36]

Internet-Draft QUIC-LB August 2025

 module: ietf-quic-lb-middlebox
 +--rw quic-lb!
 +--rw cid-configs* [config-rotation-bits]
 | +--rw config-rotation-bits uint8
 | +--rw server-id-length uint8
 | +--rw cid-key? quic-lb-key
 | +--rw nonce-length uint8
 | +--rw server-id-mappings* [server-id]
 | +--rw server-id yang:hex-string
 | +--rw server-address inet:ip-address

Appendix B. Load Balancer Test Vectors

 This section uses the following abbreviations:

 cid Connection ID
 cr_bits Config Rotation Bits
 LB Load Balancer
 sid Server ID

 In all cases, the server is configured to encode the CID length.

B.1. Unencrypted CIDs

 cr_bits sid nonce cid
 0 c4605e 4504cc4f 07c4605e4504cc4f
 1 350d28b420 3487d970b 20a350d28b4203487d970b

B.2. Encrypted CIDs

 The key for all of these examples is
 8f95f09245765f80256934e50c66207f. The test vectors include an
 example that uses the 16-octet single-pass special case, as well as
 an instance where the server ID length exceeds the nonce length,
 requiring a fourth decryption pass.

 cr_bits sid nonce cid
 0 ed793a ee080dbf 0720b1d07b359d3c
 1 ed793a51d49b8f5fab65 ee080dbf48
 2fcc381bc74cb4fbad2823a3d1f8fed2
 2 ed793a51d49b8f5f ee080dbf48c0d1e5
 504dd2d05a7b0de9b2b9907afb5ecf8cc3
 3 ed793a51d49b8f5fab ee080dbf48c0d1e55d
 125779c9cc86beb3a3a4a3ca96fce4bfe0cdbc

Duke, et al. Expires 28 February 2026 [Page 37]

Internet-Draft QUIC-LB August 2025

Appendix C. Interoperability with DTLS over UDP

 Some environments may contain DTLS traffic as well as QUIC operating
 over UDP, which may be hard to distinguish.

 In most cases, the packet parsing rules above will cause a QUIC-LB
 load balancer to route DTLS traffic in an appropriate way. DTLS 1.3
 implementations that use the connection_id extension [RFC9146] might
 use the techniques in this document to generate connection IDs and
 achieve robust routability for DTLS associations if they meet a few
 additional requirements. This non-normative appendix describes this
 interaction.

C.1. DTLS 1.0 and 1.2

 DTLS 1.0 [RFC4347] and 1.2 [RFC6347] use packet formats that a QUIC-
 LB router will interpret as short header packets with CIDs that
 request 4-tuple routing. As such, they will route such packets
 consistently as long as the 4-tuple does not change. Note that DTLS
 1.0 has been deprecated by the IETF.

 The first octet of every DTLS 1.0 or 1.2 datagram contains the
 content type. A QUIC-LB load balancer will interpret any content
 type less than 128 as a short header packet, meaning that the
 subsequent octets should contain a connection ID.

 Existing TLS content types comfortably fit in the range below 128.
 Assignment of codepoints greater than 64 would require coordination
 in accordance with [RFC7983], and anyway would likely create problems
 demultiplexing DTLS and version 1 of QUIC. Therefore, this document
 believes it is extremely unlikely that TLS content types of 128 or
 greater will be assigned. Nevertheless, such an assignment would
 cause a QUIC-LB load balancer to interpret the packet as a QUIC long
 header with an essentially random connection ID, which is likely to
 be routed irregularly.

 The second octet of every DTLS 1.0 or 1.2 datagram is the bitwise
 complement of the DTLS Major version (i.e. version 1.x = 0xfe). A
 QUIC-LB load balancer will interpret this as a connection ID that
 requires 4-tuple based load balancing, meaning that the routing will
 be consistent as long as the 4-tuple remains the same.

 [RFC9146] defines an extension to add connection IDs to DTLS 1.2.
 Unfortunately, a QUIC-LB load balancer will not correctly parse the
 connection ID and will continue 4-tuple routing. An modified QUIC-LB
 load balancer that correctly identifies DTLS and parses a DTLS 1.2
 datagram for the connection ID is outside the scope of this document.

Duke, et al. Expires 28 February 2026 [Page 38]

Internet-Draft QUIC-LB August 2025

C.2. DTLS 1.3

 DTLS 1.3 [RFC9147] changes the structure of datagram headers in
 relevant ways.

 Handshake packets continue to have a TLS content type in the first
 octet and 0xfe in the second octet, so they will be 4-tuple routed,
 which should not present problems for likely NAT rebinding or address
 change events.

 Non-handshake packets always have zero in their most significant bit
 and will therefore always be treated as QUIC short headers. If the
 connection ID is present, it follows in the succeeding octets.
 Therefore, a DTLS 1.3 association where the server utilizes
 Connection IDs and the encodings in this document will be routed
 correctly in the presence of client address and port changes.

 However, if the client does not include the connection_id extension
 in its ClientHello, the server is unable to use connection IDs. In
 this case, non- handshake packets will appear to contain random
 connection IDs and be routed randomly. Thus, unmodified QUIC-LB load
 balancers will not work with DTLS 1.3 if the client does not
 advertise support for connection IDs, or the server does not request
 the use of a compliant connection ID.

 A QUIC-LB load balancer might be modified to identify DTLS 1.3
 packets and correctly parse the fields to identify when there is no
 connection ID and revert to 4-tuple routing, removing the server
 requirement above. However, such a modification is outside the scope
 of this document, and classifying some packets as DTLS might be
 incompatible with future versions of QUIC.

C.3. Future Versions of DTLS

 As DTLS does not have an IETF consensus document that defines what
 parts of DTLS will be invariant in future versions, it is difficult
 to speculate about the applicability of this section to future
 versions of DTLS.

Appendix D. Acknowledgments

 Manasi Deval, Erik Fuller, Toma Gavrichenkov, Greg Greenway, Jana
 Iyengar, Subodh Iyengar, Stefan Kolbl, Ladislav Lhotka, Jan Lindblad,
 Ling Tao Nju, Ilari Liusvaara, Kazuho Oku, Udip Pant, Zaheduzzaman
 Sarker, Ian Swett, Andy Sykes, Martin Thomson, Dmitri Tikhonov,
 Victor Vasiliev, Xingcan Lan, Yu Zhu, and William Zeng Ke all
 provided useful input to this document.

Duke, et al. Expires 28 February 2026 [Page 39]

Internet-Draft QUIC-LB August 2025

Appendix E. Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

E.1. since draft-ietf-quic-load-balancers-20

 * Changed definition of Unroutable DCIDs, and rewrote sections on
 config failover and fallback routing to avoid misrouted
 connections.

 * Deleted text on dropping packets

 * Rewrote version invariance section

E.2. since draft-ietf-quic-load-balancers-19

 * Further guidance on multiple server processes/threads

 * Fixed error in encryption example.

 * Clarified fallback algorithms and known QUIC versions.

E.3. since draft-ietf-quic-load-balancers-18

 * Rearranged the output of the expand function to reduce CPU load of
 decrypt

E.4. since draft-ietf-quic-load-balancers-17

 * fixed regressions in draft-17 publication

E.5. since draft-ietf-quic-load-balancers-16

 * added a config ID bit (now there are 3).

E.6. since draft-ietf-quic-load-balancers-15

 * aasvg fixes.

E.7. since draft-ietf-quic-load-balancers-14

 * Revised process demultiplexing text

 * Restored lost text in Security Considerations

 * Editorial comments from Martin Thomson.

Duke, et al. Expires 28 February 2026 [Page 40]

Internet-Draft QUIC-LB August 2025

 * Tweaked 4-pass algorithm to avoid accidental plaintext
 similarities

E.8. since draft-ietf-quic-load-balancers-13

 * Incorporated Connection ID length in argument of truncate function

 * Added requirements for codepoint 0b11.

 * Describe Distinguishing Attack in Security Considerations.

 * Added non-normative language about server process demultiplexers

E.9. since draft-ietf-quic-load-balancers-12

 * Separated Retry Service design into a separate draft

E.10. since draft-ietf-quic-load-balancers-11

 * Fixed mistakes in test vectors

E.11. since draft-ietf-quic-load-balancers-10

 * Refactored algorithm descriptions; made the 4-pass algorithm
 easier to implement

 * Revised test vectors

 * Split YANG model into a server and middlebox version

E.12. since draft-ietf-quic-load-balancers-09

 * Renamed "Stream Cipher" and "Block Cipher" to "Encrypted Short"
 and "Encrypted Long"

 * Added section on per-connection state

 * Changed "Encrypted Short" to a 4-pass algorithm.

 * Recommended a random initial nonce when incrementing.

 * Clarified what SNI LBs should do with unknown QUIC versions.

E.13. since draft-ietf-quic-load-balancers-08

 * Eliminate Dynamic SID allocation

 * Eliminated server use bytes

Duke, et al. Expires 28 February 2026 [Page 41]

Internet-Draft QUIC-LB August 2025

E.14. since draft-ietf-quic-load-balancers-07

 * Shortened SSCID nonce minimum length to 4 bytes

 * Removed RSCID from Retry token body

 * Simplified CID formats

 * Shrunk size of SID table

E.15. since draft-ietf-quic-load-balancers-06

 * Added interoperability with DTLS

 * Changed "non-compliant" to "unroutable"

 * Changed "arbitrary" algorithm to "fallback"

 * Revised security considerations for mistrustful tenants

 * Added retry service considerations for non-Initial packets

E.16. since draft-ietf-quic-load-balancers-05

 * Added low-config CID for further discussion

 * Complete revision of shared-state Retry Token

 * Added YANG model

 * Updated configuration limits to ensure CID entropy

 * Switched to notation from quic-transport

E.17. since draft-ietf-quic-load-balancers-04

 * Rearranged the shared-state retry token to simplify token
 processing

 * More compact timestamp in shared-state retry token

 * Revised server requirements for shared-state retries

 * Eliminated zero padding from the test vectors

 * Added server use bytes to the test vectors

 * Additional compliant DCID criteria

Duke, et al. Expires 28 February 2026 [Page 42]

Internet-Draft QUIC-LB August 2025

E.18. since-draft-ietf-quic-load-balancers-03

 * Improved Config Rotation text

 * Added stream cipher test vectors

 * Deleted the Obfuscated CID algorithm

E.19. since-draft-ietf-quic-load-balancers-02

 * Replaced stream cipher algorithm with three-pass version

 * Updated Retry format to encode info for required TPs

 * Added discussion of version invariance

 * Cleaned up text about config rotation

 * Added Reset Oracle and limited configuration considerations

 * Allow dropped long-header packets for known QUIC versions

E.20. since-draft-ietf-quic-load-balancers-01

 * Test vectors for load balancer decoding

 * Deleted remnants of in-band protocol

 * Light edit of Retry Services section

 * Discussed load balancer chains

E.21. since-draft-ietf-quic-load-balancers-00

 * Removed in-band protocol from the document

E.22. Since draft-duke-quic-load-balancers-06

 * Switch to IETF WG draft.

E.23. Since draft-duke-quic-load-balancers-05

 * Editorial changes

 * Made load balancer behavior independent of QUIC version

 * Got rid of token in stream cipher encoding, because server might
 not have it

Duke, et al. Expires 28 February 2026 [Page 43]

Internet-Draft QUIC-LB August 2025

 * Defined "non-compliant DCID" and specified rules for handling
 them.

 * Added psuedocode for config schema

E.24. Since draft-duke-quic-load-balancers-04

 * Added standard for retry services

E.25. Since draft-duke-quic-load-balancers-03

 * Renamed Plaintext CID algorithm as Obfuscated CID

 * Added new Plaintext CID algorithm

 * Updated to allow 20B CIDs

 * Added self-encoding of CID length

E.26. Since draft-duke-quic-load-balancers-02

 * Added Config Rotation

 * Added failover mode

 * Tweaks to existing CID algorithms

 * Added Block Cipher CID algorithm

 * Reformatted QUIC-LB packets

E.27. Since draft-duke-quic-load-balancers-01

 * Complete rewrite

 * Supports multiple security levels

 * Lightweight messages

E.28. Since draft-duke-quic-load-balancers-00

 * Converted to markdown

 * Added variable length connection IDs

Authors’ Addresses

Duke, et al. Expires 28 February 2026 [Page 44]

Internet-Draft QUIC-LB August 2025

 Martin Duke
 Google
 Email: martin.h.duke@gmail.com

 Nick Banks
 Microsoft
 Email: nibanks@microsoft.com

 Christian Huitema
 Private Octopus Inc.
 Email: huitema@huitema.net

Duke, et al. Expires 28 February 2026 [Page 45]

QUIC R. Marx, Ed.
Internet-Draft Akamai
Intended status: Standards Track L. Niccolini, Ed.
Expires: 23 April 2026 Meta
 M. Seemann, Ed.

 L. Pardue, Ed.
 Cloudflare
 20 October 2025

 HTTP/3 qlog event definitions
 draft-ietf-quic-qlog-h3-events-12

Abstract

 This document defines a qlog event schema containing concrete events
 for the core HTTP/3 protocol and selected extensions.

Note to Readers

 Note to RFC editor: Please remove this section before publication.

 Feedback and discussion are welcome at https://github.com/quicwg/qlog
 (https://github.com/quicwg/qlog). Readers are advised to refer to
 the "editor’s draft" at that URL for an up-to-date version of this
 document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 April 2026.

Marx, et al. Expires 23 April 2026 [Page 1]

Internet-Draft HTTP/3 qlog event definitions October 2025

Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Usage with QUIC . 4
 1.2. Notational Conventions 4
 2. Event Schema Definition 5
 2.1. Draft Event Schema Identification 5
 3. HTTP/3 Events . 5
 3.1. parameters_set . 6
 3.2. parameters_restored 7
 3.3. stream_type_set . 8
 3.4. priority_updated . 9
 3.5. frame_created . 10
 3.6. frame_parsed . 10
 3.7. datagram_created . 11
 3.8. datagram_parsed . 11
 3.9. push_resolved . 12
 4. HTTP/3 Data Type Definitions 12
 4.1. Initiator . 12
 4.2. HTTP3Frame . 12
 4.3. HTTP3Datagram . 13
 4.3.1. HTTP3DataFrame 13
 4.3.2. HTTP3HeadersFrame 13
 4.3.3. HTTP3CancelPushFrame 15
 4.3.4. HTTP3SettingsFrame 15
 4.3.5. HTTP3PushPromiseFrame 16
 4.3.6. HTTP3GoAwayFrame 16
 4.3.7. HTTP3MaxPushIDFrame 17
 4.3.8. HTTP3PriorityUpdateFrame 17
 4.3.9. HTTP3ReservedFrame 17
 4.3.10. HTTP3UnknownFrame 18
 4.3.11. HTTP3ApplicationError 18
 5. Security and Privacy Considerations 18
 6. IANA Considerations . 19

Marx, et al. Expires 23 April 2026 [Page 2]

Internet-Draft HTTP/3 qlog event definitions October 2025

 7. Normative References . 19
 Acknowledgements . 20
 Change Log . 20
 Since draft-ietf-quic-qlog-h3-events-11: 21
 Since draft-ietf-quic-qlog-h3-events-09: 21
 Since draft-ietf-quic-qlog-h3-events-08: 21
 Since draft-ietf-quic-qlog-h3-events-07: 21
 Since draft-ietf-quic-qlog-h3-events-06: 21
 Since draft-ietf-quic-qlog-h3-events-05: 21
 Since draft-ietf-quic-qlog-h3-events-04: 21
 Since draft-ietf-quic-qlog-h3-events-03: 22
 Since draft-ietf-quic-qlog-h3-events-02: 22
 Since draft-ietf-quic-qlog-h3-events-01: 22
 Since draft-ietf-quic-qlog-h3-events-00: 22
 Since draft-marx-qlog-event-definitions-quic-h3-02: 22
 Since draft-marx-qlog-event-definitions-quic-h3-01: 23
 Since draft-marx-qlog-event-definitions-quic-h3-00: 24
 Authors’ Addresses . 24

1. Introduction

 This document defines a qlog event schema (Section 8 of [QLOG-MAIN])
 containing concrete events for the core HTTP/3 protocol [HTTP/3] and
 selected extensions ([EXTENDED-CONNECT], [H3_PRIORITIZATION], and
 [H3-DATAGRAM]).

 The event namespace with identifier http3 is defined; see Section 2.
 In this namespace multiple events derive from the qlog abstract Event
 class (Section 7 of [QLOG-MAIN]), each extending the "data" field and
 defining their "name" field values and semantics.

 Table 1 summarizes the name value of each event type that is defined
 in this specification. Some event data fields use complex data
 types. These are represented as enums or re-usable definitions,
 which are grouped together on the bottom of this document for
 clarity.

Marx, et al. Expires 23 April 2026 [Page 3]

Internet-Draft HTTP/3 qlog event definitions October 2025

 +===========================+============+=============+
 | Name value | Importance | Definition |
 +===========================+============+=============+
 | http3:parameters_set | Base | Section 3.1 |
 +---------------------------+------------+-------------+
 | http3:parameters_restored | Base | Section 3.2 |
 +---------------------------+------------+-------------+
 | http3:stream_type_set | Base | Section 3.3 |
 +---------------------------+------------+-------------+
 | http3:priority_updated | Base | Section 3.4 |
 +---------------------------+------------+-------------+
 | http3:frame_created | Core | Section 3.5 |
 +---------------------------+------------+-------------+
 | http3:frame_parsed | Core | Section 3.6 |
 +---------------------------+------------+-------------+
 | http3:datagram_created | Base | Section 3.7 |
 +---------------------------+------------+-------------+
 | http3:datagram_parsed | Base | Section 3.8 |
 +---------------------------+------------+-------------+
 | http3:push_resolved | Extra | Section 3.9 |
 +---------------------------+------------+-------------+

 Table 1: HTTP/3 Events

1.1. Usage with QUIC

 The events described in this document can be used with or without
 logging the related QUIC events defined in [QLOG-QUIC]. If used with
 QUIC events, the QUIC document takes precedence in terms of
 recommended filenames and trace separation setups.

 If used without QUIC events, it is recommended that the
 implementation assign a globally unique identifier to each HTTP/3
 connection. This ID can then be used as the value of the qlog
 "group_id" field, as well as the qlog filename or file identifier,
 potentially suffixed by the vantagepoint type (For example,
 abcd1234_server.qlog would contain the server-side trace of the
 connection with GUID abcd1234).

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Marx, et al. Expires 23 April 2026 [Page 4]

Internet-Draft HTTP/3 qlog event definitions October 2025

 The event and data structure definitions in ths document are
 expressed in the Concise Data Definition Language [CDDL] and its
 extensions described in [QLOG-MAIN].

 The following fields from [QLOG-MAIN] are imported and used: name,
 namespace, type, data, group_id, RawInfo, and time-related fields.

 Events are defined with an importance level as described in
 Section 8.3 of [QLOG-MAIN].

 As is the case for [QLOG-MAIN], the qlog schema definitions in this
 document are intentionally agnostic to serialization formats. The
 choice of format is an implementation decision.

2. Event Schema Definition

 This document describes how the core HTTP/3 protocol and selected
 extensions can be expressed in qlog using a newly defined event
 schema. Per the requirements in Section 8 of [QLOG-MAIN], this
 document registers the http3 namespace. The event schema URI is
 urn:ietf:params:qlog:events:http3.

2.1. Draft Event Schema Identification

 This section is to be removed before publishing as an RFC.

 Only implementations of the final, published RFC can use the events
 belonging to the event schema with the URI
 urn:ietf:params:qlog:events:http3. Until such an RFC exists,
 implementations MUST NOT identify themselves using this URI.

 Implementations of draft versions of the event schema MUST append the
 string "-" and the corresponding draft number to the URI. For
 example, draft 07 of this document is identified using the URI
 urn:ietf:params:qlog:events:http3-07.

 The namespace identifier itself is not affected by this requirement.

3. HTTP/3 Events

 HTTP/3 events extend the $ProtocolEventData extension point defined
 in [QLOG-MAIN]. Additionally, they allow for direct extensibility by
 their use of per-event extension points via the $$ CDDL "group
 socket" syntax, as also described in [QLOG-MAIN].

Marx, et al. Expires 23 April 2026 [Page 5]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3EventData = HTTP3ParametersSet /
 HTTP3ParametersRestored /
 HTTP3StreamTypeSet /
 HTTP3PriorityUpdated /
 HTTP3FrameCreated /
 HTTP3FrameParsed /
 HTTP3DatagramCreated /
 HTTP3DatagramParsed /
 HTTP3PushResolved

 $ProtocolEventData /= HTTP3EventData

 Figure 1: HTTP3EventData definition and ProtocolEventData extension

 HTTP events are logged when a certain condition happens at the
 application layer, and there isn’t always a one to one mapping
 between HTTP and QUIC events. The exchange of data between the HTTP
 and QUIC layer is logged via the "stream_data_moved" and
 "datagram_data_moved" events in [QLOG-QUIC].

 HTTP/3 frames are transmitted on QUIC streams, which allows them to
 span multiple QUIC packets. Some implementations might send a single
 large frame, rather than a sequence of smaller frames, in order to
 amortize frame header overhead. HTTP/3 frame headers are represented
 by the frame_created (Section 3.5) and frame_parsed (Section 3.6)
 events. Subsequent frame payload data transfer is indicated by
 stream_data_moved events. Furthermore, stream_data_moved events can
 appear before frame_parsed events because implementations need to
 read data from a stream in order to parse the frame header.

 The concrete HTTP/3 event types are further defined below, their type
 identifier is the heading name.

3.1. parameters_set

 The parameters_set event contains HTTP/3 and QPACK-level settings,
 mostly those received from the HTTP/3 SETTINGS frame. It has Base
 importance level.

 All these parameters are typically set once and never change.
 However, they might be set at different times during the connection,
 therefore a qlog can have multiple instances of parameters_set with
 different fields set.

 The "initiator" field reflects how Settings are exchanged on a
 connection. Sent settings have the value "local" and received
 settings have the value "received".

Marx, et al. Expires 23 April 2026 [Page 6]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3ParametersSet = {
 ? initiator: Initiator

 ; RFC9114
 ? max_field_section_size: uint64

 ; RFC9204
 ? max_table_capacity: uint64
 ? blocked_streams_count: uint64

 ; RFC9220 (SETTINGS_ENABLE_CONNECT_PROTOCOL)
 ? extended_connect: uint16

 ; RFC9297 (SETTINGS_H3_DATAGRAM)
 ? h3_datagram: uint16

 ; qlog-specific
 ; indicates whether this implementation waits for a SETTINGS
 ; frame before processing requests
 ? waits_for_settings: bool

 * $$http3-parametersset-extension
 }

 Figure 2: HTTP3ParametersSet definition

 The parameters_set event can contain any number of unspecified
 fields. This allows for representation of reserved settings (aka
 GREASE) or ad-hoc support for extension settings that do not have a
 related qlog schema definition.

3.2. parameters_restored

 When using QUIC 0-RTT, HTTP/3 clients are expected to remember and
 reuse the server’s SETTINGs from the previous connection. The
 parameters_restored event is used to indicate which HTTP/3 settings
 were restored and to which values when utilizing 0-RTT. It has Base
 importance level.

Marx, et al. Expires 23 April 2026 [Page 7]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3ParametersRestored = {
 ; RFC9114
 ? max_field_section_size: uint64

 ; RFC9204
 ? max_table_capacity: uint64
 ? blocked_streams_count: uint64

 ; RFC9220 (SETTINGS_ENABLE_CONNECT_PROTOCOL)
 ? extended_connect: uint16

 ; RFC9297 (SETTINGS_H3_DATAGRAM)
 ? h3_datagram: uint16

 * $$http3-parametersrestored-extension
 }

 Figure 3: HTTP3ParametersRestored definition

3.3. stream_type_set

 The stream_type_set event conveys when a HTTP/3 stream type becomes
 known; see Sections 6.1 and 6.2 of [HTTP/3]. It has Base importance
 level.

 Client bidirectional streams always have a stream_type value of
 "request". Server bidirectional streams have no defined use,
 although extensions could change that.

 Unidirectional streams in either direction begin with with a
 variable-length integer type. Where the type is not known, the
 stream_type value of "unknown" type can be used and the value
 captured in the stream_type_bytes field; a numerical value without
 variable-length integer encoding.

 The generic $HTTP3StreamType is defined here as a CDDL "type socket"
 extension point. It can be extended to support additional HTTP/3
 stream types.

Marx, et al. Expires 23 April 2026 [Page 8]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3StreamTypeSet = {
 ? initiator: Initiator
 stream_id: uint64
 stream_type: $HTTP3StreamType

 ; only when stream_type === "unknown"
 ? stream_type_bytes: uint64

 ; only when stream_type === "push"
 ? associated_push_id: uint64

 * $$http3-streamtypeset-extension
 }

 $HTTP3StreamType /= "request" /
 "control" /
 "push" /
 "reserved" /
 "unknown" /
 "qpack_encode" /
 "qpack_decode"

 Figure 4: HTTP3StreamTypeSet definition

3.4. priority_updated

 The priority_updated event is emitted when the priority of a request
 stream or push stream is initialized or updated through mechanisms
 defined in [RFC9218]. It has Base importance level.

 There can be several reasons why a priority_updated occurs, and why a
 particular value was chosen. For example, the priority can be
 updated through signals received from client and/or server (e.g., in
 HTTP/3 HEADERS or PRIORITY_UPDATE frames) or it can be changed or
 overridden due to local policies. The trigger and reason fields can
 be used to optionally capture such details.

Marx, et al. Expires 23 April 2026 [Page 9]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3PriorityUpdated = {
 ; if the prioritized element is a request stream
 ? stream_id: uint64

 ; if the prioritized element is a push stream
 ? push_id: uint64

 ? old: HTTP3Priority
 new: HTTP3Priority

 ? trigger: "client_signal_received" /
 "local" /
 "other"

 ? reason: "client_signal_only" /
 "client_server_merged" /
 "local_policy" /
 "other"

 * $$http3-priorityupdated-extension
 }

 Figure 5: HTTP3PriorityUpdated definition

3.5. frame_created

 The frame_created event is emitted when the HTTP/3 framing actually
 happens. It has Core importance level.

 This event does not necessarily coincide with HTTP/3 data getting
 passed to the QUIC layer. For that, see the stream_data_moved event
 in [QLOG-QUIC].

 HTTP3FrameCreated = {
 stream_id: uint64
 frame: $HTTP3Frame

 * $$http3-framecreated-extension
 }

 Figure 6: HTTP3FrameCreated definition

3.6. frame_parsed

 The frame_parsed event is emitted when the HTTP/3 frame is parsed.
 It has Core importance level.

Marx, et al. Expires 23 April 2026 [Page 10]

Internet-Draft HTTP/3 qlog event definitions October 2025

 This event is not necessarily the same as when the HTTP/3 data is
 actually received on the QUIC layer. For that, see the
 stream_data_moved event in [QLOG-QUIC].

 HTTP3FrameParsed = {
 stream_id: uint64
 frame: $HTTP3Frame

 * $$h3-frameparsed-extension
 }

 Figure 7: HTTP3FrameParsed definition

3.7. datagram_created

 The datagram_created event is emitted when an HTTP/3 Datagram is
 created (see [RFC9297]). It has Base importance level.

 This event does not necessarily coincide with the HTTP/3 Datagram
 getting passed to the QUIC layer. For that, see the
 datagram_data_moved event in [QLOG-QUIC].

 HTTP3DatagramCreated = {
 quarter_stream_id: uint64
 ? datagram: $HTTP3Datagram
 ? raw: RawInfo

 * $$http3-datagramcreated-extension
 }

 Figure 8: HTTP3DatagramCreated definition

3.8. datagram_parsed

 The datagram_parsed event is emitted when the HTTP/3 Datagram is
 parsed (see [RFC9297]). It has Base importance level.

 This event is not necessarily the same as when the HTTP/3 Datagram is
 actually received on the QUIC layer. For that, see the
 datagram_data_moved event in [QLOG-QUIC].

 HTTP3DatagramParsed = {
 quarter_stream_id: uint64
 ? datagram: $HTTP3Datagram
 ? raw: RawInfo

 * $$http3-datagramparsed-extension
 }

Marx, et al. Expires 23 April 2026 [Page 11]

Internet-Draft HTTP/3 qlog event definitions October 2025

 Figure 9: HTTP3DatagramParsed definition

3.9. push_resolved

 The push_resolved event is emitted when a pushed resource
 (Section 4.6 of [HTTP/3]) is successfully claimed (used) or,
 conversely, abandoned (rejected) by the application on top of HTTP/3
 (e.g., the web browser). This event provides additional context that
 can is aid debugging issues related to server push. It has Extra
 importance level.

 HTTP3PushResolved = {
 ? push_id: uint64

 ; in case this is logged from a place that does not have access
 ; to the push_id
 ? stream_id: uint64
 decision: HTTP3PushDecision

 * $$http3-pushresolved-extension
 }

 HTTP3PushDecision = "claimed" /
 "abandoned"

 Figure 10: HTTP3PushResolved definition

4. HTTP/3 Data Type Definitions

 The following data type definitions can be used in HTTP/3 events.

4.1. Initiator

 Initiator = "local" /
 "remote"

 Figure 11: Initiator definition

4.2. HTTP3Frame

 The generic $HTTP3Frame is defined here as a CDDL "type socket"
 extension point. It can be extended to support additional HTTP/3
 frame types.

 ; The HTTP3Frame is any key-value map (e.g., JSON object)
 $HTTP3Frame /= {
 * text => any
 }

Marx, et al. Expires 23 April 2026 [Page 12]

Internet-Draft HTTP/3 qlog event definitions October 2025

 Figure 12: HTTP3Frame type socket definition

 The HTTP/3 frame types defined in this document are as follows:

 HTTP3BaseFrames = HTTP3DataFrame /
 HTTP3HeadersFrame /
 HTTP3CancelPushFrame /
 HTTP3SettingsFrame /
 HTTP3PushPromiseFrame /
 HTTP3GoawayFrame /
 HTTP3MaxPushIDFrame /
 HTTP3ReservedFrame /
 HTTP3UnknownFrame

 $HTTP3Frame /= HTTP3BaseFrames

 Figure 13: HTTP3BaseFrames definition

4.3. HTTP3Datagram

 The generic $HTTP3Datagram is defined here as a CDDL "type socket"
 extension point. It can be extended to support additional HTTP/3
 datagram types. This document intentionally does not define any
 specific qlog schemas for specific HTTP/3 Datagram types.

 ; The HTTP3Datagram is any key-value map (e.g., JSON object)
 $HTTP3Datagram /= {
 * text => any
 }

 Figure 14: HTTP3Datagram type socket definition

4.3.1. HTTP3DataFrame

 HTTP3DataFrame = {
 frame_type: "data"
 ? raw: RawInfo
 }

 Figure 15: HTTP3DataFrame definition

4.3.2. HTTP3HeadersFrame

 The payload of an HTTP/3 HEADERS frame is the QPACK-encoding of an
 HTTP field section; see Section 7.2.2 of [HTTP/3]. HTTP3HeaderFrame,
 in contrast, contains the HTTP field section without QPACK encoding.

Marx, et al. Expires 23 April 2026 [Page 13]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3HTTPField = {
 ? name: text
 ? name_bytes: hexstring
 ? value: text
 ? value_bytes: hexstring
 }

 Figure 16: HTTP3HTTPField definition

 HTTP3HeadersFrame = {
 frame_type: "headers"
 headers: [* HTTP3HTTPField]
 ? raw: RawInfo
 }

 Figure 17: HTTP3HeadersFrame definition

 For example, the HTTP field section

 :path: /index.html
 :method: GET
 :authority: example.org
 :scheme: https

 would be represented in a JSON serialization as:

 headers: [
 {
 "name": ":path",
 "value": "/"
 },
 {
 "name": ":method",
 "value": "GET"
 },
 {
 "name": ":authority",
 "value": "example.org"
 },
 {
 "name": ":scheme",
 "value": "https"
 }
]

 Figure 18: HTTP3HeadersFrame example

Marx, et al. Expires 23 April 2026 [Page 14]

Internet-Draft HTTP/3 qlog event definitions October 2025

 Section 4.2 of [HTTP/3] and Section 5.1 of [HTTP] define rules for
 the characters used in HTTP field sections names and values.
 Characters outside the range are invalid and result in the message
 being treated as malformed. It can however be useful to also log
 these invalid HTTP fields. Characters in the allowed range can be
 safely logged by the text type used in the name and value fields of
 HTTP3HTTPField. Characters outside the range are unsafe for the text
 type and need to be logged using the name_bytes and value_bytes
 field. An instance of HTTP3HTTPField MUST include either the name or
 name_bytes field and MAY include both. An HTTP3HTTPField MAY include
 a value or value_bytes field or neither.

4.3.3. HTTP3CancelPushFrame

 HTTP3CancelPushFrame = {
 frame_type: "cancel_push"
 push_id: uint64
 ? raw: RawInfo
 }

 Figure 19: HTTP3CancelPushFrame definition

4.3.4. HTTP3SettingsFrame

 The settings field can contain zero or more entries. Each setting
 has a name field, which corresponds to Setting Name as defined (or as
 would be defined if registered) in the "HTTP/3 Settings" registry
 maintained at https://www.iana.org/assignments/http3-parameters
 (https://www.iana.org/assignments/http3-parameters).

 An endpoint that receives unknown settings is not able to log a
 specific name. Instead, the name value of "unknown" can be used and
 the value captured in the name_bytes field; a numerical value without
 variable-length integer encoding.

Marx, et al. Expires 23 April 2026 [Page 15]

Internet-Draft HTTP/3 qlog event definitions October 2025

 HTTP3SettingsFrame = {
 frame_type: "settings"
 settings: [* HTTP3Setting]
 ? raw: RawInfo
 }

 HTTP3Setting = {
 ? name: $HTTP3SettingsName
 ; only when name === "unknown"
 ? name_bytes: uint64

 value: uint64
 }

 $HTTP3SettingsName /= "settings_qpack_max_table_capacity" /
 "settings_max_field_section_size" /
 "settings_qpack_blocked_streams" /
 "settings_enable_connect_protocol" /
 "settings_h3_datagram" /
 "reserved" /
 "unknown"

 Figure 20: HTTP3SettingsFrame definition

4.3.5. HTTP3PushPromiseFrame

 HTTP3PushPromiseFrame = {
 frame_type: "push_promise"
 push_id: uint64
 headers: [* HTTP3HTTPField]
 ? raw: RawInfo
 }

 Figure 21: HTTP3PushPromiseFrame definition

4.3.6. HTTP3GoAwayFrame

 HTTP3GoawayFrame = {
 frame_type: "goaway"

 ; Either stream_id or push_id.
 ; This is implicit from the sender of the frame
 id: uint64
 ? raw: RawInfo
 }

 Figure 22: HTTP3GoawayFrame definition

Marx, et al. Expires 23 April 2026 [Page 16]

Internet-Draft HTTP/3 qlog event definitions October 2025

4.3.7. HTTP3MaxPushIDFrame

 HTTP3MaxPushIDFrame = {
 frame_type: "max_push_id"
 push_id: uint64
 ? raw: RawInfo
 }

 Figure 23: HTTP3MaxPushIDFrame definition

4.3.8. HTTP3PriorityUpdateFrame

 The PRIORITY_UPDATE frame is defined in [RFC9218].

 HTTP3PriorityUpdateFrame = {
 frame_type: "priority_update"

 ; if the prioritized element is a request stream
 ? stream_id: uint64

 ; if the prioritized element is a push stream
 ? push_id: uint64

 priority_field_value: HTTP3Priority
 ? raw: RawInfo
 }

 ; The priority value in ASCII text, encoded using Structured Fields
 ; Example: u=5, i
 HTTP3Priority = text

 Figure 24: HTTP3PriorityUpdateFrame definition

4.3.9. HTTP3ReservedFrame

 The frame_type_bytes field is the numerical value without variable-
 length integer encoding.

 HTTP3ReservedFrame = {
 frame_type: "reserved"
 frame_type_bytes: uint64
 ? raw: RawInfo
 }

 Figure 25: HTTP3ReservedFrame definition

Marx, et al. Expires 23 April 2026 [Page 17]

Internet-Draft HTTP/3 qlog event definitions October 2025

4.3.10. HTTP3UnknownFrame

 The frame_type_bytes field is the numerical value without variable-
 length integer encoding.

 HTTP3UnknownFrame = {
 frame_type: "unknown"
 frame_type_bytes: uint64
 ? raw: RawInfo
 }

 Figure 26: HTTP3UnknownFrame definition

4.3.11. HTTP3ApplicationError

 HTTP3ApplicationError = "http_no_error" /
 "http_general_protocol_error" /
 "http_internal_error" /
 "http_stream_creation_error" /
 "http_closed_critical_stream" /
 "http_frame_unexpected" /
 "http_frame_error" /
 "http_excessive_load" /
 "http_id_error" /
 "http_settings_error" /
 "http_missing_settings" /
 "http_request_rejected" /
 "http_request_cancelled" /
 "http_request_incomplete" /
 "http_early_response" /
 "http_connect_error" /
 "http_version_fallback"

 Figure 27: HTTP3ApplicationError definition

 The HTTP3ApplicationError extends the general $ApplicationError
 definition in the qlog QUIC document, see [QLOG-QUIC].

 ; ensure HTTP errors are properly validated in QUIC events as well
 ; e.g., QUIC’s ConnectionClose Frame
 $ApplicationError /= HTTP3ApplicationError

5. Security and Privacy Considerations

 The security and privacy considerations discussed in [QLOG-MAIN]
 apply to this document as well.

Marx, et al. Expires 23 April 2026 [Page 18]

Internet-Draft HTTP/3 qlog event definitions October 2025

6. IANA Considerations

 This document registers a new entry in the "qlog event schema URIs"
 registry (created in Section 15 of [QLOG-MAIN]).

 Event schema URI: urn:ietf:params:qlog:events:http3

 Namespace http3

 Event Types parameters_set, parameters_restored, stream_type_set,
 priority_updated, frame_created, frame_parsed, datagram_created,
 datagram_parsed, push_resolved

 Description: Event definitions related to the HTTP/3 application
 protocol.

 Reference: This Document

7. Normative References

 [CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

 [EXTENDED-CONNECT]
 Hamilton, R., "Bootstrapping WebSockets with HTTP/3",
 RFC 9220, DOI 10.17487/RFC9220, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9220>.

 [H3-DATAGRAM]
 Schinazi, D. and L. Pardue, "HTTP Datagrams and the
 Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August
 2022, <https://www.rfc-editor.org/rfc/rfc9297>.

 [H3_PRIORITIZATION]
 Oku, K. and L. Pardue, "Extensible Prioritization Scheme
 for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9218>.

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

 [HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,
 June 2022, <https://www.rfc-editor.org/rfc/rfc9114>.

Marx, et al. Expires 23 April 2026 [Page 19]

Internet-Draft HTTP/3 qlog event definitions October 2025

 [QLOG-MAIN]
 Marx, R., Niccolini, L., Seemann, M., and L. Pardue,
 "qlog: Structured Logging for Network Protocols", Work in
 Progress, Internet-Draft, draft-ietf-quic-qlog-main-
 schema-12, 7 July 2025,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 qlog-main-schema-12>.

 [QLOG-QUIC]
 Marx, R., Niccolini, L., Seemann, M., and L. Pardue, "QUIC
 event definitions for qlog", Work in Progress, Internet-
 Draft, draft-ietf-quic-qlog-quic-events-11, 7 July 2025,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 qlog-quic-events-11>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC9218] Oku, K. and L. Pardue, "Extensible Prioritization Scheme
 for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9218>.

 [RFC9297] Schinazi, D. and L. Pardue, "HTTP Datagrams and the
 Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August
 2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Acknowledgements

 Much of the initial work by Robin Marx was done at the Hasselt and KU
 Leuven Universities.

 Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
 Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja
 Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian Huitema, Hugo
 Landau, Kazuho Oku, and Jonathan Lennox for their feedback and
 suggestions.

Change Log

 This section is to be removed before publishing as an RFC.

Marx, et al. Expires 23 April 2026 [Page 20]

Internet-Draft HTTP/3 qlog event definitions October 2025

Since draft-ietf-quic-qlog-h3-events-11:

 * Replaced all length fields with raw.length (#495)

 * Renamed owner to initiator (#498)

Since draft-ietf-quic-qlog-h3-events-09:

 * Several editorial changes

 * Consistent use of RawInfo and _bytes fields to log raw data (#450)

Since draft-ietf-quic-qlog-h3-events-08:

 * Removed individual categories and put every event in the single
 http3 event schema namespace. Major change (#439)

 * Changed protocol id from HTTP3 to HTTP/3 (#428)

Since draft-ietf-quic-qlog-h3-events-07:

 * TODO (we forgot...)

Since draft-ietf-quic-qlog-h3-events-06:

 * ProtocolEventBody is now called ProtocolEventData (#352)

 * Editorial changes (#402)

Since draft-ietf-quic-qlog-h3-events-05:

 * Removed all qpack event definitions (#335)

 * Various editorial changes

Since draft-ietf-quic-qlog-h3-events-04:

 * Renamed ’http’ category to ’h3’ (#300)

 * H3HTTPField.value is now optional (#296)

 * Added definitions for RFC9297 (HTTP/3 Datagram extension) (#310)

 * Added definitions for RFC9218 (HTTP Extensible Prioritizations
 extension) (#312)

 * Added definitions for RFC9220 (Extended Connect extension) (#325)

Marx, et al. Expires 23 April 2026 [Page 21]

Internet-Draft HTTP/3 qlog event definitions October 2025

 * Editorial and formatting changes (#298, #258, #299, #304, #327)

Since draft-ietf-quic-qlog-h3-events-03:

 * Ensured consistent use of RawInfo to indicate raw wire bytes
 (#243)

 * Changed HTTPStreamTypeSet:raw_stream_type to stream_type_value
 (#54)

 * Changed HTTPUnknownFrame:raw_frame_type to frame_type_value (#54)

 * Renamed max_header_list_size to max_field_section_size (#282)

Since draft-ietf-quic-qlog-h3-events-02:

 * Renamed HTTPStreamType data to request (#222)

 * Added HTTPStreamType value unknown (#227)

 * Added HTTPUnknownFrame (#224)

 * Replaced old and new fields with stream_type in HTTPStreamTypeSet
 (#240)

 * Changed HTTPFrame to a CDDL plug type (#257)

 * Moved data definitions out of the appendix into separate sections

 * Added overview Table of Contents

Since draft-ietf-quic-qlog-h3-events-01:

 * No changes - new draft to prevent expiration

Since draft-ietf-quic-qlog-h3-events-00:

 * Change the data definition language from TypeScript to CDDL (#143)

Since draft-marx-qlog-event-definitions-quic-h3-02:

 * These changes were done in preparation of the adoption of the
 drafts by the QUIC working group (#137)

 * Split QUIC and HTTP/3 events into two separate documents

 * Moved RawInfo, Importance, Generic events and Simulation events to
 the main schema document.

Marx, et al. Expires 23 April 2026 [Page 22]

Internet-Draft HTTP/3 qlog event definitions October 2025

Since draft-marx-qlog-event-definitions-quic-h3-01:

 Major changes:

 * Moved data_moved from http to transport. Also made the "from" and
 "to" fields flexible strings instead of an enum (#111,#65)

 * Moved packet_type fields to PacketHeader. Moved packet_size field
 out of PacketHeader to RawInfo:length (#40)

 * Made events that need to log packet_type and packet_number use a
 header field instead of logging these fields individually

 * Added support for logging retry, stateless reset and initial
 tokens (#94,#86,#117)

 * Moved separate general event categories into a single category
 "generic" (#47)

 * Added "transport:connection_closed" event (#43,#85,#78,#49)

 * Added version_information and alpn_information events
 (#85,#75,#28)

 * Added parameters_restored events to help clarify 0-RTT behaviour
 (#88)

 Smaller changes:

 * Merged loss_timer events into one loss_timer_updated event

 * Field data types are now strongly defined (#10,#39,#36,#115)

 * Renamed qpack instruction_received and instruction_sent to
 instruction_created and instruction_parsed (#114)

 * Updated qpack:dynamic_table_updated.update_type. It now has the
 value "inserted" instead of "added" (#113)

 * Updated qpack:dynamic_table_updated. It now has an "owner" field
 to differentiate encoder vs decoder state (#112)

 * Removed push_allowed from http:parameters_set (#110)

 * Removed explicit trigger field indications from events, since this
 was moved to be a generic property of the "data" field (#80)

Marx, et al. Expires 23 April 2026 [Page 23]

Internet-Draft HTTP/3 qlog event definitions October 2025

 * Updated transport:connection_id_updated to be more in line with
 other similar events. Also dropped importance from Core to Base
 (#45)

 * Added length property to PaddingFrame (#34)

 * Added packet_number field to transport:frames_processed (#74)

 * Added a way to generically log packet header flags (first 8 bits)
 to PacketHeader

 * Added additional guidance on which events to log in which
 situations (#53)

 * Added "simulation:scenario" event to help indicate simulation
 details

 * Added "packets_acked" event (#107)

 * Added "datagram_ids" to the datagram_X and packet_X events to
 allow tracking of coalesced QUIC packets (#91)

 * Extended connection_state_updated with more fine-grained states
 (#49)

Since draft-marx-qlog-event-definitions-quic-h3-00:

 * Event and category names are now all lowercase

 * Added many new events and their definitions

 * "type" fields have been made more specific (especially important
 for PacketType fields, which are now called packet_type instead of
 type)

 * Events are given an importance indicator (issue #22)

 * Event names are more consistent and use past tense (issue #21)

 * Triggers have been redefined as properties of the "data" field and
 updated for most events (issue #23)

Authors’ Addresses

 Robin Marx (editor)
 Akamai
 Email: rmarx@akamai.com

Marx, et al. Expires 23 April 2026 [Page 24]

Internet-Draft HTTP/3 qlog event definitions October 2025

 Luca Niccolini (editor)
 Meta
 Email: lniccolini@meta.com

 Marten Seemann (editor)
 Email: martenseemann@gmail.com

 Lucas Pardue (editor)
 Cloudflare
 Email: lucas@lucaspardue.com

Marx, et al. Expires 23 April 2026 [Page 25]

QUIC R. Marx, Ed.
Internet-Draft Akamai
Intended status: Standards Track L. Niccolini, Ed.
Expires: 23 April 2026 Meta
 M. Seemann, Ed.

 L. Pardue, Ed.
 Cloudflare
 20 October 2025

 qlog: Structured Logging for Network Protocols
 draft-ietf-quic-qlog-main-schema-13

Abstract

 qlog provides extensible structured logging for network protocols,
 allowing for easy sharing of data that benefits common debug and
 analysis methods and tooling. This document describes key concepts
 of qlog: formats, files, traces, events, and extension points. This
 definition includes the high-level log file schemas, and generic
 event schemas. Requirements and guidelines for creating protocol-
 specific event schemas are also presented. All schemas are defined
 independent of serialization format, allowing logs to be represented
 in various ways such as JSON, CSV, or protobuf.

Note to Readers

 Note to RFC editor: Please remove this section before publication.

 Feedback and discussion are welcome at https://github.com/quicwg/qlog
 (https://github.com/quicwg/qlog). Readers are advised to refer to
 the "editor’s draft" at that URL for an up-to-date version of this
 document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Marx, et al. Expires 23 April 2026 [Page 1]

Internet-Draft qlog October 2025

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 April 2026.

Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Conventions and Terminology 4
 1.2. Use of CDDL . 5
 2. Design Overview . 6
 3. Abstract LogFile Class 7
 3.1. Concrete Log File Schema URIs 8
 4. QlogFile schema . 9
 4.1. Traces . 10
 4.2. Trace . 10
 4.3. TraceError . 12
 5. QlogFileSeq schema . 13
 5.1. TraceSeq . 14
 6. VantagePoint . 15
 7. Abstract Event Class . 16
 7.1. Timestamps . 17
 7.2. Tuple . 22
 7.3. Grouping . 23
 7.4. SystemInformation . 24
 7.5. CommonFields . 25
 8. Concrete Event Types and Event Schemas 27
 8.1. Event Schema URIs . 29
 8.2. Extending the Data Field 29
 8.2.1. Triggers . 33
 8.3. Event Importance Levels 34
 8.4. Tooling Expectations 35

Marx, et al. Expires 23 April 2026 [Page 2]

Internet-Draft qlog October 2025

 8.5. Further Design Guidance 35
 9. The Generic Event Schemas 36
 9.1. Loglevel events . 36
 9.1.1. error . 36
 9.1.2. warning . 36
 9.1.3. info . 37
 9.1.4. debug . 37
 9.1.5. verbose . 37
 9.2. Simulation Events . 38
 9.2.1. scenario . 38
 9.2.2. marker . 38
 10. Raw packet and frame information 39
 11. Serializing qlog . 40
 11.1. qlog to JSON mapping 41
 11.2. qlog to JSON Text Sequences mapping 41
 11.2.1. Supporting JSON Text Sequences in tooling 42
 11.3. JSON Interoperability 42
 11.4. Truncated values . 43
 11.5. Optimization of serialized data 44
 12. Methods of access and generation 45
 12.1. Set file output destination via an environment
 variable . 45
 13. Tooling requirements . 46
 14. Security and privacy considerations 47
 14.1. Data at risk . 47
 14.2. Operational implications and recommendations 48
 14.3. Data minimization or anonymization 49
 15. IANA Considerations . 49
 16. References . 51
 16.1. Normative References 51
 16.2. Informative References 53
 Acknowledgements . 54
 Change Log . 54
 Since draft-ietf-quic-qlog-main-schema-12: 54
 Since draft-ietf-quic-qlog-main-schema-10: 54
 Since draft-ietf-quic-qlog-main-schema-09: 54
 Since draft-ietf-quic-qlog-main-schema-08: 55
 Since draft-ietf-quic-qlog-main-schema-07: 55
 Since draft-ietf-quic-qlog-main-schema-06: 55
 Since draft-ietf-quic-qlog-main-schema-05: 55
 Since draft-ietf-quic-qlog-main-schema-04: 55
 Since draft-ietf-quic-qlog-main-schema-03: 55
 Since draft-ietf-quic-qlog-main-schema-02: 56
 Since draft-ietf-quic-qlog-main-schema-01: 56
 Since draft-ietf-quic-qlog-main-schema-00: 56
 Since draft-marx-qlog-main-schema-draft-02: 56
 Since draft-marx-qlog-main-schema-01: 56
 Since draft-marx-qlog-main-schema-00: 57

Marx, et al. Expires 23 April 2026 [Page 3]

Internet-Draft qlog October 2025

 Authors’ Addresses . 57

1. Introduction

 Endpoint logging is a useful strategy for capturing and understanding
 how applications using network protocols are behaving, particularly
 where protocols have an encrypted wire image that restricts
 observers’ ability to see what is happening.

 Many applications implement logging using a custom, non-standard
 logging format. This has an effect on the tools and methods that are
 used to analyze the logs, for example to perform root cause analysis
 of an interoperability failure between distinct implementations. A
 lack of a common format impedes the development of common tooling
 that can be used by all parties that have access to logs.

 qlog is an extensible structured logging for network protocols that
 allows for easy sharing of data that benefits common debug and
 analysis methods and tooling. This document describes key concepts
 of qlog: formats, files, traces, events, and extension points. This
 definition includes the high-level log file schemas, and generic
 event schemas. Requirements and guidelines for creating protocol-
 specific event schemas are also presented. Accompanying documents
 define event schemas for QUIC ([QLOG-QUIC]) and HTTP/3 ([QLOG-H3]).

 The goal of qlog is to provide amenities and default characteristics
 that each logging file should contain (or should be able to contain),
 such that generic and reusable toolsets can be created that can deal
 with logs from a variety of different protocols and use cases.

 As such, qlog provides versioning, metadata inclusion, log
 aggregation, event grouping and log file size reduction techniques.

 All qlog schemas can be serialized in many ways (e.g., JSON, CBOR,
 protobuf, etc). This document describes only how to employ [JSON],
 its subset [I-JSON], and its streamable derivative
 [JSON-Text-Sequences].

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Serialization examples in this document use JSON ([JSON]) unless
 otherwise indicated.

Marx, et al. Expires 23 April 2026 [Page 4]

Internet-Draft qlog October 2025

 Events are defined with an importance level as described in
 Section 8.3}.

1.2. Use of CDDL

 To define events and data structures, all qlog documents use the
 Concise Data Definition Language [CDDL]. This document uses the
 basic syntax, the specific text, uint, float32, float64, bool, and
 any types, as well as the .default, .size, and .regexp control
 operators, the ˜ unwrapping operator, and the $ and $$ extension
 points syntax from [CDDL].

 Additionally, this document defines the following custom types for
 clarity:

 ; CDDL’s uint is defined as being 64-bit in size
 ; but for many protocol fields it is better to be restrictive
 ; and explicit
 uint8 = uint .size 1
 uint16 = uint .size 2
 uint32 = uint .size 4
 uint64 = uint .size 8

 ; an even-length lowercase string of hexadecimally encoded bytes
 ; examples: 82dc, 027339, 4cdbfd9bf0
 ; this is needed because the default CDDL binary string (bytes/bstr)
 ; is only CBOR and not JSON compatible
 hexstring = text .regexp "([0-9a-f]{2})*"

 Figure 1: Additional CDDL type definitions

 All timestamps and time-related values (e.g., offsets) in qlog are
 logged as float64 in the millisecond resolution.

 Other qlog documents can define their own CDDL-compatible (struct)
 types (e.g., separately for each Packet type that a protocol
 supports).

 The ordering of member fields in qlog CDDL type definitions is not
 significant. The ordering of member fields in the serialization
 formats defined in this document, JSON (Section 11.1) and JSON Text
 Sequences (Section 11.2), is not significant and qlog tools MUST NOT
 assume so. Other qlog serialization formats MAY define field order
 significance, if they do they MUST define requirements for qlog tools
 supporting those formats.

 Note to RFC editor: Please remove the following text in this
 section before publication.

Marx, et al. Expires 23 April 2026 [Page 5]

Internet-Draft qlog October 2025

 The main general CDDL syntax conventions in this document a reader
 should be aware of for easy reading comprehension are:

 * ? obj : this object is optional

 * TypeName1 / TypeName2 : a union of these two types (object can be
 either type 1 OR type 2)

 * obj: TypeName : this object has this concrete type

 * obj: [* TypeName] : this object is an array of this type with
 minimum size of 0 elements

 * obj: [+ TypeName] : this object is an array of this type with
 minimum size of 1 element

 * TypeName = ... : defines a new type

 * EnumName = "entry1" / "entry2" / entry3 / ...: defines an enum

 * StructName = { ... } : defines a new struct type

 * ; : single-line comment

 * * text => any : special syntax to indicate 0 or more fields that
 have a string key that maps to any value. Used to indicate a
 generic JSON object.

 All timestamps and time-related values (e.g., offsets) in qlog are
 logged as float64 in the millisecond resolution.

 Other qlog documents can define their own CDDL-compatible (struct)
 types (e.g., separately for each Packet type that a protocol
 supports).

2. Design Overview

 The main tenets for the qlog design are:

 * Streamable, event-based logging

 * A flexible format that can reduce log producer overhead, at the
 cost of increased complexity for consumers (e.g. tools)

 * Extensible and pragmatic

Marx, et al. Expires 23 April 2026 [Page 6]

Internet-Draft qlog October 2025

 * Aggregation and transformation friendly (e.g., the top-level
 element for the non-streaming format is a container for individual
 traces, group_ids can be used to tag events to a particular
 context)

 * Metadata is stored together with event data

 This is achieved by a logical logging hierarchy of:

 * Log file

 - Trace(s)

 o Event(s)

 An abstract LogFile class is declared (Section 3), from which all
 concrete log file formats derive using log file schemas. This
 document defines the QLogFile (Section 4) and QLogFileSeq (Section 5)
 log file schemas.

 A trace is conceptually fluid but the conventional use case is to
 group events related to a single data flow, such as a single logical
 QUIC connection, at a single vantage point (Section 6). Concrete
 trace definitions relate to the log file schemas they are contained
 in; see (Section 4.1, Section 4.2, and Section 5.1).

 Events are logged at a time instant and convey specific details of
 the logging use case. For example, a network packet being sent or
 received. This document declares an abstract Event class (Section 7)
 containing common fields, which all concrete events derive from.
 Concrete events are defined by event schemas that declare or extend a
 namespace, which contains one or more related event types or their
 extensions. For example, this document defines two event schemas for
 two generic event namespaces loglevel and simulation (see Section 9).

3. Abstract LogFile Class

 A Log file is intended to contain a collection of events that are in
 some way related. An abstract LogFile class containing fields common
 to all log files is defined in Figure 2. Each concrete log file
 schema derives from this using the CDDL unwrap operator (˜) and can
 extend it by defining semantics and any custom fields.

Marx, et al. Expires 23 April 2026 [Page 7]

Internet-Draft qlog October 2025

 LogFile = {
 file_schema: text
 serialization_format: text
 ? title: text
 ? description: text
 }

 Figure 2: LogFile definition

 The required "file_schema" field identifies the concrete log file
 schema. It MUST have a value that is an absolute URI; see
 Section 3.1 for rules and guidance.

 The required "serialization_format" field indicates the serialization
 format using a media type [RFC2046]. It is case-insensitive.

 In order to make it easier to parse and identify qlog files and their
 serialization format, the "file_schema" and "serialization_format"
 fields and their values SHOULD be in the first 256 characters/bytes
 of the resulting log file.

 The optional "title" and "description" fields provide additional
 free-text information about the file.

3.1. Concrete Log File Schema URIs

 Concrete log file schemas MUST identify themselves using a URI
 [RFC3986].

 Log file schemas defined by RFCs MUST register a URI in the "qlog log
 file schema URIs" registry and SHOULD use a URN of the form
 urn:ietf:params:qlog:file:<schema-identifier>, where <schema-
 identifier> is a globally-unique text name using only characters in
 the URI unreserved range; see Section 2.3 of [RFC3986]. This
 document registers urn:ietf:params:qlog:file:contained (Section 4)
 and urn:ietf:params:qlog:file:sequential (Section 5).

Marx, et al. Expires 23 April 2026 [Page 8]

Internet-Draft qlog October 2025

 Private or non-standard log file schemas MAY register a URI in the
 "qlog log file schema URIs" registry but MUST NOT use a URN of the
 form urn:ietf:params:qlog:file:<schema-identifier>. URIs that
 contain a domain name SHOULD also contain a month-date in the form
 mmyyyy. For example, "https://example.org/072024/
 globallyuniquelogfileschema". The definition of the log file schema
 and assignment of the URI MUST have been authorized by the owner of
 the domain name on or very close to that date. This avoids problems
 when domain names change ownership. The URI does not need to be
 dereferencable, allowing for confidential use or to cover the case
 where the log file schema continues to be used after the organization
 that defined them ceases to exist.

 The "qlog log file schema URIs" registry operates under the Expert
 Review policy, per Section 4.5 of [RFC8126]. When reviewing
 requests, the expert MUST check that the URI is appropriate to the
 concrete log file schema and satisfies the requirements in this
 section. A request to register a private or non-standard log file
 schema URI using a URN of the form urn:ietf:params:qlog:file:<schema-
 identifier> MUST be rejected.

 Registration requests should use the template defined in Section 15.

4. QlogFile schema

 A qlog file using the QlogFile schema can contain several individual
 traces and logs from multiple vantage points that are in some way
 related. The top-level element in this schema defines only a small
 set of "header" fields and an array of component traces. This is
 defined in Figure 3 as:

 QlogFile = {
 ˜LogFile
 ? traces: [+ Trace /
 TraceError]
 }

 Figure 3: QlogFile definition

 The QlogFile schema URI is urn:ietf:params:qlog:file:contained.

 QlogFile extends LogFile using the CDDL unwrap operator (˜), which
 copies the fields presented in Section 3. Additionally, the optional
 "traces" field contains an array of qlog traces (Section 4.2), each
 of which contain metadata and an array of qlog events (Section 7).

Marx, et al. Expires 23 April 2026 [Page 9]

Internet-Draft qlog October 2025

 The default serialization format for QlogFile is JSON; see
 Section 11.1 for guidance on populating the "serialization_format"
 field and other considerations. Where a qlog file is serialized to a
 JSON format, one of the downsides is that it is inherently a non-
 streamable format. Put differently, it is not possible to simply
 append new qlog events to a log file without "closing" this file at
 the end by appending "]}]}". Without these closing tags, most JSON
 parsers will be unable to parse the file entirely. The alternative
 QlogFileSeq (Section 5) is better suited to streaming use cases.

 JSON serialization example:

 {
 "file_schema": "urn:ietf:params:qlog:file:contained",
 "serialization_format": "application/qlog+json",
 "title": "Name of this particular qlog file (short)",
 "description": "Description for this group of traces (long)",
 "traces": [...]
 }

 Figure 4: QlogFile example

4.1. Traces

 It can be advantageous to group several related qlog traces together
 in a single file. For example, it is possible to simultaneously
 perform logging on the client, on the server, and on a single point
 on their common network path. For analysis, it is useful to
 aggregate these three individual traces together into a single file,
 so it can be uniquely stored, transferred, and annotated.

 The QlogFile "traces" field is an array that contains a list of
 individual qlog traces. When capturing a qlog at a vantage point, it
 is expected that the traces field contains a single entry. Files can
 be aggregated, for example as part of a post-processing operation, by
 copying the traces in component to files into the combined "traces"
 array of a new, aggregated qlog file.

4.2. Trace

 The exact conceptual definition of a Trace can be fluid. For
 example, a trace could contain all events for a single connection,
 for a single endpoint, for a single measurement interval, for a
 single protocol, etc. In the normal use case however, a trace is a
 log of a single data flow collected at a single location or vantage
 point. For example, for QUIC, a single trace only contains events
 for a single logical QUIC connection for either the client or the
 server.

Marx, et al. Expires 23 April 2026 [Page 10]

Internet-Draft qlog October 2025

 A Trace contains some metadata in addition to qlog events, defined in
 Figure 5 as:

 Trace = {
 ? title: text
 ? description: text
 ? common_fields: CommonFields
 ? vantage_point: VantagePoint
 event_schemas: [+text]
 events: [* Event]
 }

 Figure 5: Trace definition

 The optional "title" and "description" fields provide additional
 free-text information about the trace.

 The optional "common_fields" field is described in Section 7.5.

 The optional "vantage_point" field is described in Section 6.

 The required "event_schemas" field contains event schema URIs that
 identify concrete event namespaces and their associated types
 recorded in the "events" field. Requirements and guidelines are
 defined in Section 8.

 The semantics and context of the trace can mainly be deduced from the
 entries in the "common_fields" list and "vantage_point" field.

 JSON serialization example:

Marx, et al. Expires 23 April 2026 [Page 11]

Internet-Draft qlog October 2025

 {
 "title": "Name of this particular trace (short)",
 "description": "Description for this trace (long)",
 "common_fields": {
 "ODCID": "abcde1234",
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "system",
 "epoch": "1970-01-01T00:00:00.000Z"
 },
 },
 "vantage_point": {
 "name": "backend-67",
 "type": "server"
 },
 "event_schemas": ["urn:ietf:params:qlog:events:quic"],
 "events": [...]
 }

 Figure 6: Trace example

4.3. TraceError

 A TraceError indicates that an attempt to find/convert a file for
 inclusion in the aggregated qlog was made, but there was an error
 during the process. Rather than silently dropping the erroneous
 file, it can be explicitly included in the qlog file as an entry in
 the "traces" array, defined in Figure 7 as:

 TraceError = {
 error_description: text

 ; the original URI used for attempted find of the file
 ? uri: text
 ? vantage_point: VantagePoint
 }

 Figure 7: TraceError definition

 JSON serialization example:

 {
 "error_description": "File could not be found",
 "uri": "/srv/traces/today/latest.qlog",
 "vantage_point": { type: "server" }
 }

 Figure 8: TraceError example

Marx, et al. Expires 23 April 2026 [Page 12]

Internet-Draft qlog October 2025

 Note that another way to combine events of different traces in a
 single qlog file is through the use of the "group_id" field,
 discussed in Section 7.3.

5. QlogFileSeq schema

 A qlog file using the QlogFileSeq schema can be serialized to a
 streamable JSON format called JSON Text Sequences (JSON-SEQ)
 ([RFC7464]). The top-level element in this schema defines only a
 small set of "header" fields and an array of component traces. This
 is defined in Figure 3 as:

 QlogFileSeq = {
 ˜LogFile
 trace: TraceSeq
 }

 Figure 9: QlogFileSeq definition

 The QlogFileSeq schema URI is urn:ietf:params:qlog:file:sequential.

 QlogFile extends LogFile using the CDDL unwrap operator (˜), which
 copies the fields presented in Section 3. Additionally, the required
 "trace" field contains a singular trace (Section 4.2). All qlog
 events in the file are related to this trace; see Section 5.1.

 See Section 11.2 for guidance on populating the
 "serialization_format" field and other serialization considerations.

 JSON-SEQ serialization example:

Marx, et al. Expires 23 April 2026 [Page 13]

Internet-Draft qlog October 2025

 // list of qlog events, serialized in accordance with RFC 7464,
 // starting with a Record Separator character and ending with a
 // newline.
 // For display purposes, Record Separators are rendered as <RS>

 <RS>{
 "file_schema": "urn:ietf:params:qlog:file:sequential",
 "serialization_format": "application/qlog+json-seq",
 "title": "Name of JSON Text Sequence qlog file (short)",
 "description": "Description for this trace file (long)",
 "trace": {
 "common_fields": {
 "group_id":"127ecc830d98f9d54a42c4f0842aa87e181a",
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "system",
 "epoch": "1970-01-01T00:00:00.000Z"
 },
 },
 "vantage_point": {
 "name":"backend-67",
 "type":"server"
 },
 "event_schemas": ["urn:ietf:params:qlog:events:quic",
 "urn:ietf:params:qlog:events:http3"]
 }
 }
 <RS>{"time": 2, "name": "quic:parameters_set", "data": { ... } }
 <RS>{"time": 7, "name": "quic:packet_sent", "data": { ... } }
 ...

 Figure 10: Top-level element

5.1. TraceSeq

 TraceSeq is used with QlogFileSeq. It is conceptually similar to a
 Trace, with the exception that qlog events are not contained within
 it, but rather appended after it in a QlogFileSeq.

 TraceSeq = {
 ? title: text
 ? description: text
 ? common_fields: CommonFields
 ? vantage_point: VantagePoint
 event_schemas: [+text]
 }

 Figure 11: TraceSeq definition

Marx, et al. Expires 23 April 2026 [Page 14]

Internet-Draft qlog October 2025

6. VantagePoint

 A VantagePoint describes the vantage point from which a trace
 originates, defined in Figure 12 as:

 VantagePoint = {
 ? name: text
 type: VantagePointType
 ? flow: VantagePointType
 }

 ; client = endpoint which initiates the connection
 ; server = endpoint which accepts the connection
 ; network = observer in between client and server
 VantagePointType = "client" /
 "server" /
 "network" /
 "unknown"

 Figure 12: VantagePoint definition

 JSON serialization examples:

 {
 "name": "aioquic client",
 "type": "client"
 }

 {
 "name": "wireshark trace",
 "type": "network",
 "flow": "client"
 }

 Figure 13: VantagePoint example

 The flow field is only required if the type is "network" (for
 example, the trace is generated from a packet capture). It is used
 to disambiguate events like "packet sent" and "packet received".
 This is indicated explicitly because for multiple reasons (e.g.,
 privacy) data from which the flow direction can be otherwise inferred
 (e.g., IP addresses) might not be present in the logs.

 Meaning of the different values for the flow field:

 * "client" indicates that this vantage point follows client data
 flow semantics (a "packet sent" event goes in the direction of the
 server).

Marx, et al. Expires 23 April 2026 [Page 15]

Internet-Draft qlog October 2025

 * "server" indicates that this vantage point follow server data flow
 semantics (a "packet sent" event goes in the direction of the
 client).

 * "unknown" indicates that the flow’s direction is unknown.

 Depending on the context, tools confronted with "unknown" values in
 the vantage_point can either try to heuristically infer the semantics
 from protocol-level domain knowledge (e.g., in QUIC, the client
 always sends the first packet) or give the user the option to switch
 between client and server perspectives manually.

7. Abstract Event Class

 Events are logged at a time instant and convey specific details of
 the logging use case. An abstract Event class containing fields
 common to all events is defined in Figure 14.

 Event = {
 time: float64
 name: text
 data: $ProtocolEventData
 ? tuple: TupleID
 ? time_format: TimeFormat
 ? group_id: GroupID
 ? system_info: SystemInformation

 ; events can contain any amount of custom fields
 * text => any
 }

 Figure 14: Event definition

 Each qlog event MUST contain the mandatory fields: "time"
 (Section 7.1), "name" (Section 8), and "data" (Section 8.2).

 Each qlog event is an instance of a concrete event type that derives
 from the abstract Event class; see Section 8. They extend it by
 defining the specific values and semantics of common fields, in
 particular the name and data fields. Furthermore, they can
 optionally add custom fields.

 Each qlog event MAY contain the optional fields: "time_format"
 (Section 7.1), tuple (Section 7.2) "trigger" (Section 8.2.1), and
 "group_id" (Section 7.3).

Marx, et al. Expires 23 April 2026 [Page 16]

Internet-Draft qlog October 2025

 Multiple events can appear in a Trace or TraceSeq and they might
 contain fields with identical values. It is possible to optimize out
 this duplication using "common_fields" (Section 7.5).

 Example qlog event:

 {
 "time": 1553986553572,

 "name": "quic:packet_sent",
 "data": { ... },

 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",

 "time_format": "relative_to_epoch",

 "ODCID": "127ecc830d98f9d54a42c4f0842aa87e181a"
 }

 Figure 15: Event example

7.1. Timestamps

 Each event MUST include a "time" field to indicate the timestamp that
 it occurred. It is a duration measured from some point in time; its
 units depend on the type of clock chosen and system used. The time
 field is a float64 and it is typically used to represent a duration
 in milliseconds, with a fractional component to microsecond or
 nanosecond resolution.

 There are several options for generating and logging timestamps,
 these are governed by the ReferenceTime type (optionally included in
 the "reference_time" field contained in a trace’s "common_fields"
 (Section 7.5)) and TimeFormat type (optionally included in the
 "time_format" field contained in the event itself, or a trace’s
 "common_fields").

 There is no requirement that events in the same trace use the same
 time format. However, using a single time format for related events
 can make them easier to analyze.

 The reference time governs from which point in time the "time" field
 values are measured and is defined as:

Marx, et al. Expires 23 April 2026 [Page 17]

Internet-Draft qlog October 2025

 ReferenceTime = {
 clock_type: "system" / "monotonic" / text .default "system"
 epoch: RFC3339DateTime / "unknown" .default "1970-01-01T00:00:00.000Z"

 ? wall_clock_time: RFC3339DateTime
 }

 RFC3339DateTime = text

 Figure 16: ReferenceTime definition

 The required "clock_type" field represents the type of clock used for
 time measurements. The value "system" represents a clock that uses
 system time, commonly measured against a chosen or well-known epoch.
 However, depending on the system, System time can potentially jump
 forward or back. In contrast, a clock using monotonic time is
 generally guaranteed to never go backwards. The value "monotonic"
 represents such a clock.

 The required "epoch" field is the start of the ReferenceTime. When
 using the "system" clock type, the epoch field SHOULD have a date/
 time value using the format defined in [RFC3339]. However, the value
 "unknown" MAY be used.

 When using the "monotonic" clock type, the epoch field MUST have the
 value "unknown".

 The optional "wall_clock_time" field can be used to provide an
 approximate date/time value that logging commenced at if the epoch
 value is "unknown". It uses the format defined in [RFC3339]. Note
 that conversion of timestamps to calendar time based on wall clock
 times cannot be safely relied on.

 The time format details how "time" values are encoded relative to the
 reference time and is defined as:

 TimeFormat = "relative_to_epoch" /
 "relative_to_previous_event" .default "relative_to_epoch"

 Figure 17: TimeFormat definition

 relative_to_epoch: A duration relative to the ReferenceTime "epoch"
 field. This approach uses the largest amount of characters. It
 is good for stateless loggers. This is the default value of the
 "time_format" field.

 relative_to_previous_event: A delta-encoded value, based on the

Marx, et al. Expires 23 April 2026 [Page 18]

Internet-Draft qlog October 2025

 previously logged value. The first event in a trace is always
 relative to the ReferenceTime. This approach uses the least
 amount of characters. It is suitable for stateful loggers.

 Events in each individual trace SHOULD be logged in strictly
 ascending timestamp order (though not necessarily absolute value, for
 the "relative_to_previous_event" format). Tools MAY sort all events
 on the timestamp before processing them, though are not required to
 (as this could impose a significant processing overhead). This can
 be a problem especially for multi-threaded and/or streaming loggers,
 who could consider using a separate post-processor to order qlog
 events in time if a tool do not provide this feature.

 Tools SHOULD NOT assume the ability to derive the absolute calendar
 timestamp of an event from qlog traces. Tools should not rely on
 timestamps to be consistent across traces, even those generated by
 the same logging endpoint. For reasons of privacy, the reference
 time MAY have minimization or anonymization applied.

 Example of a log using the relative_to_epoch format:

Marx, et al. Expires 23 April 2026 [Page 19]

Internet-Draft qlog October 2025

 "common_fields": {
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "system",
 "epoch": "1970-01-01T00:00:00.000Z"
 },
 },
 "events": [
 {
 "time": 1553986553572,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 1553986553577,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 1553986553587,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 1553986553597,
 "name": "quic:packet_received",
 "data": { ... },
 },
]

 Figure 18: Relative to epoch timestamps

 Example of a log using the relative_to_previous_event format:

Marx, et al. Expires 23 April 2026 [Page 20]

Internet-Draft qlog October 2025

 "common_fields": {
 "time_format": "relative_to_previous_event",
 "reference_time": {
 "clock_type": "system",
 "epoch": "1970-01-01T00:00:00.000Z"
 },
 },
 "events": [
 {
 "time": 1553986553572,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 5,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 10,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 10,
 "name": "quic:packet_received",
 "data": { ... },
 },
]

 Figure 19: Relative-to-previous-event timestamps

 Example of a monotonic log using the relative_to_epoch format:

Marx, et al. Expires 23 April 2026 [Page 21]

Internet-Draft qlog October 2025

 "common_fields": {
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "monotonic",
 "epoch": "unknown",
 "wall_clock_time": "2024-10-10T10:10:10.000Z"
 },
 },
 "events": [
 {
 "time": 0,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 5,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 15,
 "name": "quic:packet_received",
 "data": { ... },
 },
 {
 "time": 25,
 "name": "quic:packet_received",
 "data": { ... },
 },
]

 Figure 20: Monotonic timestamps

7.2. Tuple

 A qlog event is typically associated with a single network "path",
 which is usually aligned with a four-tuple of IP addresses and ports.
 In many cases, this tuple will be the same for all events in a given
 trace, and does not need to be logged explicitly with each event. In
 this case, the "tuple" field can be omitted (in which case the
 default value of "" is assumed) or reflected in "common_fields"
 instead (see Section 7.5).

 However, in some situations, such as during QUIC’s Connection
 Migration or when using Multipath features, it is useful to be able
 to split events across multiple (concurrent) tuples and/or paths.

 Definition:

Marx, et al. Expires 23 April 2026 [Page 22]

Internet-Draft qlog October 2025

 TupleID = text .default ""

 Figure 21: TupleID definition

 The "tuple" field is an identifier that is associated with a single
 network four-tuple. This document intentionally does not define
 further how to choose this identifier’s value per-tuple or how to
 potentially log other parameters that can be associated with such a
 tuple. This is left for other documents. Implementers are free to
 encode tuple information directly into the TupleID or to log
 associated info in a separate event. For example, QUIC has the
 "tuple_assigned" event to couple the TupleID value to a specific
 tuple configuration, see [QLOG-QUIC].

7.3. Grouping

 As discussed in Section 4.2, a single qlog file can contain several
 traces taken from different vantage points. However, a single trace
 from one endpoint can also contain events from a variety of sources.
 For example, a server implementation might choose to log events for
 all incoming connections in a single large (streamed) qlog file. As
 such, a method for splitting up events belonging to separate logical
 entities is required.

 The simplest way to perform this splitting is by associating a "group
 id" to each event that indicates to which conceptual "group" each
 event belongs. A post-processing step can then extract events per
 group. However, this group identifier can be highly protocol and
 context-specific. In the example above, the QUIC "Original
 Destination Connection ID" could be used to uniquely identify a
 connection. As such, they might add a "ODCID" field to each event.
 Additionally, a service providing different levels of Quality of
 Service (QoS) to their users might wish to group connections per QoS
 level applied. They might instead prefer a "qos" field.

 As such, to provide consistency and ease of tooling in cross-protocol
 and cross-context setups, qlog instead defines the common "group_id"
 field, which contains a string value. Implementations are free to
 use their preferred string serialization for this field, so long as
 it contains a unique value per logical group. Some examples can be
 seen in Figure 23.

 GroupID = text

 Figure 22: GroupID definition

Marx, et al. Expires 23 April 2026 [Page 23]

Internet-Draft qlog October 2025

 JSON serialization example for events grouped either by QUIC
 Connection IDs, or according to an endpoint-specific Quality of
 Service (QoS) logic that includes the service level:

 "events": [
 {
 "time": 1553986553579,
 "group_id": "qos=premium",
 "name": "quic:packet_received",
 "data": { ... }
 },
 {
 "time": 1553986553581,
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "name": "quic:packet_sent",
 "data": { ... }
 }
]

 Figure 23: GroupID example

 Note that in some contexts (for example a Multipath transport
 protocol) it might make sense to add additional contextual per-event
 fields (for example TupleID, see Section 7.2), rather than use the
 group_id field for that purpose.

 Note also that, typically, a single trace only contains events
 belonging to a single logical group (for example, an individual QUIC
 connection). As such, instead of logging the "group_id" field with
 an identical value for each event instance, this field is typically
 logged once in "common_fields", see Section 7.5.

7.4. SystemInformation

 The "system_info" field can be used to record system-specific details
 related to an event. This is useful, for instance, where an
 application splits work across CPUs, processes, or threads and events
 for a single trace occur on potentially different combinations
 thereof. Each field is optional to support deployment diversity.

 SystemInformation = {
 ? processor_id: uint32
 ? process_id: uint32
 ? thread_id: uint32
 }

Marx, et al. Expires 23 April 2026 [Page 24]

Internet-Draft qlog October 2025

7.5. CommonFields

 As discussed in the previous sections, information for a typical qlog
 event varies in three main fields: "time", "name" and associated
 data. Additionally, there are also several more advanced fields that
 allow mixing events from different protocols and contexts inside of
 the same trace (for example "group_id"). In most "normal" use cases
 however, the values of these advanced fields are consistent for each
 event instance (for example, a single trace contains events for a
 single QUIC connection).

 To reduce file size and making logging easier, qlog uses the
 "common_fields" list to indicate those fields and their values that
 are shared by all events in this component trace. This prevents
 these fields from being logged for each individual event. An example
 of this is shown in Figure 24.

 JSON serialization with repeated field values
 per-event instance:

 {
 "events": [{
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "system",
 "epoch": "2019-03-29T:22:55:53.572Z"
 },

 "time": 2,
 "name": "quic:packet_received",
 "data": { ... }
 },{
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "system",
 "epoch": "2019-03-29T:22:55:53.572Z"
 },

 "time": 7,
 "name": "http:frame_parsed",
 "data": { ... }
 }
]
 }

 JSON serialization with repeated field values instead

Marx, et al. Expires 23 April 2026 [Page 25]

Internet-Draft qlog October 2025

 extracted to common_fields:

 {
 "common_fields": {
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "time_format": "relative_to_epoch",
 "reference_time": {
 "clock_type": "system",
 "epoch": "2019-03-29T:22:55:53.572Z"
 },
 },
 "events": [
 {
 "time": 2,
 "name": "quic:packet_received",
 "data": { ... }
 },{
 "time": 7,
 "name": "http:frame_parsed",
 "data": { ... }
 }
]
 }

 Figure 24: CommonFields example

 An event’s "common_fields" field is a generic dictionary of key-value
 pairs, where the key is always a string and the value can be of any
 type, but is typically also a string or number. As such, unknown
 entries in this dictionary MUST be disregarded by the user and tools
 (i.e., the presence of an unknown field is explicitly NOT an error).

 The list of default qlog fields that are typically logged in
 common_fields (as opposed to as individual fields per event instance)
 are shown in the listing below:

 CommonFields = {
 ? tuple: TupleID
 ? time_format: TimeFormat
 ? reference_time: ReferenceTime
 ? group_id: GroupID
 * text => any
 }

 Figure 25: CommonFields definition

Marx, et al. Expires 23 April 2026 [Page 26]

Internet-Draft qlog October 2025

 Tools MUST be able to deal with these fields being defined either on
 each event individually or combined in common_fields. Note that if
 at least one event in a trace has a different value for a given
 field, this field MUST NOT be added to common_fields but instead
 defined on each event individually. Good example of such fields are
 "time" and "data", who are divergent by nature.

8. Concrete Event Types and Event Schemas

 Concrete event types, as well as related data types, are grouped in
 event namespaces which in turn are defined in one or multiple event
 schemas.

 As an example, the QUICPacketSent and QUICPacketHeader event and data
 types would be part of the quic namespace, which is defined in an
 event schema with URI urn:ietf:params:qlog:events:quic. A later
 extension that adds a new QUIC frame QUICNewFrame would also be part
 of the quic namespace, but defined in a new event schema with URI
 urn:ietf:params:qlog:events:quic#new-frame-extension.

 Concrete event types MUST belong to a single event namespace and MUST
 have a registered non-empty identifier of type text.

 New namespaces MUST have a registered non-empty globally-unique text
 identifier using only characters in the URI unreserved range; see
 Section 2.3 of [RFC3986]. Namespaces are mutable and MAY be extended
 with new events.

 The value of a qlog event name field MUST be the concatenation of
 namespace identifier, colon (’:’), and event type identifier (for
 example: quic:packet_sent). The resulting concatenation MUST be
 globally unique, so log files can contain events from multiple event
 schemas without the risk of name collisions.

 A single event schema can contain exactly one of the below:

 * A definition for a new event namespace

 * An extension of an existing namespace (adding new events/data
 types and/or extending existing events/data types within the
 namespace with new fields)

 A single document can define multiple event schemas (for example see
 Section 9).

 An event schema MUST have a single URI [RFC3986] that MUST be
 absolute. The URI MUST include the namespace identifier. Event
 schemas that extend an existing namespace MUST furthermore include a

Marx, et al. Expires 23 April 2026 [Page 27]

Internet-Draft qlog October 2025

 non-empty globally-unique "extension" identifier using a URI fragment
 (characters after a "#" in the URI) using only characters in the URI
 unreserved range; see Section 2.3 of [RFC3986]. Registration
 guidance and requirement for event schema URIs are provided in
 Section 8.1. Event schemas by themselves are immutable and MUST NOT
 be extended.

 Implementations that record concrete event types SHOULD list all
 event schemas in use. This is achieved by including the appropriate
 URIs in the event_schemas field of the Trace (Section 4.2) and
 TraceSeq (Section 5.1) classes. The event_schemas is a hint to tools
 about the possible event namespaces, their extensions, and the event
 types/data types contained therein, that a qlog trace might contain.
 The trace MAY still contain event types that do not belong to a
 listed event schema. Inversely, not all event types associated with
 an event schema listed in event_schemas are guaranteed to be logged
 in a qlog trace. Tools MUST NOT treat either of these as an error;
 see Section 13.

 In the following hypothetical example, a qlog trace contains events
 belonging to:

 * The two event namespaces defined by event schemas in this document
 (Section 9).

 * Events in a namespace named rick specified in a hypothetical RFC

 * Extentions to the rick namespace defined in two separate new event
 schemas (with URI extension identifiers astley and moranis)

 * Events from three private event schemas, detailing definitions for
 and extensions to two namespaces (pickle and cucumber)

 The standardized schema URIs use a URN format, the private schemas
 use a URI with domain name.

 "event_schemas": [
 "urn:ietf:params:qlog:events:loglevel",
 "urn:ietf:params:qlog:events:simulation",
 "urn:ietf:params:qlog:events:rick",
 "urn:ietf:params:qlog:events:rick#astley",
 "urn:ietf:params:qlog:events:rick#moranis",
 "https://example.com/032024/pickle.html",
 "https://example.com/032024/pickle.html#lilly",
 "https://example.com/032025/cucumber.html"
]

 Figure 26: Example event_schemas serialization

Marx, et al. Expires 23 April 2026 [Page 28]

Internet-Draft qlog October 2025

8.1. Event Schema URIs

 Event schemas defined by RFCs MUST register all namespaces and
 concrete event types they contain in the "qlog event schema URIs"
 registry.

 Event schemas that define a new namespace SHOULD use a URN of the
 form urn:ietf:params:qlog:events:<namespace identifier>, where
 <namespace identifier> is globally unique. For example, this
 document defines two event schemas (Section 9) for two namespaces:
 loglevel and sim. Other examples of event schema define the quic
 [QLOG-QUIC] and http3 [QLOG-H3] namespaces.

 Event schemas that extend an existing namespace SHOULD use a URN of
 the form urn:ietf:params:qlog:events:<namespace
 identifier>#<extension identifier>, where the combination of
 <namespace identifier> and <extension identifier> is globally unique.

 Private or non-standard event schemas MAY be registered in the "qlog
 event schema URIs" registry but MUST NOT use a URN of the forms
 outlined above. URIs that contain a domain name SHOULD also contain
 a month-date in the form mmyyyy. For example,
 "https://example.org/072024/customeventschema#customextension". The
 definition of the event schema and assignment of the URI MUST have
 been authorized by the owner of the domain name on or very close to
 that date. This avoids problems when domain names change ownership.
 The URI does not need to be dereferencable, allowing for confidential
 use or to cover the case where the event schemas continue to be used
 after the organization that defined them ceases to exist.

 The "qlog event schema URIs" registry operates under the Expert
 Review policy, per Section 4.5 of [RFC8126]. When reviewing
 requests, the expert MUST check that the URI is appropriate to the
 event schema and satisfies the requirements in Section 8 and this
 section. A request to register a private or non-standard schema URI
 using a URN of the forms reserved for schemas defined by an RFC above
 MUST be rejected.

 Registration requests should use the template defined in Section 15.

8.2. Extending the Data Field

 An event’s "data" field is a generic key-value map (e.g., JSON
 object). It defines the per-event metadata that is to be logged.
 Its specific subfields and their semantics are defined per concrete
 event type. For example, data field definitions for QUIC and HTTP/3
 can be found in [QLOG-QUIC] and [QLOG-H3].

Marx, et al. Expires 23 April 2026 [Page 29]

Internet-Draft qlog October 2025

 In order to keep qlog fully extensible, two separate CDDL extension
 points ("sockets" or "plugs") are used to fully define data fields.

 Firstly, to allow existing data field definitions to be extended (for
 example by adding an additional field needed for a new protocol
 feature), a CDDL "group socket" is used. This takes the form of a
 subfield with a name of * $$NAMESPACE-EVENTTYPE-extension. This
 field acts as a placeholder that can later be replaced with newly
 defined fields by assigning them to the socket with the //= operator.
 Multiple extensions can be assigned to the same group socket. An
 example is shown in Figure 27.

 ; original definition in event schema A
 MyNSEventX = {
 field_a: uint8

 * $$myns-eventx-extension
 }

 ; later extension of EventX in event schema B
 $$myns-eventx-extension //= (
 ? additional_field_b: bool
)

 ; another extension of EventX in event schema C
 $$myns-eventx-extension //= (
 ? additional_field_c: text
)

 ; if schemas A, B and C are then used in conjunction,
 ; the combined MyNSEventX CDDL is equivalent to this:
 MyNSEventX = {
 field_a: uint8

 ? additional_field_b: bool
 ? additional_field_c: text
 }

 Figure 27: Example of using a generic CDDL group socket to extend
 an existing event data definition

 Secondly, to allow documents to define fully new event data field
 definitions (as opposed to extend existing ones), a CDDL "type
 socket" is used. For this purpose, the type of the "data" field in
 the qlog Event type (see Figure 14) is the extensible
 $ProtocolEventData type. This field acts as an open enum of possible
 types that are allowed for the data field. As such, any new event
 data field is defined as its own CDDL type and later merged with the

Marx, et al. Expires 23 April 2026 [Page 30]

Internet-Draft qlog October 2025

 existing $ProtocolEventData enum using the /= extension operator.
 Any generic key-value map type can be assigned to $ProtocolEventData.
 The example in Figure 28 demonstrates $ProtocolEventData being
 extended with two types.

 ; We define two new concrete events in a new event schema
 MyNSEvent1 /= {
 field_1: uint8

 * $$myns-event1-extension
 }

 MyNSEvent2 /= {
 field_2: bool

 * $$myns-event2-extension
 }

 ; the events are both merged with the existing
 ; $ProtocolEventData type enum
 $ProtocolEventData /= MyNSEvent1 / MyNSEvent2

 ; the "data" field of a qlog event can now also be of type
 ; MyNSEvent1 and MyNSEvent2

 Figure 28: ProtocolEventData extension

 Event schema defining new qlog events MUST properly extend
 $ProtocolEventData when defining data fields to enable automated
 validation of aggregated qlog schemas. Furthermore, they SHOULD add
 a * $$NAMESPACE-EVENTTYPE-extension extension field to newly defined
 event data to allow the new events to be properly extended by other
 event schema.

 A combined but purely illustrative example of the use of both
 extension points for a conceptual QUIC "packet_sent" event is shown
 in Figure 29:

Marx, et al. Expires 23 April 2026 [Page 31]

Internet-Draft qlog October 2025

 ; defined in the main QUIC event schema
 QUICPacketSent = {
 ? packet_size: uint16
 header: QUICPacketHeader
 ? frames:[* QUICFrame]

 * $$quic-packetsent-extension
 }

 ; Add the event to the global list of recognized qlog events
 $ProtocolEventData /= QUICPacketSent

 ; Defined in a separate event schema that describes a
 ; theoretical QUIC protocol extension
 $$quic-packetsent-extension //= (
 ? additional_field: bool
)

 ; If both schemas are utilized at the same time,
 ; the following JSON serialization would pass an automated
 ; CDDL schema validation check:

 {
 "time": 123456,
 "name": "quic:packet_sent",
 "data": {
 "packet_size": 1280,
 "header": {
 "packet_type": "1RTT",
 "packet_number": 123
 },
 "frames": [
 {
 "frame_type": "stream",
 "offset": 456
 },
 {
 "frame_type": "padding"
 }
],
 additional_field: true
 }
 }

 Figure 29: Example of an extended ’data’ field for a conceptual
 QUIC packet_sent event

Marx, et al. Expires 23 April 2026 [Page 32]

Internet-Draft qlog October 2025

8.2.1. Triggers

 It can be useful to understand the cause or trigger of an event.
 Sometimes, events are caused by a variety of other events and
 additional information is needed to identify the exact details.
 Commonly, the context of the surrounding log messages gives a hint
 about the cause. However, in highly-parallel and optimized
 implementations, corresponding log messages might be separated in
 time, making it difficult to build an accurate context.

 Including a "trigger" as part of the event itself is one method for
 providing fine-grained information without much additional overhead.
 In circumstances where a trigger is useful, it is RECOMMENDED for the
 purpose of consistency that the event data definition contains an
 optional field named "trigger", holding a string value.

 For example, the QUIC "packet_dropped" event (Section 5.7 of
 [QLOG-QUIC]) includes a trigger field that identifies the precise
 reason why a QUIC packet was dropped:

 QUICPacketDropped = {

 ; Primarily packet_type should be filled here,
 ; as other fields might not be decrypteable or parseable
 ? header: PacketHeader
 ? raw: RawInfo
 ? datagram_id: uint32
 ? details: {* text => any}
 ? trigger:
 "internal_error" /
 "rejected" /
 "unsupported" /
 "invalid" /
 "duplicate" /
 "connection_unknown" /
 "decryption_failure" /
 "key_unavailable" /
 "general"

 * $$quic-packetdropped-extension
 }

 Figure 30: Trigger example

Marx, et al. Expires 23 April 2026 [Page 33]

Internet-Draft qlog October 2025

8.3. Event Importance Levels

 Depending on how events are designed, it may be that several events
 allow the logging of similar or overlapping data. For example the
 separate QUIC connection_started event overlaps with the more generic
 connection_state_updated. In these cases, it is not always clear
 which event should be logged or used, and which event should take
 precedence if e.g., both are present and provide conflicting
 information.

 To aid in this decision making, qlog defines three event importance
 levels, in decreasing order of importance and expected usage:

 * Core

 * Base

 * Extra

 Concrete event types SHOULD define an importance level.

 Core-level events SHOULD be present in all qlog files for a given
 protocol. These are typically tied to basic packet and frame parsing
 and creation, as well as listing basic internal metrics. Tool
 implementers SHOULD expect and add support for these events, though
 SHOULD NOT expect all Core events to be present in each qlog trace.

 Base-level events add additional debugging options and MAY be present
 in qlog files. Most of these can be implicitly inferred from data in
 Core events (if those contain all their properties), but for many it
 is better to log the events explicitly as well, making it clearer how
 the implementation behaves. These events are for example tied to
 passing data around in buffers, to how internal state machines
 change, and used to help show when decisions are actually made based
 on received data. Tool implementers SHOULD at least add support for
 showing the contents of these events, if they do not handle them
 explicitly.

 Extra-level events are considered mostly useful for low-level
 debugging of the implementation, rather than the protocol. They
 allow more fine-grained tracking of internal behavior. As such, they
 MAY be present in qlog files and tool implementers MAY add support
 for these, but they are not required to.

 Note that in some cases, implementers might not want to log for
 example data content details in Core-level events due to performance
 or privacy considerations. In this case, they SHOULD use (a subset
 of) relevant Base-level events instead to ensure usability of the

Marx, et al. Expires 23 April 2026 [Page 34]

Internet-Draft qlog October 2025

 qlog output. As an example, implementations that do not log QUIC
 packet_received events and thus also not which (if any) ACK frames
 the packet contains, SHOULD log packets_acked events instead.

 Finally, for event types whose data (partially) overlap with other
 event types’ definitions, where necessary the event definition
 document should include explicit guidance on which to use in specific
 situations.

8.4. Tooling Expectations

 qlog is an extensible format and it is expected that new event schema
 will emerge that define new namespaces, event types, event fields
 (e.g., a field indicating an event’s privacy properties), as well as
 values for the "trigger" property within the "data" field, or other
 member fields of the "data" field, as they see fit.

 It SHOULD NOT be expected that general-purpose tools will recognize
 or visualize all forms of qlog extension. Tools SHOULD allow for the
 presence of unknown event fields and make an effort to visualize even
 unknown data if possible, otherwise they MUST ignore it.

8.5. Further Design Guidance

 There are several ways of defining concrete event types. In
 practice, two main types of approach have been observed: a) those
 that map directly to concepts seen in the protocols (e.g.,
 packet_sent) and b) those that act as aggregating events that combine
 data from several possible protocol behaviors or code paths into one
 (e.g., parameters_set). The latter are typically used as a means to
 reduce the amount of unique event definitions, as reflecting each
 possible protocol event as a separate qlog entity would cause an
 explosion of event types.

 Additionally, logging duplicate data is typically prevented as much
 as possible. For example, packet header values that remain
 consistent across many packets are split into separate events (for
 example spin_bit_updated or connection_id_updated for QUIC).

 Finally, when logging additional state change events, those state
 changes can often be directly inferred from data on the wire (for
 example flow control limit changes). As such, if the implementation
 is bug-free and spec-compliant, logging additional events is
 typically avoided. Exceptions have been made for common events that
 benefit from being easily identifiable or individually logged (for
 example packets_acked).

Marx, et al. Expires 23 April 2026 [Page 35]

Internet-Draft qlog October 2025

9. The Generic Event Schemas

 The two following generic event schemas define two namespaces and
 several concrete event types that are common across protocols,
 applications, and use cases.

9.1. Loglevel events

 In typical logging setups, users utilize a discrete number of well-
 defined logging categories, levels or severities to log freeform
 (string) data. The loglevel event namespace replicates this approach
 to allow implementations to fully replace their existing text-based
 logging by qlog. This is done by providing events to log generic
 strings for the typical well-known logging levels (error, warning,
 info, debug, verbose). The namespace identifier is "loglevel". The
 event schema URI is urn:ietf:params:qlog:events:loglevel.

 LogLevelEventData = LogLevelError /
 LogLevelWarning /
 LogLevelInfo /
 LogLevelDebug /
 LogLevelVerbose

 $ProtocolEventData /= LogLevelEventData

 Figure 31: LogLevelEventData and ProtocolEventData extension

 The event types are further defined below, their identifier is the
 heading name.

9.1.1. error

 Used to log details of an internal error that might not get reflected
 on the wire. It has Core importance level.

 LogLevelError = {
 ? code: uint64
 ? message: text

 * $$loglevel-error-extension
 }

 Figure 32: LogLevelError definition

9.1.2. warning

 Used to log details of an internal warning that might not get
 reflected on the wire. It has Base importance level.

Marx, et al. Expires 23 April 2026 [Page 36]

Internet-Draft qlog October 2025

 LogLevelWarning = {
 ? code: uint64
 ? message: text

 * $$loglevel-warning-extension
 }

 Figure 33: LogLevelWarning definition

9.1.3. info

 Used mainly for implementations that want to use qlog as their one
 and only logging format but still want to support unstructured string
 messages. The event has Extra importance level.

 LogLevelInfo = {
 message: text

 * $$loglevel-info-extension
 }

 Figure 34: LogLevelInfo definition

9.1.4. debug

 Used mainly for implementations that want to use qlog as their one
 and only logging format but still want to support unstructured string
 messages. The event has Extra importance level.

 LogLevelDebug = {
 message: text

 * $$loglevel-debug-extension
 }

 Figure 35: LogLevelDebug definition

9.1.5. verbose

 Used mainly for implementations that want to use qlog as their one
 and only logging format but still want to support unstructured string
 messages. The event has Extra importance level.

 LogLevelVerbose = {
 message: text

 * $$loglevel-verbose-extension
 }

Marx, et al. Expires 23 April 2026 [Page 37]

Internet-Draft qlog October 2025

 Figure 36: LogLevelVerbose definition

9.2. Simulation Events

 When evaluating a protocol implementation, one typically sets up a
 series of interoperability or benchmarking tests, in which the test
 situations can change over time. For example, the network bandwidth
 or latency can vary during the test, or the network can be fully
 disable for a short time. In these setups, it is useful to know when
 exactly these conditions are triggered, to allow for proper
 correlation with other events. This namespace defines event types to
 allow logging of such simulation metadata and its identifier is
 "simulation". The event schema URI is
 urn:ietf:params:qlog:events:simulation.

 SimulationEventData = SimulationScenario /
 SimulationMarker

 $ProtocolEventData /= SimulationEventData

 Figure 37: SimulationEventData and ProtocolEventData extension

 The event types are further defined below, their identifier is the
 heading name.

9.2.1. scenario

 Used to specify which specific scenario is being tested at this
 particular instance. This supports, for example, aggregation of
 several simulations into one trace (e.g., split by group_id). It has
 Extra importance level; see Section 8.3.

 SimulationScenario = {
 ? name: text
 ? details: {* text => any }

 * $$simulation-scenario-extension
 }

 Figure 38: SimulationScenario definition

9.2.2. marker

 Used to indicate when specific emulation conditions are triggered at
 set times (e.g., at 3 seconds in 2% packet loss is introduced, at 10s
 a NAT rebind is triggered). It has Extra importance level.

Marx, et al. Expires 23 April 2026 [Page 38]

Internet-Draft qlog October 2025

 SimulationMarker = {
 ? type: text
 ? message: text

 * $$simulation-marker-extension
 }

 Figure 39: SimulationMarker definition

10. Raw packet and frame information

 While qlog is a high-level logging format, it also allows the
 inclusion of most raw wire image information, such as byte lengths
 and byte values. This is useful when for example investigating or
 tuning packetization behavior or determining encoding/framing
 overheads. However, these fields are not always necessary, can take
 up considerable space, and can have a considerable privacy and
 security impact (see Section 14). Where applicable, these fields are
 grouped in a separate, optional, field named "raw" of type RawInfo.
 The exact definition of entities, headers, trailers and payloads
 depend on the protocol used.

 RawInfo = {

 ; the full byte length of the entity (e.g., packet or frame),
 ; including possible headers and trailers
 ? length: uint64

 ; the byte length of the entity’s payload,
 ; excluding possible headers or trailers
 ? payload_length: uint64

 ; the (potentially truncated) contents of the full entity,
 ; including headers and possibly trailers
 ? data: hexstring
 }

 Figure 40: RawInfo definition

 All fields in RawInfo are defined as optional. It is acceptable to
 log any field without the others. Logging length related fields and
 omitting the data field permits protocol debugging without the risk
 of logging potentially sensitive data. The data field, if logged, is
 not required to contain the contents of a full entity and can be
 truncated, see Section 11.4. The length fields, if logged, should
 indicate the length of the the full entity, even if the data field is
 omitted or truncated.

Marx, et al. Expires 23 April 2026 [Page 39]

Internet-Draft qlog October 2025

 Protocol entities containing an on-the-wire length field (for example
 a packet header or QUIC’s stream frame) are strongly recommended to
 re-use the raw.length field instead of defining a separate length
 field, to maintain consistency and prevent data duplication.

 This document does not specify explicit header_length or
 trailer_length fields. In protocols without trailers, header_length
 can be calculated by subtracting the payload_length from the length.
 In protocols with trailers (e.g., QUIC’s AEAD tag), event definition
 documents SHOULD define how to support header_length calculation.

11. Serializing qlog

 qlog schema definitions in this document are intentionally agnostic
 to serialization formats. The choice of format is an implementation
 decision.

 Other documents related to qlog (for example event definitions for
 specific protocols), SHOULD be similarly agnostic to the employed
 serialization format and SHOULD clearly indicate this. If not, they
 MUST include an explanation on which serialization formats are
 supported and on how to employ them correctly.

 Serialization formats make certain tradeoffs between usability,
 flexibility, interoperability, and efficiency. Implementations
 should take these into consideration when choosing a format. Some
 examples of possible formats are JSON, CBOR, CSV, protocol buffers,
 flatbuffers, etc. which each have their own characteristics. For
 instance, a textual format like JSON can be more flexible than a
 binary format but more verbose, typically making it less efficient
 than a binary format. A plaintext readable (yet relatively large)
 format like JSON is potentially more usable for users operating on
 the logs directly, while a more optimized yet restricted format can
 better suit the constraints of a large scale operation. A custom or
 restricted format could be more efficient for analysis with custom
 tooling but might not be interoperable with general-purpose qlog
 tools.

 Considering these tradeoffs, JSON-based serialization formats provide
 features that make them a good starting point for qlog flexibility
 and interoperability. For these reasons, JSON is a recommended
 default and expanded considerations are given to how to map qlog to
 JSON (Section 11.1, and its streaming counterpart JSON Text Sequences
 (Section 11.2. Section 11.3 presents interoperability considerations
 for both formats, and Section 11.5 presents potential optimizations.

Marx, et al. Expires 23 April 2026 [Page 40]

Internet-Draft qlog October 2025

 Serialization formats require appropriate deserializers/parsers. The
 "serialization_format" field (Section 3) is used to indicate the
 chosen serialization format.

11.1. qlog to JSON mapping

 As described in Section 4, JSON is the default qlog serialization.
 When mapping qlog to normal JSON, QlogFile (Figure 3) is used. The
 Media Type is "application/qlog+json" per [RFC6839]. The file
 extension/suffix SHOULD be ".qlog".

 In accordance with Section 8.1 of [RFC8259], JSON files are required
 to use UTF-8 both for the file itself and the string values it
 contains. In addition, all qlog field names MUST be lowercase when
 serialized to JSON.

 In order to serialize CDDL-based qlog event and data structure
 definitions to JSON, the official CDDL-to-JSON mapping defined in
 Appendix E of [CDDL] SHOULD be employed.

11.2. qlog to JSON Text Sequences mapping

 One of the downsides of using normal JSON is that it is inherently a
 non-streamable format. A qlog serializer could work around this by
 opening a file, writing the required opening data, streaming qlog
 events by appending them, and then finalizing the log by appending
 appropriate closing tags e.g., "]}]}". However, failure to append
 closing tags, could lead to problems because most JSON parsers will
 fail if a document is malformed. Some streaming JSON parsers are
 able to handle missing closing tags, however they are not widely
 deployed in popular environments (e.g., Web browsers)

 To overcome the issues related to JSON streaming, a qlog mapping to a
 streamable JSON format called JSON Text Sequences (JSON-SEQ)
 ([RFC7464]) is provided.

 JSON Text Sequences are very similar to JSON, except that objects are
 serialized as individual records, each prefixed by an ASCII Record
 Separator (<RS>, 0x1E), and each ending with an ASCII Line Feed
 character (\n, 0x0A). Note that each record can also contain any
 amount of newlines in its body, as long as it ends with a newline
 character before the next <RS> character.

Marx, et al. Expires 23 April 2026 [Page 41]

Internet-Draft qlog October 2025

 In order to leverage the streaming capability, each qlog event is
 serialized and interpreted as an individual JSON Text Sequence
 record, that is appended as a new object to the back of an event
 stream or log file. Put differently, unlike default JSON, it does
 not require a document to be wrapped as a full object with "{ ... }"
 or "[...]".

 This alternative record streaming approach cannot be accommodated by
 QlogFile (Figure 3). Instead, QlogFileSeq is defined in Figure 9,
 which notably includes only a single trace (TraceSeq) and omits an
 explicit "events" array. An example is provided in Figure 10. The
 "group_id" field can still be used on a per-event basis to include
 events from conceptually different sources in a single JSON-SEQ qlog
 file.

 When mapping qlog to JSON-SEQ, the Media Type is "application/
 qlog+json-seq" per [RFC8091]. The file extension/suffix SHOULD be
 ".sqlog" (for "streaming" qlog).

 While not specifically required by the JSON-SEQ specification, all
 qlog field names MUST be lowercase when serialized to JSON-SEQ.

 In order to serialize all other CDDL-based qlog event and data
 structure definitions to JSON-SEQ, the official CDDL-to-JSON mapping
 defined in Appendix E of [CDDL] SHOULD be employed.

11.2.1. Supporting JSON Text Sequences in tooling

 Note that JSON Text Sequences are not supported in most default
 programming environments (unlike normal JSON). However, several
 custom JSON-SEQ parsing libraries exist in most programming languages
 that can be used and the format is easy enough to parse with existing
 implementations (i.e., by splitting the file into its component
 records and feeding them to a normal JSON parser individually, as
 each record by itself is a valid JSON object).

11.3. JSON Interoperability

 Some JSON implementations have issues with the full JSON format,
 especially those integrated within a JavaScript environment (e.g.,
 Web browsers, NodeJS). I-JSON (Internet-JSON) is a subset of JSON
 for such environments; see [I-JSON]. One of the key limitations of
 JavaScript, and thus I-JSON, is that it cannot represent full 64-bit
 integers in standard operating mode (i.e., without using BigInt
 extensions), instead being limited to the range -(2^53)+1 to (2^53)-
 1.

Marx, et al. Expires 23 April 2026 [Page 42]

Internet-Draft qlog October 2025

 To accommodate such constraints in CDDL, Appendix E of [CDDL]
 recommends defining new CDDL types for int64 and uint64 that limit
 their values to the restricted 64-bit integer range. However, some
 of the protocols that qlog is intended to support (e.g., QUIC,
 HTTP/3), can use the full range of uint64 values.

 As such, to support situations where I-JSON is in use, seralizers MAY
 encode uint64 values using JSON strings. qlog parsers, therefore,
 SHOULD support parsing of uint64 values from JSON strings or JSON
 numbers unless there is out-of-band information indicating that
 neither the serializer nor parser are constrained by I-JSON.

11.4. Truncated values

 For some use cases (e.g., limiting file size, privacy), it can be
 necessary not to log a full raw blob (using the hexstring type) but
 instead a truncated value. For example, one might only store the
 first 100 bytes of an HTTP response body to be able to discern which
 file it actually contained. In these cases, the original byte-size
 length cannot be obtained from the serialized value directly.

 As such, all qlog schema definitions SHOULD include a separate,
 length-indicating field for all fields of type hexstring they
 specify, see for example Section 10. This not only ensures the
 original length can always be retrieved, but also allows the omission
 of any raw value bytes of the field completely (e.g., out of privacy
 or security considerations).

 To reduce overhead however and in the case the full raw value is
 logged, the extra length-indicating field can be left out. As such,
 tools SHOULD be able to deal with this situation and derive the
 length of the field from the raw value if no separate length-
 indicating field is present. The main possible permutations are
 shown by example in Figure 41.

Marx, et al. Expires 23 April 2026 [Page 43]

Internet-Draft qlog October 2025

 // both the content’s value and its length are present
 // (length is redundant)
 {
 "content_length": 5,
 "content": "051428abff"
 }

 // only the content value is present, indicating it
 // represents the content’s full value. The byte
 // length is obtained by calculating content.length / 2
 {
 "content": "051428abff"
 }

 // only the length is present, meaning the value
 // was omitted
 {
 "content_length": 5,
 }

 // both value and length are present, but the lengths
 // do not match: the value was truncated to
 // the first three bytes.
 {
 "content_length": 5,
 "content": "051428"
 }

 Figure 41: Example for serializing truncated hexstrings

11.5. Optimization of serialized data

 Both the JSON and JSON-SEQ formatting options described above are
 serviceable in general small to medium scale (debugging) setups.
 However, these approaches tend to be relatively verbose, leading to
 larger file sizes. Additionally, generalized JSON(-SEQ)
 (de)serialization performance is typically (slightly) lower than that
 of more optimized and predictable formats. Both aspects present
 challenges to large scale setups, though they may still be practical
 to deploy; see [ANRW-2020]. JSON and JSON-SEQ compress very well
 using commonly-available algorithms such as GZIP or Brotli.

 During the development of qlog, a multitude of alternative formatting
 and optimization options were assessed and the results are summarized
 on the qlog github repository (https://github.com/quiclog/internet-
 drafts/issues/30#issuecomment-617675097).

Marx, et al. Expires 23 April 2026 [Page 44]

Internet-Draft qlog October 2025

 Formal definition of additional qlog formats or encodings that use
 the optimization techniques described here, or any other optimization
 technique is left to future activity that can apply the following
 guidelines.

 In order to help tools correctly parse and process serialized qlog,
 it is RECOMMENDED that new formats also define suitable file
 extensions and media types. This provides a clear signal and avoids
 the need to provide out-of-band information or to rely on heuristic
 fallbacks; see Section 13.

12. Methods of access and generation

 Different implementations will have different ways of generating and
 storing qlogs. However, there is still value in defining a few
 default ways in which to steer this generation and access of the
 results.

12.1. Set file output destination via an environment variable

 To provide users control over where and how qlog files are created,
 two environment variables are defined. The first, QLOGFILE,
 indicates a full path to where an individual qlog file should be
 stored. This path MUST include the full file extension. The second,
 QLOGDIR, sets a general directory path in which qlog files should be
 placed. This path MUST include the directory separator character at
 the end.

 In general, QLOGDIR should be preferred over QLOGFILE if an endpoint
 is prone to generate multiple qlog files. This can for example be
 the case for a QUIC server implementation that logs each QUIC
 connection in a separate qlog file. An alternative that uses
 QLOGFILE would be a QUIC server that logs all connections in a single
 file and uses the "group_id" field (Section 7.3) to allow post-hoc
 separation of events.

 Implementations SHOULD provide support for QLOGDIR and MAY provide
 support for QLOGFILE.

 When using QLOGDIR, it is up to the implementation to choose an
 appropriate naming scheme for the qlog files themselves. The chosen
 scheme will typically depend on the context or protocols used. For
 example, for QUIC, it is recommended to use the Original Destination
 Connection ID (ODCID), followed by the vantage point type of the
 logging endpoint. Examples of all options for QUIC are shown in
 Figure 42.

Marx, et al. Expires 23 April 2026 [Page 45]

Internet-Draft qlog October 2025

 Command: QLOGFILE=/srv/qlogs/client.qlog quicclientbinary

 Should result in the the quicclientbinary executable logging a
 single qlog file named client.qlog in the /srv/qlogs directory.
 This is for example useful in tests when the client sets up
 just a single connection and then exits.

 Command: QLOGDIR=/srv/qlogs/ quicserverbinary

 Should result in the quicserverbinary executable generating
 several logs files, one for each QUIC connection.
 Given two QUIC connections, with ODCID values "abcde" and
 "12345" respectively, this would result in two files:
 /srv/qlogs/abcde_server.qlog
 /srv/qlogs/12345_server.qlog

 Command: QLOGFILE=/srv/qlogs/server.qlog quicserverbinary

 Should result in the the quicserverbinary executable logging
 a single qlog file named server.qlog in the /srv/qlogs directory.
 Given that the server handled two QUIC connections before it was
 shut down, with ODCID values "abcde" and "12345" respectively,
 this would result in event instances in the qlog file being
 tagged with the "group_id" field with values "abcde" and "12345".

 Figure 42: Environment variable examples for a QUIC implementation

13. Tooling requirements

 Tools ingestion qlog MUST indicate which qlog version(s), qlog
 format(s), qlog file and event schema(s), compression methods and
 potentially other input file formats (for example .pcap) they
 support. Tools SHOULD at least support .qlog files in the default
 JSON format (Section 11.1). Additionally, they SHOULD indicate
 exactly which values for and properties of the name
 (namespace:event_type) and data fields they look for to execute their
 logic. Tools SHOULD perform a (high-level) check if an input qlog
 file adheres to the expected qlog file and event schemas. If a tool
 determines a qlog file does not contain enough supported information
 to correctly execute the tool’s logic, it SHOULD generate a clear
 error message to this effect.

 Tools MUST NOT produce breaking errors for any field names and/or
 values in the qlog format that they do not recognize. Tools SHOULD
 indicate even unknown event occurrences within their context (e.g.,
 marking unknown events on a timeline for manual interpretation by the
 user).

Marx, et al. Expires 23 April 2026 [Page 46]

Internet-Draft qlog October 2025

 Tool authors should be aware that, depending on the logging
 implementation, some events will not always be present in all traces.
 For example, using a circular logging buffer of a fixed size, it
 could be that the earliest events (e.g., connection setup events) are
 later overwritten by "newer" events. Alternatively, some events can
 be intentionally omitted out of privacy or file size considerations.
 Tool authors are encouraged to make their tools robust enough to
 still provide adequate output for incomplete logs.

14. Security and privacy considerations

 Protocols such as TLS [RFC8446] and QUIC [RFC9000] offer secure
 protection for the wire image [RFC8546]. Logging can reveal aspects
 of the wire image that would ordinarily be protected, creating
 tension between observability, security and privacy, especially if
 data can be correlated across data sources.

 qlog permits logging of a broad and detailed range of data.
 Operators and implementers are responsible for deciding what data is
 logged to address their requirements and constraints. As per
 [RFC6973], operators must be aware that data could be compromised,
 risking the privacy of all participants. Where entities expect
 protocol features to ensure data privacy, logging might unknowingly
 be subject to broader privacy risks, undermining their ability to
 assess or respond effectively.

14.1. Data at risk

 qlog operators and implementers need to consider security and privacy
 risks when handling qlog data, including logging, storage, usage, and
 more. The considerations presented in this section may pose varying
 risks depending on the the data itself or its handling.

 The following is a non-exhaustive list of example data types that
 could contain sensitive information that might allow identification
 or correlation of individual connections, endpoints, users or
 sessions across qlog or other data sources (e.g., captures of
 encrypted packets):

 * IP addresses and transport protocol port numbers.

 * Session, Connection, or User identifiers e.g., QUIC Connection IDs
 Section 9.5 of [RFC9000]).

 * System-level information e.g., CPU, process, or thread
 identifiers.

Marx, et al. Expires 23 April 2026 [Page 47]

Internet-Draft qlog October 2025

 * Stored State e.g., QUIC address validation and retry tokens, TLS
 session tickets, and HTTP cookies.

 * TLS decryption keys, passwords, and HTTP-level API access or
 authorization tokens.

 * High-resolution event timestamps or inter-event timings, event
 counts, packet sizes, and frame sizes.

 * Full or partial raw packet and frame payloads that are encrypted.

 * Full or partial raw packet and frame payloads that are plaintext
 e.g., HTTP Field values, HTTP response data, or TLS SNI field
 values.

14.2. Operational implications and recommendations

 Operational considerations should focus on authorizing capture and
 access to logs. Logging of Internet protocols using qlog can be
 equivalent to the ability to store or read plaintext communications.
 Without a more detailed analysis, all of the security considerations
 of plaintext access apply.

 It is recommended that qlog capture is subject to access control and
 auditing. These controls should support granular levels of
 information capture based on role and permissions (e.g., capture of
 more-sensitive data requires higher privileges).

 It is recommended that access to stored qlogs is subject to access
 control and auditing.

 End users might not understand the implications of qlog to security
 or privacy, and their environments might limit access control
 techniques. Implementations should make enabling qlog conspicuous
 (e.g., requiring clear and explicit actions to start a capture) and
 resistant to social engineering, automation, or drive-by attacks; for
 example, isolation or sandboxing of capture from other activities in
 the same process or component.

 It is recommended that data retention policies are defined for the
 storage of qlog files.

 It is recommended that qlog files are encrypted in transit and at
 rest.

Marx, et al. Expires 23 April 2026 [Page 48]

Internet-Draft qlog October 2025

14.3. Data minimization or anonymization

 Applying data minimization or anonymization techniques to qlog might
 help address some security and privacy risks. However, removing or
 anonymizing data without sufficient care might not enhance privacy or
 security and could diminish the utility of qlog data.

 Operators and implementers should balance the value of logged data
 with the potential risks of voluntary or involuntary disclosure to
 trusted or untrusted entities. Importantly, both the breadth and
 depth of the data needed to make it useful, as well as the definition
 of entities depend greatly on the intended use cases. For example, a
 research project might be tightly scoped, time bound, and require
 participants to explicitly opt in to having their data collected with
 the intention for this to be shared in a publication. Conversely, a
 server administrator might desire to collect telemetry, from users
 whom they have no relationship with, for continuing operational
 needs.

 The most extreme form of minimization or anonymization is deleting a
 field, equivalent to not logging it. qlog implementations should
 offer fine-grained control for this on a per-use-case or per-
 connection basis.

 Data can undergo anonymization, pseudonymization, permutation,
 truncation, re-encryption, or aggregation; see Appendix B of
 [DNS-PRIVACY] for techniques, especially regarding IP addresses.
 However, operators should be cautious because many anonymization
 methods have been shown to be insufficient to safeguard user privacy
 or identity, particularly with large or easily correlated data sets.

 Operators should consider end user rights and preferences. Active
 user participation (as indicated by [RFC6973]) on a per-qlog basis is
 challenging but aligning qlog capture, storage, and removal with
 existing user preference and privacy controls is crucial. Operators
 should consider agressive approaches to deletion or aggregation.

 The most sensitive data in qlog is typically contained in RawInfo
 type fields (see Section 10). Therefore, qlog users should exercise
 caution and limit the inclusion of such fields for all but the most
 stringent use cases.

15. IANA Considerations

 IANA is requested to register a new entry in the "IETF URN Sub-
 namespace for Registered Protocol Parameter Identifiers" registry
 ([RFC3553])":

Marx, et al. Expires 23 April 2026 [Page 49]

Internet-Draft qlog October 2025

 Registered Parameter Identifier: qlog

 Reference: This Document

 IANA Registry Reference: <https://www.iana.org/assignments/qlog>

 IANA is requested to create the "qlog log file schema URIs" registry
 at https://www.iana.org/assignments/qlog for the purpose of
 registering log file schema. It has the following format/template:

 Log File Schema URI: [the log file schema identifier]

 Description: [a description of the log file schema]

 Reference: [to a specification defining the log file schema]

 This document furthermore adds the following two new entries to the
 "qlog log file schema URIs" registry:

 +======================================+================+===========+
 | Log File Schema URI | Description | Reference |
 +======================================+================+===========+
urn:ietf:params:qlog:file:contained	Concrete log	Section 4
	file schema	
	that can	
	contain	
	several	
	traces from	
	multiple	
	vantage	
	points.	
+--------------------------------------+----------------+-----------+		
urn:ietf:params:qlog:file:sequential	Concrete log	Section 5
	file schema	
	containing a	
	single trace,	
	optimized for	
	seqential	
	read and	
	write access.	
 +--------------------------------------+----------------+-----------+

 Table 1

 IANA is requested to create the "qlog event schema URIs" registry at
 https://www.iana.org/assignments/qlog for the purpose of registering
 event schema. It has the following format/template:

Marx, et al. Expires 23 April 2026 [Page 50]

Internet-Draft qlog October 2025

 Event schema URI: [the event schema identifier]

 Namespace: [the identifier of the namespace that this event schema
 either defines or extends]

 Event Types: [a comma-separated list of concrete event types defined
 in the event schema]

 Description: [a description of the event schema]

 Reference: [to a specification defining the event schema definition]

 This document furthermore adds the following two new entries to the
 "qlog event schema URIs" registry:

 Event schema URI: urn:ietf:params:qlog:events:loglevel

 Namespace loglevel

 Event Types error,warning,info,debug,verbose

 Description: Well-known logging levels for free-form text.

 Reference: Section 9.1

 Event schema URI: urn:ietf:params:qlog:events:simulation

 Namespace simulation

 Event Types scenario,marker

 Description: Events for simulation testing.

 Reference: Section 9.2

16. References

16.1. Normative References

 [CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Marx, et al. Expires 23 April 2026 [Page 51]

Internet-Draft qlog October 2025

 [DNS-PRIVACY]
 Dickinson, S., Overeinder, B., van Rijswijk-Deij, R., and
 A. Mankin, "Recommendations for DNS Privacy Service
 Operators", BCP 232, RFC 8932, DOI 10.17487/RFC8932,
 October 2020, <https://www.rfc-editor.org/rfc/rfc8932>.

 [I-JSON] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/rfc/rfc7493>.

 [JSON] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8259>.

 [JSON-Text-Sequences]
 Williams, N., "JavaScript Object Notation (JSON) Text
 Sequences", RFC 7464, DOI 10.17487/RFC7464, February 2015,
 <https://www.rfc-editor.org/rfc/rfc7464>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/rfc/rfc2046>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/rfc/rfc3339>.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <https://www.rfc-editor.org/rfc/rfc3553>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC6839] Hansen, T. and A. Melnikov, "Additional Media Type
 Structured Syntax Suffixes", RFC 6839,
 DOI 10.17487/RFC6839, January 2013,
 <https://www.rfc-editor.org/rfc/rfc6839>.

Marx, et al. Expires 23 April 2026 [Page 52]

Internet-Draft qlog October 2025

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/rfc/rfc6973>.

 [RFC7464] Williams, N., "JavaScript Object Notation (JSON) Text
 Sequences", RFC 7464, DOI 10.17487/RFC7464, February 2015,
 <https://www.rfc-editor.org/rfc/rfc7464>.

 [RFC8091] Wilde, E., "A Media Type Structured Syntax Suffix for JSON
 Text Sequences", RFC 8091, DOI 10.17487/RFC8091, February
 2017, <https://www.rfc-editor.org/rfc/rfc8091>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8259>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

16.2. Informative References

 [ANRW-2020]
 Marx, R., Piraux, M., Quax, P., and W. Lamotte, "Debugging
 QUIC and HTTP/3 with qlog and qvis", September 2020,
 <https://qlog.edm.uhasselt.be/anrw/>.

 [QLOG-H3] Marx, R., Niccolini, L., Seemann, M., and L. Pardue,
 "HTTP/3 qlog event definitions", Work in Progress,
 Internet-Draft, draft-ietf-quic-qlog-h3-events-11, 7 July
 2025, <https://datatracker.ietf.org/doc/html/draft-ietf-
 quic-qlog-h3-events-11>.

Marx, et al. Expires 23 April 2026 [Page 53]

Internet-Draft qlog October 2025

 [QLOG-QUIC]
 Marx, R., Niccolini, L., Seemann, M., and L. Pardue, "QUIC
 event definitions for qlog", Work in Progress, Internet-
 Draft, draft-ietf-quic-qlog-quic-events-11, 7 July 2025,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 qlog-quic-events-11>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC8546] Trammell, B. and M. Kuehlewind, "The Wire Image of a
 Network Protocol", RFC 8546, DOI 10.17487/RFC8546, April
 2019, <https://www.rfc-editor.org/rfc/rfc8546>.

Acknowledgements

 Much of the initial work by Robin Marx was done at the Hasselt and KU
 Leuven Universities.

 Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
 Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja
 Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian Huitema, Hugo
 Landau, Will Hawkins, Mathis Engelbart, Kazuho Oku, and Jonathan
 Lennox for their feedback and suggestions.

Change Log

 This section is to be removed before publishing as an RFC.

Since draft-ietf-quic-qlog-main-schema-12:

 * Changed Path and related fields to Tuple (#491)

 * Replaced all lenght fields with raw.length (#495)

Since draft-ietf-quic-qlog-main-schema-10:

 * Multiple editorial changes

 * Remove protocol_types and move event_schemas to Trace and TraceSeq
 (#449)

Since draft-ietf-quic-qlog-main-schema-09:

 * Renamed protocol_type to protocol_types (#427)

 * Moved Trigger section. Purely editorial (#430)

Marx, et al. Expires 23 April 2026 [Page 54]

Internet-Draft qlog October 2025

 * Removed the concept of categories and updated extension and event
 schema logic to match. Major change (#439)

 * Reworked completely how we handle timestamps and clocks. Major
 change (#433)

Since draft-ietf-quic-qlog-main-schema-08:

 * TODO (we forgot...)

Since draft-ietf-quic-qlog-main-schema-07:

 * Added path and PathID (#336)

 * Removed custom definition of uint64 type (#360, #388)

 * ProtocolEventBody is now called ProtocolEventData (#352)

 * Editorial changes (#364, #289, #353, #361, #362)

Since draft-ietf-quic-qlog-main-schema-06:

 * Editorial reworking of the document (#331, #332)

 * Updated IANA considerations section (#333)

Since draft-ietf-quic-qlog-main-schema-05:

 * Updated qlog_version to 0.4 (due to breaking changes) (#314)

 * Renamed ’transport’ category to ’quic’ (#302)

 * Added ’system_info’ field (#305)

 * Removed ’summary’ and ’configuration’ fields (#308)

 * Editorial and formatting changes (#298, #303, #304, #316, #320,
 #321, #322, #326, #328)

Since draft-ietf-quic-qlog-main-schema-04:

 * Updated RawInfo definition and guidance (#243)

Since draft-ietf-quic-qlog-main-schema-03:

 * Added security and privacy considerations discussion (#252)

Marx, et al. Expires 23 April 2026 [Page 55]

Internet-Draft qlog October 2025

Since draft-ietf-quic-qlog-main-schema-02:

 * No changes - new draft to prevent expiration

Since draft-ietf-quic-qlog-main-schema-01:

 * Change the data definition language from TypeScript to CDDL (#143)

Since draft-ietf-quic-qlog-main-schema-00:

 * Changed the streaming serialization format from NDJSON to JSON
 Text Sequences (#172)

 * Added Media Type definitions for various qlog formats (#158)

 * Changed to semantic versioning

Since draft-marx-qlog-main-schema-draft-02:

 * These changes were done in preparation of the adoption of the
 drafts by the QUIC working group (#137)

 * Moved RawInfo, Importance, Generic events and Simulation events to
 this document.

 * Added basic event definition guidelines

 * Made protocol_type an array instead of a string (#146)

Since draft-marx-qlog-main-schema-01:

 * Decoupled qlog from the JSON format and described a mapping
 instead (#89)

 - Data types are now specified in this document and proper
 definitions for fields were added in this format

 - 64-bit numbers can now be either strings or numbers, with a
 preference for numbers (#10)

 - binary blobs are now logged as lowercase hex strings (#39, #36)

 - added guidance to add length-specifiers for binary blobs (#102)

 * Removed "time_units" from Configuration. All times are now in ms
 instead (#95)

Marx, et al. Expires 23 April 2026 [Page 56]

Internet-Draft qlog October 2025

 * Removed the "event_fields" setup for a more straightforward JSON
 format (#101,#89)

 * Added a streaming option using the NDJSON format (#109,#2,#106)

 * Described optional optimization options for implementers (#30)

 * Added QLOGDIR and QLOGFILE environment variables, clarified the
 .well-known URL usage (#26,#33,#51)

 * Overall tightened up the text and added more examples

Since draft-marx-qlog-main-schema-00:

 * All field names are now lowercase (e.g., category instead of
 CATEGORY)

 * Triggers are now properties on the "data" field value, instead of
 separate field types (#23)

 * group_ids in common_fields is now just also group_id

Authors’ Addresses

 Robin Marx (editor)
 Akamai
 Email: rmarx@akamai.com

 Luca Niccolini (editor)
 Meta
 Email: lniccolini@meta.com

 Marten Seemann (editor)
 Email: martenseemann@gmail.com

 Lucas Pardue (editor)
 Cloudflare
 Email: lucas@lucaspardue.com

Marx, et al. Expires 23 April 2026 [Page 57]

QUIC R. Marx, Ed.
Internet-Draft Akamai
Intended status: Standards Track L. Niccolini, Ed.
Expires: 23 April 2026 Meta
 M. Seemann, Ed.

 L. Pardue, Ed.
 Cloudflare
 20 October 2025

 QUIC event definitions for qlog
 draft-ietf-quic-qlog-quic-events-12

Abstract

 This document describes a qlog event schema containing concrete qlog
 event definitions and their metadata for the core QUIC protocol and
 selected extensions.

Note to Readers

 Note to RFC editor: Please remove this section before publication.

 Feedback and discussion are welcome at https://github.com/quicwg/qlog
 (https://github.com/quicwg/qlog). Readers are advised to refer to
 the "editor’s draft" at that URL for an up-to-date version of this
 document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 April 2026.

Marx, et al. Expires 23 April 2026 [Page 1]

Internet-Draft QUIC event definitions for qlog October 2025

Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Use of group IDs . 5
 1.2. Raw packet and frame information 5
 1.3. Events not belonging to a single connection 5
 1.4. Notational Conventions 6
 2. Event Schema Definition 6
 2.1. Draft Event Schema Identification 6
 3. QUIC Event Overview . 7
 4. Connectivity events . 10
 4.1. server_listening . 10
 4.2. connection_started 10
 4.3. connection_closed . 11
 4.4. connection_id_updated 12
 4.5. spin_bit_updated . 13
 4.6. connection_state_updated 13
 4.7. tuple_assigned . 15
 4.8. mtu_updated . 16
 5. Transport events . 16
 5.1. version_information 16
 5.2. alpn_information . 17
 5.3. parameters_set . 18
 5.4. parameters_restored 21
 5.5. packet_sent . 21
 5.6. packet_received . 22
 5.7. packet_dropped . 23
 5.8. packet_buffered . 25
 5.9. packets_acked . 25
 5.10. udp_datagrams_sent 26
 5.11. udp_datagrams_received 27
 5.12. udp_datagram_dropped 27
 5.13. stream_state_updated 28
 5.14. frames_processed . 30

Marx, et al. Expires 23 April 2026 [Page 2]

Internet-Draft QUIC event definitions for qlog October 2025

 5.15. stream_data_moved . 31
 5.16. datagram_data_moved 33
 5.17. connection_data_blocked_updated 33
 5.18. stream_data_blocked_updated 34
 5.19. datagram_data_blocked_updated 34
 5.20. migration_state_updated 35
 5.21. timer_updated . 36
 6. Security Events . 38
 6.1. key_updated . 38
 6.2. key_discarded . 38
 7. Recovery events . 39
 7.1. recovery_parameters_set 39
 7.2. recovery_metrics_updated 40
 7.3. congestion_state_updated 42
 7.4. packet_lost . 42
 7.5. marked_for_retransmit 43
 7.6. ecn_state_updated . 44
 8. QUIC data type definitions 44
 8.1. QuicVersion . 44
 8.2. ConnectionID . 44
 8.3. Initiator . 45
 8.4. IPAddress . 45
 8.5. TupleEndpointInfo . 45
 8.6. PacketType . 46
 8.7. PacketNumberSpace . 46
 8.8. PacketHeader . 46
 8.9. Token . 47
 8.10. Stateless Reset Token 48
 8.11. KeyType . 48
 8.12. ECN . 49
 8.13. QUIC Frames . 49
 8.13.1. PaddingFrame . 50
 8.13.2. PingFrame . 50
 8.13.3. AckFrame . 50
 8.13.4. ResetStreamFrame 51
 8.13.5. StopSendingFrame 52
 8.13.6. CryptoFrame . 52
 8.13.7. NewTokenFrame 53
 8.13.8. StreamFrame . 53
 8.13.9. MaxDataFrame . 53
 8.13.10. MaxStreamDataFrame 53
 8.13.11. MaxStreamsFrame 54
 8.13.12. DataBlockedFrame 54
 8.13.13. StreamDataBlockedFrame 54
 8.13.14. StreamsBlockedFrame 54
 8.13.15. NewConnectionIDFrame 54
 8.13.16. RetireConnectionIDFrame 55
 8.13.17. PathChallengeFrame 55

Marx, et al. Expires 23 April 2026 [Page 3]

Internet-Draft QUIC event definitions for qlog October 2025

 8.13.18. PathResponseFrame 55
 8.13.19. ConnectionCloseFrame 56
 8.13.20. HandshakeDoneFrame 56
 8.13.21. UnknownFrame . 57
 8.13.22. DatagramFrame 57
 8.13.23. TransportError 57
 8.13.24. ApplicationError 58
 8.13.25. CryptoError . 59
 9. Security and Privacy Considerations 59
 10. IANA Considerations . 59
 11. References . 60
 11.1. Normative References 60
 11.2. Informative References 61
 Acknowledgements . 61
 Change Log . 61
 Since draft-ietf-qlog-quic-events-11: 61
 Since draft-ietf-qlog-quic-events-09: 62
 Since draft-ietf-qlog-quic-events-08: 62
 Since draft-ietf-qlog-quic-events-07: 62
 Since draft-ietf-qlog-quic-events-06: 62
 Since draft-ietf-qlog-quic-events-05: 63
 Since draft-ietf-qlog-quic-events-04: 63
 Since draft-ietf-qlog-quic-events-03: 63
 Since draft-ietf-qlog-quic-events-02: 63
 Since draft-ietf-qlog-quic-events-01: 64
 Since draft-ietf-qlog-quic-events-00: 64
 Since draft-marx-qlog-event-definitions-quic-h3-02: 64
 Since draft-marx-qlog-event-definitions-quic-h3-01: 64
 Since draft-marx-qlog-event-definitions-quic-h3-00: 66
 Authors’ Addresses . 66

1. Introduction

 This document defines a qlog event schema (Section 8 of [QLOG-MAIN])
 containing concrete events for the core QUIC protocol (see
 [QUIC-TRANSPORT], [QUIC-RECOVERY], and [QUIC-TLS]) and some of its
 extensions (see [QUIC-DATAGRAM] and [GREASEBIT]).

 The event namespace with identifier quic is defined; see Section 2.
 In this namespace multiple events derive from the qlog abstract Event
 class (Section 7 of [QLOG-MAIN]), each extending the "data" field and
 defining their "name" field values and semantics. Some event data
 fields use complex data types. These are represented as enums or re-
 usable definitions, which are grouped together on the bottom of this
 document for clarity.

Marx, et al. Expires 23 April 2026 [Page 4]

Internet-Draft QUIC event definitions for qlog October 2025

1.1. Use of group IDs

 When the qlog group_id field is used, it is recommended to use QUIC’s
 Original Destination Connection ID (ODCID, the CID chosen by the
 client when first contacting the server), as this is the only value
 that does not change over the course of the connection and can be
 used to link more advanced QUIC packets (e.g., Retry, Version
 Negotiation) to a given connection. Similarly, the ODCID should be
 used as the qlog filename or file identifier, potentially suffixed by
 the vantagepoint type (For example, abcd1234_server.qlog would
 contain the server-side trace of the connection with ODCID abcd1234).

1.2. Raw packet and frame information

 QUIC packets always include an AEAD authentication tag at the end.
 In general, the length of the AEAD tag depends on the TLS cipher
 suite, although all cipher suites used in QUIC v1 use a 16 byte tag.
 For the purposes of calculating the lengths in fields of type RawInfo
 (as defined in [QLOG-MAIN]) related to QUIC packets, the AEAD tag is
 regarded as a trailer with a fixed size of 16 bytes.

1.3. Events not belonging to a single connection

 A single qlog event trace is typically associated with a single QUIC
 connection. However, for several types of events (for example, a
 Section 5.7 event with trigger value of connection_unknown), it can
 be impossible to tie them to a specific QUIC connection, especially
 on the server.

 There are various ways to handle these events, each making certain
 tradeoffs between file size overhead, flexibility, ease of use, or
 ease of implementation. Some options include:

 * Log them in a separate endpoint-wide trace (or use a special
 group_id value) not associated with a single connection.

 * Log them in the most recently used trace.

 * Use additional heuristics for connection identification (for
 example use the four-tuple in addition to the Connection ID).

 * Buffer events until they can be assigned to a connection (for
 example for version negotiation and retry events).

Marx, et al. Expires 23 April 2026 [Page 5]

Internet-Draft QUIC event definitions for qlog October 2025

1.4. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The event and data structure definitions in ths document are
 expressed in the Concise Data Definition Language [CDDL] and its
 extensions described in [QLOG-MAIN].

 The following fields from [QLOG-MAIN] are imported and used: name,
 namespace, type, data, tuple, group_id, RawInfo, and time-related
 fields.

 Events are defined with an importance level as described in
 Section 8.3 of [QLOG-MAIN].

 As is the case for [QLOG-MAIN], the qlog schema definitions in this
 document are intentionally agnostic to serialization formats. The
 choice of format is an implementation decision.

2. Event Schema Definition

 This document describes how the core QUIC protocol and selected
 extensions can be expressed in qlog using a newly defined event
 schema. Per the requirements in Section 8 of [QLOG-MAIN], this
 document registers the quic namespace. The event schema URI is
 urn:ietf:params:qlog:events:quic.

2.1. Draft Event Schema Identification

 This section is to be removed before publishing as an RFC.

 Only implementations of the final, published RFC can use the events
 belonging to the event schema with the URI
 urn:ietf:params:qlog:events:quic. Until such an RFC exists,
 implementations MUST NOT identify themselves using this URI.

 Implementations of draft versions of the event schema MUST append the
 string "-" and the corresponding draft number to the URI. For
 example, draft 07 of this document is identified using the URI
 urn:ietf:params:qlog:events:quic-07.

 The namespace identifier itself is not affected by this requirement.

Marx, et al. Expires 23 April 2026 [Page 6]

Internet-Draft QUIC event definitions for qlog October 2025

3. QUIC Event Overview

 Table 1 summarizes the name value of each event type that is defined
 in this specification.

 +======================================+============+==============+
 | Name value | Importance | Definition |
 +======================================+============+==============+
 | quic:server_listening | Extra | Section 4.1 |
 +--------------------------------------+------------+--------------+
 | quic:connection_started | Base | Section 4.2 |
 +--------------------------------------+------------+--------------+
 | quic:connection_closed | Base | Section 4.3 |
 +--------------------------------------+------------+--------------+
 | quic:connection_id_updated | Base | Section 4.4 |
 +--------------------------------------+------------+--------------+
 | quic:spin_bit_updated | Base | Section 4.5 |
 +--------------------------------------+------------+--------------+
 | quic:connection_state_updated | Base | Section 4.6 |
 +--------------------------------------+------------+--------------+
 | quic:tuple_assigned | Base | Section 4.7 |
 +--------------------------------------+------------+--------------+
 | quic:mtu_updated | Extra | Section 4.8 |
 +--------------------------------------+------------+--------------+
 | quic:version_information | Core | Section 5.1 |
 +--------------------------------------+------------+--------------+
 | quic:alpn_information | Core | Section 5.2 |
 +--------------------------------------+------------+--------------+
 | quic:parameters_set | Core | Section 5.3 |
 +--------------------------------------+------------+--------------+
 | quic:parameters_restored | Base | Section 5.4 |
 +--------------------------------------+------------+--------------+
 | quic:packet_sent | Core | Section 5.5 |
 +--------------------------------------+------------+--------------+
 | quic:packet_received | Core | Section 5.6 |
 +--------------------------------------+------------+--------------+
 | quic:packet_dropped | Base | Section 5.7 |
 +--------------------------------------+------------+--------------+
 | quic:packet_buffered | Base | Section 5.8 |
 +--------------------------------------+------------+--------------+
 | quic:packets_acked | Extra | Section 5.9 |
 +--------------------------------------+------------+--------------+
 | quic:udp_datagrams_sent | Extra | Section 5.10 |
 +--------------------------------------+------------+--------------+
 | quic:udp_datagrams_received | Extra | Section 5.11 |
 +--------------------------------------+------------+--------------+
 | quic:udp_datagram_dropped | Extra | Section 5.12 |
 +--------------------------------------+------------+--------------+

Marx, et al. Expires 23 April 2026 [Page 7]

Internet-Draft QUIC event definitions for qlog October 2025

 | quic:stream_state_updated | Base | Section 5.13 |
 +--------------------------------------+------------+--------------+
 | quic:frames_processed | Extra | Section 5.14 |
 +--------------------------------------+------------+--------------+
 | quic:stream_data_moved | Base | Section 5.15 |
 +--------------------------------------+------------+--------------+
 | quic:datagram_data_moved | Base | Section 5.16 |
 +--------------------------------------+------------+--------------+
 | quic:connection_data_blocked_updated | Extra | Section 5.17 |
 +--------------------------------------+------------+--------------+
 | quic:stream_data_blocked_updated | Extra | Section 5.18 |
 +--------------------------------------+------------+--------------+
 | quic:datagram_data_blocked_updated | Extra | Section 5.19 |
 +--------------------------------------+------------+--------------+
 | quic:migration_state_updated | Extra | Section 5.20 |
 +--------------------------------------+------------+--------------+
 | quic:timer_updated | Extra | Section 5.21 |
 +--------------------------------------+------------+--------------+
 | quic:key_updated | Base | Section 6.1 |
 +--------------------------------------+------------+--------------+
 | quic:key_discarded | Base | Section 6.2 |
 +--------------------------------------+------------+--------------+
 | quic:recovery_parameters_set | Base | Section 7.1 |
 +--------------------------------------+------------+--------------+
 | quic:recovery_metrics_updated | Core | Section 7.2 |
 +--------------------------------------+------------+--------------+
 | quic:congestion_state_updated | Base | Section 7.3 |
 +--------------------------------------+------------+--------------+
 | quic:packet_lost | Core | Section 7.4 |
 +--------------------------------------+------------+--------------+
 | quic:marked_for_retransmit | Extra | Section 7.5 |
 +--------------------------------------+------------+--------------+
 | quic:ecn_state_updated | Extra | Section 7.6 |
 +--------------------------------------+------------+--------------+

 Table 1: QUIC Events

 QUIC events extend the $ProtocolEventData extension point defined in
 [QLOG-MAIN]. Additionally, they allow for direct extensibility by
 their use of per-event extension points via the $$ CDDL "group
 socket" syntax, as also described in [QLOG-MAIN].

Marx, et al. Expires 23 April 2026 [Page 8]

Internet-Draft QUIC event definitions for qlog October 2025

 QuicEventData = QUICServerListening /
 QUICConnectionStarted /
 QUICConnectionClosed /
 QUICConnectionIDUpdated /
 QUICSpinBitUpdated /
 QUICConnectionStateUpdated /
 QUICTupleAssigned /
 QUICMTUUpdated /
 QUICVersionInformation /
 QUICALPNInformation /
 QUICParametersSet /
 QUICParametersRestored /
 QUICPacketSent /
 QUICPacketReceived /
 QUICPacketDropped /
 QUICPacketBuffered /
 QUICPacketsAcked /
 QUICUDPDatagramsSent /
 QUICUDPDatagramsReceived /
 QUICUDPDatagramDropped /
 QUICStreamStateUpdated /
 QUICFramesProcessed /
 QUICStreamDataMoved /
 QUICDatagramDataMoved /
 QUICConnectionDataBlockedUpdated /
 QUICStreamDataBlockedUpdated /
 QUICDatagramDataBlockedUpdated /
 QUICMigrationStateUpdated /
 QUICTimerUpdated /
 QUICKeyUpdated /
 QUICKeyDiscarded /
 QUICRecoveryParametersSet /
 QUICRecoveryMetricsUpdated /
 QUICCongestionStateUpdated /
 QUICPacketLost /
 QUICMarkedForRetransmit /
 QUICECNStateUpdated

 $ProtocolEventData /= QuicEventData

 Figure 1: QuicEventData definition and ProtocolEventData extension

 The concrete QUIC event types are further defined below, their type
 identifier is the heading name. The subdivisions in sections on
 Connectivity, Security, Transport and Recovery are purely for
 readability.

Marx, et al. Expires 23 April 2026 [Page 9]

Internet-Draft QUIC event definitions for qlog October 2025

4. Connectivity events

4.1. server_listening

 Emitted when the server starts accepting connections. It has Extra
 importance level.

 QUICServerListening = {
 ? ip_v4: IPAddress
 ? port_v4: uint16
 ? ip_v6: IPAddress
 ? port_v6: uint16

 ; the server will always answer client initials with a retry
 ; (no 1-RTT connection setups by choice)
 ? retry_required: bool

 * $$quic-serverlistening-extension
 }

 Figure 2: QUICServerListening definition

 Some QUIC stacks do not handle sockets directly and are thus unable
 to log IP and/or port information.

4.2. connection_started

 The connection_started event is used for both attempting (client-
 perspective) and accepting (server-perspective) new connections.
 Note that while there is overlap with the connection_state_updated
 event, this event is separate event in order to capture additional
 data that can be useful to log. It has Base importance level.

 QUICConnectionStarted = {
 local: TupleEndpointInfo
 remote: TupleEndpointInfo

 * $$quic-connectionstarted-extension
 }

 Figure 3: QUICConnectionStarted definition

 Some QUIC stacks do not handle sockets directly and are thus unable
 to log IP and/or port information.

Marx, et al. Expires 23 April 2026 [Page 10]

Internet-Draft QUIC event definitions for qlog October 2025

4.3. connection_closed

 The connection_closed event is used for logging when a connection was
 closed, typically when an error or timeout occurred. It has Base
 importance level.

 Note that this event has overlap with the connection_state_updated
 event, as well as the CONNECTION_CLOSE frame. However, in practice,
 when analyzing large deployments, it can be useful to have a single
 event representing a connection_closed event, which also includes an
 additional reason field to provide more information. Furthermore, it
 is useful to log closures due to timeouts or explicit application
 actions (such as racing multiple connections and aborting the
 slowest), which are difficult to reflect using the other options.

 The connection_closed event is intended to be logged either when the
 local endpoint silently discards the connection due to an idle
 timeout, when a CONNECTION_CLOSE frame is sent (the connection enters
 the ’closing’ state on the sender side), when a CONNECTION_CLOSE
 frame is received (the connection enters the ’draining’ state on the
 receiver side) or when a Stateless Reset packet is received (the
 connection is discarded at the receiver side). Connectivity-related
 updates after this point (e.g., exiting a ’closing’ or ’draining’
 state), should be logged using the connection_state_updated event
 instead.

 In QUIC there are two main connection-closing error categories:
 connection and application errors. They have well-defined error
 codes and semantics. Next to these however, there can be internal
 errors that occur that may or may not get mapped to the official
 error codes in implementation-specific ways. As such, multiple error
 codes can be set on the same event to reflect this, and more fine-
 grained internal error codes can be reflected in the internal_code
 field.

 If the error code does not map to a known error string, the
 connection_error or application_error value of "unknown" type can be
 used and the raw value captured in the error_code field; a numerical
 value without variable-length integer encoding.

Marx, et al. Expires 23 April 2026 [Page 11]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICConnectionClosed = {

 ; which side closed the connection
 ? initiator: Initiator
 ? connection_error: $TransportError /
 CryptoError
 ? application_error: $ApplicationError

 ; if connection_error or application_error === "unknown"
 ? error_code: uint64

 ? internal_code: uint64
 ? reason: text
 ? trigger:
 "idle_timeout" /
 "application" /
 "error" /
 "version_mismatch" /
 ; when received from peer
 "stateless_reset" /
 "aborted" /
 ; when it is unclear what triggered the CONNECTION_CLOSE
 "unspecified"

 * $$quic-connectionclosed-extension
 }

 Figure 4: QUICConnectionClosed definition

 Loggers SHOULD use the most descriptive trigger for a
 connection_closed event that they are able to deduce. This is often
 clear at the peer closing the connection (and sending the
 CONNECTION_CLOSE), but can sometimes be more opaque at the receiving
 end.

4.4. connection_id_updated

 The connection_id_updated event is emitted when either party updates
 their current Connection ID. As this typically happens only
 sparingly over the course of a connection, using this event is more
 efficient than logging the observed CID with each and every
 packet_sent or packet_received events. It has Base importance level.

 The connection_id_updated event is viewed from the perspective of the
 endpoint applying the new ID. As such, when the endpoint receives a
 new connection ID from the peer, the initiator field will be
 "remote". When the endpoint updates its own connection ID, the
 initiator field will be "local".

Marx, et al. Expires 23 April 2026 [Page 12]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICConnectionIDUpdated = {
 initiator: Initiator
 ? old: ConnectionID
 ? new: ConnectionID

 * $$quic-connectionidupdated-extension
 }

 Figure 5: QUICConnectionIDUpdated definition

4.5. spin_bit_updated

 The spin_bit_updated event conveys information about the QUIC latency
 spin bit; see Section 17.4 of [QUIC-TRANSPORT]. The event is emitted
 when the spin bit changes value, it SHOULD NOT be emitted if the spin
 bit is set without changing its value. It has Base importance level.

 QUICSpinBitUpdated = {
 state: bool

 * $$quic-spinbitupdated-extension
 }

 Figure 6: QUICSpinBitUpdated definition

4.6. connection_state_updated

 The connection_state_updated event is used to track progress through
 QUIC’s complex handshake and connection close procedures. It has
 Base importance level.

 [QUIC-TRANSPORT] does not contain an exhaustive flow diagram with
 possible connection states nor their transitions (though some are
 explicitly mentioned, like the ’closing’ and ’draining’ states). As
 such, this document *non-exhaustively* defines those states that are
 most likely to be useful for debugging QUIC connections.

 QUIC implementations SHOULD mainly log the simplified
 BaseConnectionStates, adding the more fine-grained
 GranularConnectionStates when more in-depth debugging is required.
 Tools SHOULD be able to deal with both types equally.

 QUICConnectionStateUpdated = {
 ? old: $ConnectionState
 new: $ConnectionState

 * $$quic-connectionstateupdated-extension
 }

Marx, et al. Expires 23 April 2026 [Page 13]

Internet-Draft QUIC event definitions for qlog October 2025

 BaseConnectionStates =
 ; Initial packet sent/received
 "attempted" /

 ; Handshake packet sent/received
 "handshake_started" /

 ; Both sent a TLS Finished message
 ; and verified the peer’s TLS Finished message
 ; 1-RTT packets can be sent
 ; RFC 9001 Section 4.1.1
 "handshake_complete" /

 ; CONNECTION_CLOSE sent/received,
 ; stateless reset received or idle timeout
 "closed"

 GranularConnectionStates =
 ; RFC 9000 Section 8.1
 ; client sent Handshake packet OR
 ; client used connection ID chosen by the server OR
 ; client used valid address validation token
 "peer_validated" /

 ; 1-RTT data can be sent by the server,
 ; but handshake is not done yet
 ; (server has sent TLS Finished; sometimes called 0.5 RTT data)
 "early_write" /

 ; HANDSHAKE_DONE sent/received.
 ; RFC 9001 Section 4.1.2
 "handshake_confirmed" /

 ; CONNECTION_CLOSE sent
 "closing" /

 ; CONNECTION_CLOSE received
 "draining" /

 ; draining or closing period done, connection state discarded
 "closed"

 $ConnectionState /= BaseConnectionStates / GranularConnectionStates

 Figure 7: QUICConnectionStateUpdated definition

Marx, et al. Expires 23 April 2026 [Page 14]

Internet-Draft QUIC event definitions for qlog October 2025

 The connection_state_changed event has some overlap with the
 connection_closed and connection_started events, and the handling of
 various frames (for example in a packet_received event). Still, it
 can be useful to log these logical state transitions separately,
 especially if they map to an internal implementation state machine,
 to explicitly track progress. As such, implementations are allowed
 to use other ConnectionState values that adhere more closely to their
 internal logic. Tools SHOULD be able to deal with these custom
 states in a similar way to the pre-defined states in this document.

4.7. tuple_assigned

 Importance: Base

 This event is used to associate a single TupleID’s value with other
 parameters that describe a unique network tuple.

 As described in [QLOG-MAIN], each qlog event can be linked to a
 single network tuple by means of the top-level "tuple" field, whose
 value is a TupleID. However, since it can be cumbersome to encode
 additional tuple metadata (such as IP addresses or Connection IDs)
 directly into the TupleID, this event allows such an association to
 happen separately. As such, TupleIDs can be short and unique, and
 can even be updated to be associated with new metadata as the
 connection’s state evolves.

 Definition:

 QUICTupleAssigned = {
 tuple_id: TupleID

 ; the information for traffic going towards the remote receiver
 ? tuple_remote: TupleEndpointInfo

 ; the information for traffic coming in at the local endpoint
 ? tuple_local: TupleEndpointInfo

 * $$quic-tupleassigned-extension
 }

 Figure 8: QUICTupleAssigned definition

 Choosing the different tuple_id values is left up to the
 implementation. Some options include using a uniquely incrementing
 integer, using the (first) Destination Connection ID associated with
 a tuple (or its sequence number), or using (a hash of) the two
 endpoint IP addresses.

Marx, et al. Expires 23 April 2026 [Page 15]

Internet-Draft QUIC event definitions for qlog October 2025

 It is important to note that the empty string ("") is a valid TupleID
 and that it is the default assigned to events that do not explicitly
 set a "tuple" field. Put differently, the initial tuple of a QUIC
 connection on which the handshake occurs (see also Section 4.2) is
 implicitly associated with the TupleID with value "". Associating
 metadata with this default tuple is possible by logging the
 QUICTupleAssigned event with a value of "" for the tuple_id field.

 As the usage of TupleIDs and their metadata can evolve over time,
 multiple QUICTupleAssigned events can be emitted for each unique
 TupleID. The latest event contains the most up-to-date information
 for that TupleID. As such, the first time a TupleID is seen in a
 QUICTupleAssigned event, it is an indication that the TupleID is
 created. Subsequent occurrences indicate the TupleID is updated,
 while a final occurrence with both tuple_local and tuple_remote
 fields omitted implicitly indicates the TupleID has been abandoned.

4.8. mtu_updated

 The mtu_updated event indicates that the estimated Path MTU was
 updated. This happens as part of the Path MTU discovery process. It
 has Extra importance level.

 QUICMTUUpdated = {
 ? old: uint32
 new: uint32

 ; at some point, MTU discovery stops, as a "good enough"
 ; packet size has been found
 ? done: bool .default false

 * $$quic-mtuupdated-extension
 }

 Figure 9: QUICMTUUpdated definition

5. Transport events

5.1. version_information

 The version_information event supports QUIC version negotiation; see
 Section 6 of [QUIC-TRANSPORT]. It has Core importance level.

 QUIC endpoints each have their own list of QUIC versions they
 support. The client uses the most likely version in their first
 initial. If the server does not support that version, it replies
 with a Version Negotiation packet, which contains its supported
 versions. From this, the client selects a version. The

Marx, et al. Expires 23 April 2026 [Page 16]

Internet-Draft QUIC event definitions for qlog October 2025

 version_information event aggregates all this information in a single
 event type. It also allows logging of supported versions at an
 endpoint without actual version negotiation needing to happen.

 QUICVersionInformation = {
 ? server_versions: [+ QuicVersion]
 ? client_versions: [+ QuicVersion]
 ? chosen_version: QuicVersion

 * $$quic-versioninformation-extension
 }

 Figure 10: QUICVersionInformation definition

 Intended use:

 * When sending an initial, the client logs this event with
 client_versions and chosen_version set

 * Upon receiving a client initial with a supported version, the
 server logs this event with server_versions and chosen_version set

 * Upon receiving a client initial with an unsupported version, the
 server logs this event with server_versions set and
 client_versions to the single-element array containing the
 client’s attempted version. The absence of chosen_version implies
 no overlap was found

 * Upon receiving a version negotiation packet from the server, the
 client logs this event with client_versions set and
 server_versions to the versions in the version negotiation packet
 and chosen_version to the version it will use for the next initial
 packet. If the client receives a set of server_versions with no
 viable overlap with its own supported versions, this event should
 be logged without the chosen_version set

5.2. alpn_information

 The alpn_information event supports Application-Layer Protocol
 Negotiation (ALPN) over the QUIC transport; see [RFC7301] and
 Section 7.4 of [QUIC-TRANSPORT]. It has Core importance level.

 QUIC endpoints are configured with a list of supported ALPN
 identifiers. Clients send the list in a TLS ClientHello, and servers
 match against their list. On success, a single ALPN identifier is
 chosen and sent back in a TLS ServerHello. If no match is found, the
 connection is closed.

Marx, et al. Expires 23 April 2026 [Page 17]

Internet-Draft QUIC event definitions for qlog October 2025

 ALPN identifiers are byte sequences, that may be possible to present
 as UTF-8. The ALPNIdentifier‘ type supports either format.
 Implementations SHOULD log at least one format, but MAY log both or
 none.

 QUICALPNInformation = {
 ? server_alpns: [* ALPNIdentifier]
 ? client_alpns: [* ALPNIdentifier]
 ? chosen_alpn: ALPNIdentifier

 * $$quic-alpninformation-extension
 }

 ALPNIdentifier = {
 ? byte_value: hexstring
 ? string_value: text
 }

 Figure 11: QUICALPNInformation definition

 Intended use:

 * When sending an initial, the client logs this event with
 client_alpns set

 * When receiving an initial with a supported alpn, the server logs
 this event with server_alpns set, client_alpns equalling the
 client-provided list, and chosen_alpn to the value it will send
 back to the client.

 * When receiving an initial with an alpn, the client logs this event
 with chosen_alpn to the received value.

 * Alternatively, a client can choose to not log the first event, but
 wait for the receipt of the server initial to log this event with
 both client_alpns and chosen_alpn set.

5.3. parameters_set

 The parameters_set event groups settings from several different
 sources (transport parameters, TLS ciphers, etc.) into a single
 event. This is done to minimize the amount of events and to decouple
 conceptual setting impacts from their underlying mechanism for easier
 high-level reasoning. The event has Core importance level.

Marx, et al. Expires 23 April 2026 [Page 18]

Internet-Draft QUIC event definitions for qlog October 2025

 Most of these settings are typically set once and never change.
 However, they are usually set at different times during the
 connection, so there will regularly be several instances of this
 event with different fields set.

 Note that some settings have two variations (one set locally, one
 requested by the remote peer). This is reflected in the initiator
 field. As such, this field MUST be correct for all settings included
 a single event instance. If the settings from two sides are
 required, they MUST be logged as two separate event instances. If
 the local peer decides to change its behavior based on remote peer’s
 settings, a new event type can be used to reflect the outcome.

 By default, each setting is assumed to either be absent (has an
 undefined value) or have its default value (if it exists) at the
 start of the connection. Subsequently, each setting’s value in a
 parameters_set event supersedes the previous value of that parameter
 if present. If a setting does not appear in a given parameters_set
 event, its value is unchanged.

 Implementations are not required to recognize, process or support
 every setting/parameter received in all situations. For example,
 QUIC implementations MUST discard transport parameters that they do
 not understand Section 7.4.2 of [QUIC-TRANSPORT]. The
 unknown_parameters field can be used to log the raw values of any
 unknown parameters (e.g., GREASE, private extensions, peer-side
 experimentation).

 In the case of connection resumption and 0-RTT, some of the server’s
 parameters are stored up-front at the client and used for the initial
 connection startup. They are later updated with the server’s reply.
 In these cases, utilize the separate parameters_restored event to
 indicate the initial values, and this event to indicate the updated
 values, as normal.

 QUICParametersSet = {
 ? initiator: Initiator

 ; true if valid session ticket was received
 ? resumption_allowed: bool

 ; true if early data extension was enabled on the TLS layer
 ? early_data_enabled: bool

 ; e.g., "AES_128_GCM_SHA256"
 ? tls_cipher: text

 ; RFC9000

Marx, et al. Expires 23 April 2026 [Page 19]

Internet-Draft QUIC event definitions for qlog October 2025

 ? original_destination_connection_id: ConnectionID
 ? initial_source_connection_id: ConnectionID
 ? retry_source_connection_id: ConnectionID
 ? stateless_reset_token: StatelessResetToken
 ? disable_active_migration: bool
 ? max_idle_timeout: uint64
 ? max_udp_payload_size: uint64
 ? ack_delay_exponent: uint64
 ? max_ack_delay: uint64
 ? active_connection_id_limit: uint64
 ? initial_max_data: uint64
 ? initial_max_stream_data_bidi_local: uint64
 ? initial_max_stream_data_bidi_remote: uint64
 ? initial_max_stream_data_uni: uint64
 ? initial_max_streams_bidi: uint64
 ? initial_max_streams_uni: uint64
 ? preferred_address: PreferredAddress
 ? unknown_parameters: [* UnknownParameter]

 ; RFC9221
 ? max_datagram_frame_size: uint64

 ; RFC9287
 ; true if present, absent or false if extension not negotiated
 ? grease_quic_bit: bool

 * $$quic-parametersset-extension
 }

 PreferredAddress = {
 ? ip_v4: IPAddress
 ? port_v4: uint16
 ? ip_v6: IPAddress
 ? port_v6: uint16
 connection_id: ConnectionID
 stateless_reset_token: StatelessResetToken
 }

 UnknownParameter = {
 id: uint64
 ? value: hexstring
 }

 Figure 12: QUICParametersSet definition

Marx, et al. Expires 23 April 2026 [Page 20]

Internet-Draft QUIC event definitions for qlog October 2025

5.4. parameters_restored

 When using QUIC 0-RTT, clients are expected to remember and restore
 the server’s transport parameters from the previous connection. The
 parameters_restored event is used to indicate which parameters were
 restored and to which values when utilizing 0-RTT. It has Base
 importance level.

 Note that not all transport parameters should be restored (many are
 even prohibited from being re-utilized). The ones listed here are
 the ones expected to be useful for correct 0-RTT usage.

 QUICParametersRestored = {

 ; RFC9000
 ? disable_active_migration: bool
 ? max_idle_timeout: uint64
 ? max_udp_payload_size: uint64
 ? active_connection_id_limit: uint64
 ? initial_max_data: uint64
 ? initial_max_stream_data_bidi_local: uint64
 ? initial_max_stream_data_bidi_remote: uint64,
 ? initial_max_stream_data_uni: uint64
 ? initial_max_streams_bidi: uint64
 ? initial_max_streams_uni: uint64

 ; RFC9221
 ? max_datagram_frame_size: uint64

 ; RFC9287
 ; can only be restored at the client.
 ; servers MUST NOT restore this parameter!
 ? grease_quic_bit: bool

 * $$quic-parametersrestored-extension
 }

 Figure 13: QUICParametersRestored definition

5.5. packet_sent

 The packet_sent event indicates a QUIC-level packet was sent. It has
 Core importance level.

Marx, et al. Expires 23 April 2026 [Page 21]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICPacketSent = {
 header: PacketHeader
 ? frames: [* $QuicFrame]

 ; only if header.packet_type === "stateless_reset"
 ; is always 128 bits in length.
 ? stateless_reset_token: StatelessResetToken

 ; only if header.packet_type === "version_negotiation"
 ? supported_versions: [+ QuicVersion]
 ? raw: RawInfo
 ? datagram_id: uint32
 ? is_mtu_probe_packet: bool .default false

 ? trigger:
 ; RFC 9002 Section 6.1.1
 "retransmit_reordered" /
 ; RFC 9002 Section 6.1.2
 "retransmit_timeout" /
 ; RFC 9002 Section 6.2.4
 "pto_probe" /
 ; RFC 9002 6.2.3
 "retransmit_crypto" /
 ; needed for some CCs to figure out bandwidth allocations
 ; when there are no normal sends
 "cc_bandwidth_probe"

 * $$quic-packetsent-extension
 }

 Figure 14: QUICPacketSent definition

 The encryption_level and packet_number_space are not logged
 explicitly: the header.packet_type specifies this by inference
 (assuming correct implementation)

 The datagram_id field is used to track packet coalescing, see
 Section 5.10.

5.6. packet_received

 The packet_received event indicates a QUIC-level packet was received.
 It has Core importance level.

Marx, et al. Expires 23 April 2026 [Page 22]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICPacketReceived = {
 header: PacketHeader
 ? frames: [* $QuicFrame]

 ; only if header.packet_type === "stateless_reset"
 ; Is always 128 bits in length.
 ? stateless_reset_token: StatelessResetToken

 ; only if header.packet_type === "version_negotiation"
 ? supported_versions: [+ QuicVersion]
 ? raw: RawInfo
 ? datagram_id: uint32

 ? trigger:
 ; if packet was buffered because it couldn’t be
 ; decrypted before
 "keys_available"

 * $$quic-packetreceived-extension
 }

 Figure 15: QUICPacketReceived definition

 The encryption_level and packet_number_space are not logged
 explicitly: the header.packet_type specifies this by inference
 (assuming correct implementation).

 The datagram_id field is used to track packet coalescing, see
 Section 5.10.

5.7. packet_dropped

 The packet_dropped event indicates a QUIC-level packet was dropped.
 It has Base importance level.

 The trigger field indicates a general reason category for dropping
 the packet, while the details field can contain additional
 implementation-specific information.

Marx, et al. Expires 23 April 2026 [Page 23]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICPacketDropped = {

 ; Primarily packet_type should be filled here,
 ; as other fields might not be decrypteable or parseable
 ? header: PacketHeader
 ? raw: RawInfo
 ? datagram_id: uint32
 ? details: {* text => any}
 ? trigger:
 "internal_error" /
 "rejected" /
 "unsupported" /
 "invalid" /
 "duplicate" /
 "connection_unknown" /
 "decryption_failure" /
 "key_unavailable" /
 "general"

 * $$quic-packetdropped-extension
 }

 Figure 16: QUICPacketDropped definition

 Some example situations for each of the trigger categories include:

 * internal_error: not initialized, out of memory

 * rejected: limits reached, DDoS protection, unwilling to track more
 paths, duplicate packet

 * unsupported: unknown or unsupported version. See also
 Section 1.3.

 * invalid: packet parsing or validation error

 * duplicate: duplicate packet

 * connection_unknown: packet does not relate to a known connection
 or Connection ID

 * decryption_failure: decryption failed

 * key_unavailable: decryption key was unavailable

 * general: situations not clearly covered in the other categories

Marx, et al. Expires 23 April 2026 [Page 24]

Internet-Draft QUIC event definitions for qlog October 2025

 The datagram_id field is used to track packet coalescing, see
 Section 5.10.

5.8. packet_buffered

 The packet_buffered event is emitted when a packet is buffered
 because it cannot be processed yet. Typically, this is because the
 packet cannot be parsed yet, and thus only the full packet contents
 can be logged when it was parsed in a packet_received event. The
 event has Base importance level.

 QUICPacketBuffered = {

 ; primarily packet_type should be filled here as other elements
 ; might not be available yet
 ? header: PacketHeader
 ? raw: RawInfo
 ? datagram_id: uint32
 ? trigger:
 ; indicates the parser cannot keep up, temporarily buffers
 ; packet for later processing
 "backpressure" /
 ; if packet cannot be decrypted because the proper keys were
 ; not yet available
 "keys_unavailable"

 * $$quic-packetbuffered-extension
 }

 Figure 17: QUICPacketBuffered definition

 The datagram_id field is used to track packet coalescing, see
 Section 5.10.

5.9. packets_acked

 The packets_acked event is emitted when a (group of) sent packet(s)
 is acknowledged by the remote peer _for the first time_. It has Extra
 importance level.

 This information could also be deduced from the contents of received
 ACK frames. However, ACK frames require additional processing logic
 to determine when a given packet is acknowledged for the first time,
 as QUIC uses ACK ranges which can include repeated ACKs.
 Additionally, this event can be used by implementations that do not
 log frame contents.

Marx, et al. Expires 23 April 2026 [Page 25]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICPacketsAcked = {
 ? packet_number_space: $PacketNumberSpace
 ? packet_numbers: [+ uint64]

 * $$quic-packetsacked-extension
 }

 Figure 18: QUICPacketsAcked definition

 If packet_number_space is omitted, it assumes the default value of
 application_data, as this is by far the most prevalent packet number
 space a typical QUIC connection will use.

5.10. udp_datagrams_sent

 The datagrams_sent event indicates when one or more UDP-level
 datagrams are passed to the underlying network socket. This is
 useful for determining how QUIC packet buffers are drained to the OS.
 The event has Extra importance level.

 QUICUDPDatagramsSent = {

 ; to support passing multiple at once
 ? count: uint16

 ; The RawInfo fields do not include the UDP headers,
 ; only the UDP payload
 ? raw: [+ RawInfo]

 ; ECN bits in the IP header
 ; if not set, defaults to the value used on the last
 ; QUICDatagramsSent event
 ? ecn: [+ ECN]

 ? datagram_ids: [+ uint32]

 * $$quic-udpdatagramssent-extension
 }

 Figure 19: QUICUDPDatagramsSent definition

 Since QUIC implementations rarely control UDP logic directly, the raw
 data excludes UDP-level headers in all RawInfo fields.

 Multiple QUIC packets can be coalesced in a single UDP datagram,
 especially during the handshake (see Section 12.2 of
 [QUIC-TRANSPORT]). However, neither QUIC nor UDP themselves provide
 an explicit mechanism to track this behaviour. To make it possible

Marx, et al. Expires 23 April 2026 [Page 26]

Internet-Draft QUIC event definitions for qlog October 2025

 for implementations to track coalescing across packet-level and
 datagram-level qlog events, this document defines a qlog-specific
 mechanism for tracking coalescing across packet-level and datagram-
 level qlog events: a "datagram identifier" carried in datagram_id
 fields. qlog implementations that want to track coalescing can use
 this mechanism, where multiple events sharing the same datagram_id
 indicate they were coalesced in the same UDP datagram. The selection
 of specific and locally-unique datagram_id values is an
 implementation choice.

5.11. udp_datagrams_received

 When one or more UDP-level datagrams are received from the socket.
 This is useful for determining how datagrams are passed to the user
 space stack from the OS. The event has Extra importance level.

 QUICUDPDatagramsReceived = {

 ; to support passing multiple at once
 ? count: uint16

 ; The RawInfo fields do not include the UDP headers,
 ; only the UDP payload
 ? raw: [+ RawInfo]

 ; ECN bits in the IP header
 ; if not set, defaults to the value on the last
 ; QUICDatagramsReceived event
 ? ecn: [+ ECN]

 ? datagram_ids: [+ uint32]

 * $$quic-udpdatagramsreceived-extension
 }

 Figure 20: QUICUDPDatagramsReceived definition

 The datagram_ids field is used to track packet coalescing, see
 Section 5.10.

5.12. udp_datagram_dropped

 When a UDP-level datagram is dropped. This is typically done if it
 does not contain a valid QUIC packet. If it does, but the QUIC
 packet is dropped for other reasons, the packet_dropped event
 (Section 5.7) should be used instead. The event has Extra importance
 level.

Marx, et al. Expires 23 April 2026 [Page 27]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICUDPDatagramDropped = {

 ; The RawInfo fields do not include the UDP headers,
 ; only the UDP payload
 ? raw: RawInfo

 * $$quic-udpdatagramdropped-extension
 }

 Figure 21: QUICUDPDatagramDropped definition

5.13. stream_state_updated

 The stream_state_updated event is emitted whenever the internal state
 of a QUIC stream is updated; see Section 3 of [QUIC-TRANSPORT]. Most
 of this can be inferred from several types of frames going over the
 wire, but it’s often easier to have explicit signals for these state
 changes. The event has Base importance level.

 While QUIC stream IDs encode the type of stream, (see Section 2.1 of
 [QUIC-TRANSPORT]), the optional stream_type field can be used to
 provide a more-accessible form of the information.

 Section 3 of [QUIC-TRANSPORT] describes streams in terms of their
 send and receive components, with a state machine for each. The
 stream_side field is used to indicate which side’s state is updated
 in the logged event. In case both sides of the stream change state
 at the same time (for example both become closed), two separate
 events with different stream_side fields SHOULD be logged.

 In cases where it is useful to know which side of the connection
 initiated a state change (for example, closed due to either
 RESET_STREAM or STOP_SENDING), this can be reflected using the
 trigger field.

Marx, et al. Expires 23 April 2026 [Page 28]

Internet-Draft QUIC event definitions for qlog October 2025

 StreamType = "unidirectional" /
 "bidirectional"

 QUICStreamStateUpdated = {
 stream_id: uint64
 ? stream_type: StreamType
 ? old: $StreamState
 new: $StreamState
 stream_side: "sending" /
 "receiving"
 ? trigger:
 ; stream state change was initiated by a local action
 "local" /
 ; stream state change was initiated by a remote action
 "remote"

 * $$quic-streamstateupdated-extension
 }

 BaseStreamStates = "idle" /
 "open" /
 "closed"

 GranularStreamStates =
 ; bidirectional stream states, RFC 9000 Section 3.4.
 "half_closed_local" /
 "half_closed_remote" /
 ; sending-side stream states, RFC 9000 Section 3.1.
 "ready" /
 "send" /
 "data_sent" /
 "reset_sent" /
 "reset_received" /
 ; receive-side stream states, RFC 9000 Section 3.2.
 "receive" /
 "size_known" /
 "data_read" /
 "reset_read" /
 ; both-side states
 "data_received" /
 ; qlog-defined: memory actually freed
 "destroyed"

 $StreamState /= BaseStreamStates / GranularStreamStates

 Figure 22: QUICStreamStateUpdated definition

Marx, et al. Expires 23 April 2026 [Page 29]

Internet-Draft QUIC event definitions for qlog October 2025

 QUIC implementations SHOULD mainly log the simplified
 BaseStreamStates instead of the more fine-grained
 GranularStreamStates. These latter ones are mainly for more in-depth
 debugging. Tools SHOULD be able to deal with both types equally.

5.14. frames_processed

 The frame_processed event is intended to prevent a large
 proliferation of specific purpose events (e.g., packets_acknowledged,
 flow_control_updated, stream_data_received). It has Extra importance
 level.

 Implementations have the opportunity to (selectively) log this type
 of signal without having to log packet-level details (e.g., in
 packet_received). Since for almost all cases, the effects of
 applying a frame to the internal state of an implementation can be
 inferred from that frame’s contents, these events are aggregated into
 this single frames_processed event.

 The frame_processed event can be used to signal internal state change
 not resulting directly from the actual "parsing" of a frame (e.g.,
 the frame could have been parsed, data put into a buffer, then later
 processed, then logged with this event).

 The packet_received event can convey all constituent frames. It is
 not expected that the frames_processed event will also be used for a
 redundant purpose. Rather, implementations can use this event to
 avoid having to log full packets or to convey extra information about
 when frames are processed (for example, if frame processing is
 deferred for any reason).

 Note that for some events, this approach will lose some information
 (e.g., for which encryption level are packets being acknowledged?).
 If this information is important, the packet_received event can be
 used instead.

 In some implementations, it can be difficult to log frames directly,
 even when using packet_sent and packet_received events. For these
 cases, the frames_processed event also contains the packet_numbers
 field, which can be used to more explicitly link this event to the
 packet_sent/received events. The field is an array, which supports
 using a single frames_processed event for multiple frames received
 over multiple packets. To map between frames and packets, the
 position and order of entries in the frames and packet_numbers is
 used. If the optional packet_numbers field is used, each frame MUST
 have a corresponding packet number at the same index.

Marx, et al. Expires 23 April 2026 [Page 30]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICFramesProcessed = {
 frames: [* $QuicFrame]
 ? packet_numbers: [* uint64]

 * $$quic-framesprocessed-extension
 }

 Figure 23: QUICFramesProcessed definition

 For example, an instance of the frames_processed event that
 represents four STREAM frames received over two packets would have
 the fields serialized as:

"frames":[
 {"frame_type":"stream","stream_id":0,"offset":0,"raw":{"length":500}},
 {"frame_type":"stream","stream_id":0,"offset":500,"raw":{"length":200}},
 {"frame_type":"stream","stream_id":1,"offset":0,"raw":{"length":300}},
 {"frame_type":"stream","stream_id":1,"offset":300,"raw":{"length":50}}
],
"packet_numbers":[
 1,
 1,
 2,
 2
]

5.15. stream_data_moved

 The stream_data_moved event is used to indicate when QUIC stream data
 moves between the different layers. This helps make clear the flow
 of data, how long data remains in various buffers, and the overheads
 introduced by individual layers. The event has Base importance
 level.

 The raw.length field is used to reflect how many bytes were moved.
 As this event relates to stream data only, there are no packet or
 frame headers and the raw.length field MUST reflect that.

 For example, it can be useful to understand when data moves from an
 application protocol (e.g., HTTP) to QUIC stream buffers and vice
 versa.

Marx, et al. Expires 23 April 2026 [Page 31]

Internet-Draft QUIC event definitions for qlog October 2025

 The stream_data_moved event can provide insight into whether received
 data on a QUIC stream is moved to the application protocol
 immediately (for example per received packet) or in larger batches
 (for example, all QUIC packets are processed first and afterwards the
 application layer reads from the streams with newly available data).
 This can help identify bottlenecks, flow control issues, or
 scheduling problems.

 The additional_info field supports optional logging of information
 related to the stream state. For example, an application layer that
 moves data into transport and simultaneously ends the stream, can log
 fin_set. As another example, a transport layer that has received an
 instruction to reset a stream can indicate this to the application
 layer using reset_stream. In both cases, the raw.length field can be
 omitted or have a zero value.

 This event is only for data in QUIC streams. For data in QUIC
 Datagram Frames, see the datagram_data_moved event defined in
 Section 5.16.

 QUICStreamDataMoved = {
 ? stream_id: uint64
 ? offset: uint64

 ? from: $DataLocation
 ? to: $DataLocation

 ? additional_info: $DataMovedAdditionalInfo

 ? raw: RawInfo

 * $$quic-streamdatamoved-extension
 }

 $DataLocation /= "application" /
 "transport" /
 "network"

 $DataMovedAdditionalInfo /= "fin_set" /
 "stream_reset"

 Figure 24: QUICStreamDataMoved definition

Marx, et al. Expires 23 April 2026 [Page 32]

Internet-Draft QUIC event definitions for qlog October 2025

5.16. datagram_data_moved

 The datagram_data_moved event is used to indicate when QUIC Datagram
 Frame data (see [RFC9221]) moves between the different layers. This
 helps make clear the flow of data, how long data remains in various
 buffers, and the overheads introduced by individual layers. The
 event has Base importance level.

 The raw.length field is used to reflect how many bytes were moved.
 As this event relates to datagram data only, there are no packet or
 frame headers and the raw.length field MUST reflect that.

 For example, passing from the application protocol (e.g.,
 WebTransport) to QUIC Datagram Frame buffers and vice versa.

 The datagram_data_moved event can provide insight into whether
 received data in a QUIC Datagram Frame is moved to the application
 protocol immediately (for example per received packet) or in larger
 batches (for example, all QUIC packets are processed first and
 afterwards the application layer reads all Datagrams at once). This
 can help identify bottlenecks, flow control issues, or scheduling
 problems.

 This event is only for data in QUIC Datagram Frames. For data in
 QUIC streams, see the stream_data_moved event defined in
 Section 5.15.

 QUICDatagramDataMoved = {
 ? from: $DataLocation
 ? to: $DataLocation
 ? raw: RawInfo

 * $$quic-datagramdatamoved-extension
 }

 Figure 25: QUICDatagramDataMoved definition

5.17. connection_data_blocked_updated

 The connection_blocked_updated event is used to indicate when the
 QUIC connection becomes blocked or unblocked for sending data. When
 a connection is "blocked", data can’t be sent in streams and/or
 datagrams until the blocking reason has been resolved. The event has
 Extra importance level.

 Use the stream_blocked_updated or datagram_blocked_updated event to
 provide more fine-grained information for individual data types.

Marx, et al. Expires 23 April 2026 [Page 33]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICConnectionDataBlockedUpdated = {
 ? old: $BlockedState
 new: $BlockedState

 ? reason: $BlockedReason
 }

 $BlockedState /= "blocked" /
 "unblocked"

 $BlockedReason /= "scheduling" /
 "pacing" /
 "amplification_protection" /
 "congestion_control" /
 "connection_flow_control" /
 "stream_flow_control" /
 "stream_id" /
 "application"

 Figure 26: QUICConnectionDataBlockedUpdated definition

5.18. stream_data_blocked_updated

 The stream_data_blocked_updated event is used to indicate when a QUIC
 stream becomes blocked or unblocked for sending. The event has Extra
 importance level.

 QUICStreamDataBlockedUpdated = {
 ? old: $BlockedState
 new: $BlockedState

 stream_id: uint64

 ? reason: $BlockedReason
 }

 Figure 27: QUICStreamDataBlockedUpdated definition

5.19. datagram_data_blocked_updated

 The datagram_data_blocked_updated event is used to indicate when QUIC
 datagrames becomes blocked or unblocked for sending. The event has
 Extra importance level.

Marx, et al. Expires 23 April 2026 [Page 34]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICDatagramDataBlockedUpdated = {
 ? old: $BlockedState
 new: $BlockedState

 ? reason: $BlockedReason
 }

 Figure 28: QUICDatagramDataBlockedUpdated definition

5.20. migration_state_updated

 Use to provide additional information when attempting (client-side)
 connection migration. While most details of the QUIC connection
 migration process can be inferred by observing the PATH_CHALLENGE and
 PATH_RESPONSE frames, in combination with the QUICTupleAssigned
 event, it can be useful to explicitly log the progression of the
 migration and potentially made decisions in a single location/event.
 The event has Extra importance level.

 Generally speaking, connection migration goes through two phases: a
 probing phase (which is not always needed/present), and a migration
 phase (which can be abandoned upon error).

 Implementations that log per-path information in a
 QUICMigrationStateUpdated, SHOULD also emit QUICTupleAssigned events,
 to serve as a ground-truth source of information.

 Definition:

Marx, et al. Expires 23 April 2026 [Page 35]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICMigrationStateUpdated = {
 ? old: MigrationState
 new: MigrationState

 ? tuple_id: TupleID

 ; the information for traffic going towards the remote receiver
 ? tuple_remote: TupleEndpointInfo

 ; the information for traffic coming in at the local endpoint
 ? tuple_local: TupleEndpointInfo

 * $$quic-migrationstateupdated-extension
 }

 ; Note that MigrationState does not describe a full state machine
 ; These entries are not necessarily chronological,
 ; nor will they always all appear during
 ; a connection migration attempt.
 MigrationState =
 ; probing packets are sent, migration not initiated yet
 "probing_started" /
 ; did not get reply to probing packets,
 ; discarding path as an option
 "probing_abandoned" /
 ; received reply to probing packets, path is migration candidate
 "probing_successful" /
 ; non-probing packets are sent, attempting migration
 "migration_started" /
 ; something went wrong during the migration, abandoning attempt
 "migration_abandoned" /
 ; new path is now fully used, old path is discarded
 "migration_complete"

 Figure 29: QUICMigrationStateUpdated definition

5.21. timer_updated

 The timer_updated event is emitted when a timer changes state. It
 has Extra importance level.

 The three main event types are:

 * set: the timer is set with a delta timeout for when it will
 trigger next

 * expired: when the timer effectively expires after the delta
 timeout

Marx, et al. Expires 23 April 2026 [Page 36]

Internet-Draft QUIC event definitions for qlog October 2025

 * cancelled: when a timer is cancelled

 In order to indicate an active timer’s timeout update, a new set
 event is used.

 QUICTimerUpdated events with the timer_type set to ackor pto indicate
 changes to the individual timeouts defined by RFC 9002: the threshold
 loss detection timeout (see Section 6.1.2 of [QUIC-RECOVERY]) and the
 probe timeout (see Section 6.2 of [QUIC-RECOVERY]). Those set to
 loss_timeout represent changes to the multi-modal loss detection
 timer (see Section 3 of [QUIC-RECOVERY]).

 The QUIC protocol conceptually employs a variety of timers, but their
 usage can be implementation-dependent. Implementers can add
 additional fields to this event if needed via $$quic-timerupdated-
 extension or specify other/additional timer types via $TimerType.

 ; a non-exhaustive list of typically employed timers
 $TimerType /= "ack" /
 "pto" /
 "loss_timeout" /
 "path_validation" /
 "handshake_timeout" /
 "idle_timeout"

 QUICTimerUpdated = {
 ? timer_type: $TimerType

 ; to disambiguate in case there are multiple timers
 ; of the same type
 ? timer_id: uint64

 ; if used for recovery timers, this can be useful information
 ? packet_number_space: $PacketNumberSpace
 event_type: "set" /
 "expired" /
 "cancelled"

 ; if event_type === "set": delta time is in ms from
 ; this event’s timestamp until when the timer should trigger
 ? delta: float32

 * $$quic-timerupdated-extension
 }

 Figure 30: QUICTimerUpdated definition

Marx, et al. Expires 23 April 2026 [Page 37]

Internet-Draft QUIC event definitions for qlog October 2025

6. Security Events

6.1. key_updated

 The key_updated event has Base importance level.

 QUICKeyUpdated = {
 key_type: $KeyType
 ? old: hexstring
 ? new: hexstring

 ; needed for 1RTT key updates
 ? key_phase: uint64
 ? trigger:
 ; (e.g., initial, handshake and 0-RTT keys
 ; are generated by TLS)
 "tls" /
 "remote_update" /
 "local_update"

 * $$quic-keyupdated-extension
 }

 Figure 31: QUICKeyUpdated definition

 Note that the key_phase is the full value of the key phase (as
 indicated by @M and @N in Figure 9 of [QUIC-TLS]). The key phase bit
 used on the packet header is the least significant bit of the key
 phase.

6.2. key_discarded

 The key_discarded event has Base importance level.

Marx, et al. Expires 23 April 2026 [Page 38]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICKeyDiscarded = {
 key_type: $KeyType
 ? key: hexstring

 ; needed for 1RTT key updates
 ? key_phase: uint64
 ? trigger:
 ; (e.g., initial, handshake and 0-RTT keys
 ; are generated by TLS)
 "tls" /
 "remote_update" /
 "local_update"

 * $$quic-keydiscarded-extension
 }

 Figure 32: QUICKeyDiscarded definition

7. Recovery events

 Most of the events in this category are kept generic to support
 different recovery approaches and various congestion control
 algorithms. Tool creators SHOULD make an effort to support and
 visualize even unknown data in these events (e.g., plot unknown
 congestion states by name on a timeline visualization).

7.1. recovery_parameters_set

 The recovery_parameters_set event groups initial parameters from both
 loss detection and congestion control into a single event. It has
 Base importance level.

 All these settings are typically set once and never change.
 Implementation that do, for some reason, change these parameters
 during execution, MAY emit the recovery_parameters_set event more
 than once.

Marx, et al. Expires 23 April 2026 [Page 39]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICRecoveryParametersSet = {

 ; Loss detection, see RFC 9002 Appendix A.2
 ; in amount of packets
 ? reordering_threshold: uint16

 ; as RTT multiplier
 ? time_threshold: float32

 ; in ms
 timer_granularity: uint16

 ; in ms
 ? initial_rtt:float32

 ; congestion control, see RFC 9002 Appendix B.2
 ; in bytes. Note that this could be updated after pmtud
 ? max_datagram_size: uint32

 ; in bytes
 ? initial_congestion_window: uint64

 ; Note that this could change when max_datagram_size changes
 ; in bytes
 ? minimum_congestion_window: uint64
 ? loss_reduction_factor: float32

 ; as PTO multiplier
 ? persistent_congestion_threshold: uint16

 * $$quic-recoveryparametersset-extension
 }

 Figure 33: QUICRecoveryParametersSet definition

 Additionally, this event can contain any number of unspecified fields
 to support different recovery approaches.

7.2. recovery_metrics_updated

 The recovery_metrics_updated event is emitted when one or more of the
 observable recovery metrics changes value. It has Core importance
 level.

Marx, et al. Expires 23 April 2026 [Page 40]

Internet-Draft QUIC event definitions for qlog October 2025

 This event SHOULD group all possible metric updates that happen at or
 around the same time in a single event (e.g., if min_rtt and
 smoothed_rtt change at the same time, they should be bundled in a
 single recovery_metrics_updated entry, rather than split out into
 two). Consequently, a recovery_metrics_updated event is only
 guaranteed to contain at least one of the listed metrics.

 QUICRecoveryMetricsUpdated = {

 ; Loss detection, see RFC 9002 Appendix A.3
 ; all following rtt fields are expressed in ms
 ? min_rtt: float32
 ? smoothed_rtt: float32
 ? latest_rtt: float32
 ? rtt_variance: float32
 ? pto_count: uint16

 ; Congestion control, see RFC 9002 Appendix B.2.
 ; in bytes
 ? congestion_window: uint64
 ? bytes_in_flight: uint64

 ; in bytes
 ? ssthresh: uint64

 ; qlog defined
 ; sum of all packet number spaces
 ? packets_in_flight: uint64

 ; in bits per second
 ? pacing_rate: uint64

 * $$quic-recoverymetricsupdated-extension
 }

 Figure 34: QUICRecoveryMetricsUpdated definition

 In order to make logging easier, implementations MAY log values even
 if they are the same as previously reported values (e.g., two
 subsequent QUICRecoveryMetricsUpdated entries can both report the
 exact same value for min_rtt). However, applications SHOULD try to
 log only actual updates to values.

 Additionally, the recovery_metrics_updated event can contain any
 number of unspecified fields to support different recovery
 approaches.

Marx, et al. Expires 23 April 2026 [Page 41]

Internet-Draft QUIC event definitions for qlog October 2025

7.3. congestion_state_updated

 The congestion_state_updated event indicates when the congestion
 controller enters a significant new state and changes its behaviour.
 It has Base importance level.

 The values of the event’s fields are intentionally unspecified here
 in order to support different Congestion Control algorithms, as these
 typically have different states and even different implementations of
 these states across stacks. For example, for the algorithm defined
 in the QUIC Recovery RFC ("enhanced" New Reno), the following states
 are used: Slow Start, Congestion Avoidance, Application Limited and
 Recovery. Similarly, states can be triggered by a variety of events,
 including detection of Persistent Congestion or receipt of ECN
 markings.

 QUICCongestionStateUpdated = {
 ? old: text
 new: text
 ? trigger: text

 * $$quic-congestionstateupdated-extension
 }

 Figure 35: QUICCongestionStateUpdated definition

 The trigger field SHOULD be logged if there are multiple ways in
 which a state change can occur but MAY be omitted if a given state
 can only be due to a single event occurring (for example Slow Start
 is often exited only when ssthresh is exceeded).

7.4. packet_lost

 The packet_lost event is emitted when a packet is deemed lost by loss
 detection. It has Core importance level.

 It is RECOMMENDED to populate the optional trigger field in order to
 help disambiguate among the various possible causes of a loss
 declaration.

Marx, et al. Expires 23 April 2026 [Page 42]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICPacketLost = {

 ; should include at least the packet_type and packet_number
 ? header: PacketHeader

 ; not all implementations will keep track of full
 ; packets, so these are optional
 ? frames: [* $QuicFrame]
 ? is_mtu_probe_packet: bool .default false
 ? trigger:
 "reordering_threshold" /
 "time_threshold" /
 ; RFC 9002 Section 6.2.4 paragraph 6, MAY
 "pto_expired"

 * $$quic-packetlost-extension
 }

 Figure 36: QUICPacketLost definition

7.5. marked_for_retransmit

 The marked_for_retransmit event indicates which data was marked for
 retransmission upon detection of packet loss (see packet_lost). It
 has Extra importance level.

 Similar to the reasoning for the frames_processed event, in order to
 keep the amount of different events low, this signal is grouped into
 in a single event based on existing QUIC frame definitions for all
 types of retransmittable data.

 Implementations retransmitting full packets or frames directly can
 just log the constituent frames of the lost packet here (or do away
 with this event and use the contents of the packet_lost event
 instead). Conversely, implementations that have more complex logic
 (e.g., marking ranges in a stream’s data buffer as in-flight), or
 that do not track sent frames in full (e.g., only stream offset +
 length), can translate their internal behaviour into the appropriate
 frame instance here even if that frame was never or will never be put
 on the wire.

 Much of this data can be inferred if implementations log packet_sent
 events (e.g., looking at overlapping stream data offsets and length,
 one can determine when data was retransmitted).

Marx, et al. Expires 23 April 2026 [Page 43]

Internet-Draft QUIC event definitions for qlog October 2025

 QUICMarkedForRetransmit = {
 frames: [+ $QuicFrame]

 * $$quic-markedforretransmit-extension
 }

 Figure 37: QUICMarkedForRetransmit definition

7.6. ecn_state_updated

 The ecn_state_updated event indicates a progression in the ECN state
 machine as described in section A.4 of [QUIC-TRANSPORT]. It has
 Extra importance level.

 QUICECNStateUpdated = {
 ? old: ECNState
 new: ECNState

 * $$quic-ecnstateupdated-extension
 }

 ECNState =
 ; ECN testing in progress
 "testing" /
 ; ECN state unknown, waiting for acknowledgements
 ; for testing packets
 "unknown" /
 ; ECN testing failed
 "failed" /
 ; testing was successful
 "capable"

 Figure 38: QUICECNStateUpdated definition

8. QUIC data type definitions

8.1. QuicVersion

 QuicVersion = hexstring

 Figure 39: QuicVersion definition

8.2. ConnectionID

 ConnectionID = hexstring

 Figure 40: ConnectionID definition

Marx, et al. Expires 23 April 2026 [Page 44]

Internet-Draft QUIC event definitions for qlog October 2025

8.3. Initiator

 Initiator = "local" /
 "remote"

 Figure 41: Initiator definition

8.4. IPAddress

 ; an IPAddress can either be a "human readable" form
 ; (e.g., "127.0.0.1" for v4 or
 ; "2001:0db8:85a3:0000:0000:8a2e:0370:7334" for v6) or
 ; use a raw byte-form (as the string forms can be ambiguous).
 ; Additionally, a hash-based or redacted representation
 ; can be used if needed for privacy or security reasons.
 IPAddress = text /
 hexstring

 Figure 42: IPAddress definition

8.5. TupleEndpointInfo

 TupleEndpointInfo indicates a single half/direction of a four-tuple.
 A full tuple is comprised of two halves. Firstly: the server sends
 to the remote client IP + port using a specific destination
 Connection ID. Secondly: the client sends to the remote server IP +
 port using a different destination Connection ID.

 As such, structures logging tuple information SHOULD include two
 different TupleEndpointInfo instances, one for each half of the
 tuple.

 TupleEndpointInfo = {
 ? ip_v4: IPAddress
 ? port_v4: uint16
 ? ip_v6: IPAddress
 ? port_v6: uint16

 ; Even though usually only a single ConnectionID
 ; is associated with a given tuple/path at a time,
 ; there are situations where there can be an overlap
 ; or a need to keep track of previous ConnectionIDs
 ? connection_ids: [+ ConnectionID]

 * $$quic-tupleendpointinfo-extension
 }

 Figure 43: TupleEndpointInfo definition

Marx, et al. Expires 23 April 2026 [Page 45]

Internet-Draft QUIC event definitions for qlog October 2025

8.6. PacketType

 $PacketType /= "initial" /
 "handshake" /
 "0RTT" /
 "1RTT" /
 "retry" /
 "version_negotiation" /
 "stateless_reset" /
 "unknown"

 Figure 44: PacketType definition

8.7. PacketNumberSpace

 $PacketNumberSpace /= "initial" /
 "handshake" /
 "application_data"

 Figure 45: PacketNumberSpace definition

8.8. PacketHeader

 If the packet_type numerical value does not map to a known
 $PacketType string, the packet_type value of "unknown" can be used
 and the raw value captured in the packet_type_bytes field; a
 numerical value without variable-length integer encoding.

 The fixed and reserved bits are omitted here because they must be 0;
 see [QUIC-TRANSPORT]. If these bits have an invalid value, the raw
 values can be captured in the raw.data field of the event logging the
 PacketHeader.

 QUIC extensions that do utilize these bits are expected to create new
 events (analogous to spin_bit_updated) or use qlog extension
 mechanisms to reflect that usage.

 For long header packets of type initial, handshake, and 0RTT, the
 length field of the packet header is logged in the qlog raw.length
 field, and the value signifies the length of the packet number plus
 the payload.

Marx, et al. Expires 23 April 2026 [Page 46]

Internet-Draft QUIC event definitions for qlog October 2025

 PacketHeader = {
 packet_type: $PacketType

 ; only if packet_type === "unknown"
 ? packet_type_bytes: uint64

 ; only if packet_type === "1RTT"
 ? spin_bit: bool

 ; only if packet_type === "1RTT", and if the key phase was
 ; determined from the key_phase_bit
 ? key_phase: uint64

 ; only if packet_type === "1RTT", and if key_phase is not set
 ? key_phase_bit: bool

 ; only if packet_type === "initial" || "handshake" || "0RTT" ||
 ; "1RTT"
 ? packet_number_length: uint8

 ; only if packet_type === "initial" || "handshake" || "0RTT" ||
 ; "1RTT"
 ? packet_number: uint64

 ; only if packet_type === "initial" || "retry"
 ? token: Token

 ; only if packet_type === "initial" || "handshake" || "0RTT"
 ; Signifies length of the packet_number plus the payload
 ? length: uint16

 ; only if present in the header.
 ; if correctly using transport:connection_id_updated events,
 ; dcid can be skipped for 1RTT packets
 ? version: QuicVersion
 ? scil: uint8
 ? dcil: uint8
 ? scid: ConnectionID
 ? dcid: ConnectionID

 * $$quic-packetheader-extension
 }

 Figure 46: PacketHeader definition

8.9. Token

Marx, et al. Expires 23 April 2026 [Page 47]

Internet-Draft QUIC event definitions for qlog October 2025

 Token = {
 ? type: $TokenType

 ; decoded fields included in the token
 ; (typically: peer’s IP address, creation time)
 ? details: {
 * text => any
 }
 ? raw: RawInfo

 * $$quic-token-extension
 }

 $TokenType /= "retry" /
 "resumption"

 Figure 47: Token definition

 The token carried in an Initial packet can either be a retry token
 from a Retry packet, or one originally provided by the server in a
 NEW_TOKEN frame used when resuming a connection (e.g., for address
 validation purposes). Retry and resumption tokens typically contain
 encoded metadata to check the token’s validity when it is used, but
 this metadata and its format is implementation specific. For that,
 Token includes a general-purpose details field.

8.10. Stateless Reset Token

 StatelessResetToken = hexstring .size 16

 Figure 48: Stateless Reset Token definition

 The stateless reset token is carried in stateless reset packets, in
 transport parameters and in NEW_CONNECTION_ID frames.

8.11. KeyType

 $KeyType /= "server_initial_secret" /
 "client_initial_secret" /
 "server_handshake_secret" /
 "client_handshake_secret" /
 "server_0rtt_secret" /
 "client_0rtt_secret" /
 "server_1rtt_secret" /
 "client_1rtt_secret"

 Figure 49: KeyType definition

Marx, et al. Expires 23 April 2026 [Page 48]

Internet-Draft QUIC event definitions for qlog October 2025

8.12. ECN

 ECN = "Not-ECT" / "ECT(1)" / "ECT(0)" / "CE"

 Figure 50: ECN definition

 The ECN bits carried in the IP header.

8.13. QUIC Frames

 The generic $QuicFrame is defined here as a CDDL "type socket"
 extension point. It can be extended to support additional QUIC frame
 types.

 ; The QuicFrame is any key-value map (e.g., JSON object)
 $QuicFrame /= {
 * text => any
 }

 Figure 51: QuicFrame type socket definition

 The QUIC frame types defined in this document are as follows:

 QuicBaseFrames = PaddingFrame /
 PingFrame /
 AckFrame /
 ResetStreamFrame /
 StopSendingFrame /
 CryptoFrame /
 NewTokenFrame /
 StreamFrame /
 MaxDataFrame /
 MaxStreamDataFrame /
 MaxStreamsFrame /
 DataBlockedFrame /
 StreamDataBlockedFrame /
 StreamsBlockedFrame /
 NewConnectionIDFrame /
 RetireConnectionIDFrame /
 PathChallengeFrame /
 PathResponseFrame /
 ConnectionCloseFrame /
 HandshakeDoneFrame /
 UnknownFrame /
 DatagramFrame

 $QuicFrame /= QuicBaseFrames

Marx, et al. Expires 23 April 2026 [Page 49]

Internet-Draft QUIC event definitions for qlog October 2025

 Figure 52: QuicBaseFrames definition

8.13.1. PaddingFrame

 In QUIC, PADDING frames are simply identified as a single byte of
 value 0. As such, each padding byte could be theoretically
 interpreted and logged as an individual PaddingFrame.

 However, as this leads to heavy logging overhead, implementations
 SHOULD instead emit just a single PaddingFrame and set the
 raw.payload_length property to the amount of PADDING bytes/frames
 included in the packet.

 PaddingFrame = {
 frame_type: "padding"
 ? raw: RawInfo
 }

 Figure 53: PaddingFrame definition

8.13.2. PingFrame

 PingFrame = {
 frame_type: "ping"
 ? raw: RawInfo
 }

 Figure 54: PingFrame definition

8.13.3. AckFrame

Marx, et al. Expires 23 April 2026 [Page 50]

Internet-Draft QUIC event definitions for qlog October 2025

 ; either a single number (e.g., [1]) or two numbers (e.g., [1,2]).
 ; For two numbers:
 ; the first number is "from": lowest packet number in interval
 ; the second number is "to": up to and including the highest
 ; packet number in the interval
 AckRange = [1*2 uint64]

 AckFrame = {
 frame_type: "ack"

 ; in ms
 ? ack_delay: float32

 ; e.g., looks like [[1,2],[4,5], [7], [10,22]] serialized
 ? acked_ranges: [+ AckRange]

 ; ECN (explicit congestion notification) related fields
 ; (not always present)
 ? ect1: uint64
 ? ect0: uint64
 ? ce: uint64
 ? raw: RawInfo
 }

 Figure 55: AckFrame definition

 Note that the packet ranges in AckFrame.acked_ranges do not
 necessarily have to be ordered (e.g., [[5,9],[1,4]] is a valid
 value).

 Note that the two numbers in the packet range can be the same (e.g.,
 [120,120] means that packet with number 120 was ACKed). However, in
 that case, implementers SHOULD log [120] instead and tools MUST be
 able to deal with both notations.

8.13.4. ResetStreamFrame

 If the error numerical value does not map to a known ApplicationError
 string, the error value of "unknown" can be used and the raw value
 captured in the error_code field; a numerical value without variable-
 length integer encoding.

Marx, et al. Expires 23 April 2026 [Page 51]

Internet-Draft QUIC event definitions for qlog October 2025

 ResetStreamFrame = {
 frame_type: "reset_stream"
 stream_id: uint64
 error: $ApplicationError

 ; if error_code === "unknown"
 ? error_code: uint64

 ; in bytes
 final_size: uint64
 ? raw: RawInfo
 }

 Figure 56: ResetStreamFrame definition

8.13.5. StopSendingFrame

 If the error numerical value does not map to a known ApplicationError
 string, the error value of "unknown" can be used and the raw value
 captured in the error_code field; a numerical value without variable-
 length integer encoding.

 StopSendingFrame = {
 frame_type: "stop_sending"
 stream_id: uint64
 error: $ApplicationError

 ; if error_code === "unknown"
 ? error_code: uint64

 ? raw: RawInfo
 }

 Figure 57: StopSendingFrame definition

8.13.6. CryptoFrame

 The length field of the Crypto frame MUST be logged in the qlog
 raw.length field. The other sub-fields of the raw field are
 optional.

 CryptoFrame = {
 frame_type: "crypto"
 offset: uint64
 raw: RawInfo
 }

 Figure 58: CryptoFrame definition

Marx, et al. Expires 23 April 2026 [Page 52]

Internet-Draft QUIC event definitions for qlog October 2025

8.13.7. NewTokenFrame

 NewTokenFrame = {
 frame_type: "new_token"
 token: Token
 ? raw: RawInfo
 }

 Figure 59: NewTokenFrame definition

8.13.8. StreamFrame

 If the stream frame contains a length field, it MUST be logged in the
 qlog raw.length field. If it does not, the implementation MAY
 calculate the actual frame byte length itself and log that in
 raw.length if necessary.

 StreamFrame = {
 frame_type: "stream"
 stream_id: uint64
 ? offset: uint64 .default 0
 ? fin: bool .default false
 ? raw: RawInfo
 }

 Figure 60: StreamFrame definition

8.13.9. MaxDataFrame

 MaxDataFrame = {
 frame_type: "max_data"
 maximum: uint64
 ? raw: RawInfo
 }

 Figure 61: MaxDataFrame definition

8.13.10. MaxStreamDataFrame

 MaxStreamDataFrame = {
 frame_type: "max_stream_data"
 stream_id: uint64
 maximum: uint64
 ? raw: RawInfo
 }

 Figure 62: MaxStreamDataFrame definition

Marx, et al. Expires 23 April 2026 [Page 53]

Internet-Draft QUIC event definitions for qlog October 2025

8.13.11. MaxStreamsFrame

 MaxStreamsFrame = {
 frame_type: "max_streams"
 stream_type: StreamType
 maximum: uint64
 ? raw: RawInfo
 }

 Figure 63: MaxStreamsFrame definition

8.13.12. DataBlockedFrame

 DataBlockedFrame = {
 frame_type: "data_blocked"
 limit: uint64
 ? raw: RawInfo
 }

 Figure 64: DataBlockedFrame definition

8.13.13. StreamDataBlockedFrame

 StreamDataBlockedFrame = {
 frame_type: "stream_data_blocked"
 stream_id: uint64
 limit: uint64
 ? raw: RawInfo
 }

 Figure 65: StreamDataBlockedFrame definition

8.13.14. StreamsBlockedFrame

 StreamsBlockedFrame = {
 frame_type: "streams_blocked"
 stream_type: StreamType
 limit: uint64
 ? raw: RawInfo
 }

 Figure 66: StreamsBlockedFrame definition

8.13.15. NewConnectionIDFrame

Marx, et al. Expires 23 April 2026 [Page 54]

Internet-Draft QUIC event definitions for qlog October 2025

 NewConnectionIDFrame = {
 frame_type: "new_connection_id"
 sequence_number: uint64
 retire_prior_to: uint64

 ; mainly used if e.g., for privacy reasons the full
 ; connection_id cannot be logged
 ? connection_id_length: uint8
 connection_id: ConnectionID
 ? stateless_reset_token: StatelessResetToken
 ? raw: RawInfo
 }

 Figure 67: NewConnectionIDFrame definition

8.13.16. RetireConnectionIDFrame

 RetireConnectionIDFrame = {
 frame_type: "retire_connection_id"
 sequence_number: uint64
 ? raw: RawInfo
 }

 Figure 68: RetireConnectionIDFrame definition

8.13.17. PathChallengeFrame

 PathChallengeFrame = {
 frame_type: "path_challenge"

 ; always 64 bits
 ? data: hexstring
 ? raw: RawInfo
 }

 Figure 69: PathChallengeFrame definition

8.13.18. PathResponseFrame

 PathResponseFrame = {
 frame_type: "path_response"

 ; always 64 bits
 ? data: hexstring
 ? raw: RawInfo
 }

 Figure 70: PathResponseFrame definition

Marx, et al. Expires 23 April 2026 [Page 55]

Internet-Draft QUIC event definitions for qlog October 2025

8.13.19. ConnectionCloseFrame

 An endpoint that receives unknown error codes can record it in the
 error_code field using the numerical value without variable-length
 integer encoding.

 When the connection is closed due a connection-level error, the
 trigger_frame_type field can be used to log the frame that triggered
 the error. For known frame types, the appropriate string value is
 used in the error field. For unknown frame types, the error field
 has the value "unknown" and the numerical value without variable-
 length integer encoding can be logged in error_code.

 The CONNECTION_CLOSE reason phrase is a byte sequences. It is likely
 that this sequence is presentable as UTF-8, in which case it can be
 logged in the reason field. The reason_bytes field supports logging
 the raw bytes, which can be useful when the value is not UTF-8 or
 when an endpoint does not want to decode it. Implementations SHOULD
 log at least one format, but MAY log both or none.

 ErrorSpace = "transport" /
 "application"

 ConnectionCloseFrame = {
 frame_type: "connection_close"
 ? error_space: ErrorSpace
 ? error: $TransportError / CryptoError /
 $ApplicationError

 ; only if error_code === "unknown"
 ? error_code: uint64

 ? reason: text
 ? reason_bytes: hexstring

 ; when error_space === "transport"
 ? trigger_frame_type: uint64 /
 text
 ? raw: RawInfo
 }

 Figure 71: ConnectionCloseFrame definition

8.13.20. HandshakeDoneFrame

Marx, et al. Expires 23 April 2026 [Page 56]

Internet-Draft QUIC event definitions for qlog October 2025

 HandshakeDoneFrame = {
 frame_type: "handshake_done"
 ? raw: RawInfo
 }

 Figure 72: HandshakeDoneFrame definition

8.13.21. UnknownFrame

 The frame_type_bytes field is the numerical value without variable-
 length integer encoding.

 UnknownFrame = {
 frame_type: "unknown"
 frame_type_bytes: uint64
 ? raw: RawInfo
 }

 Figure 73: UnknownFrame definition

8.13.22. DatagramFrame

 The QUIC DATAGRAM frame is defined in Section 4 of [RFC9221].

 If the datagram frame contains a length field, it MUST be logged in
 the qlog raw.length field. If it does not, the implementation MAY
 calculate the actual datagram byte length itself and log that in
 raw.length if necessary.

 DatagramFrame = {
 frame_type: "datagram"
 ? raw: RawInfo
 }

 Figure 74: DatagramFrame definition

8.13.23. TransportError

 The generic $TransportError is defined here as a CDDL "type socket"
 extension point. It can be extended to support additional Transport
 errors.

Marx, et al. Expires 23 April 2026 [Page 57]

Internet-Draft QUIC event definitions for qlog October 2025

 $TransportError /= "no_error" /
 "internal_error" /
 "connection_refused" /
 "flow_control_error" /
 "stream_limit_error" /
 "stream_state_error" /
 "final_size_error" /
 "frame_encoding_error" /
 "transport_parameter_error" /
 "connection_id_limit_error" /
 "protocol_violation" /
 "invalid_token" /
 "application_error" /
 "crypto_buffer_exceeded" /
 "key_update_error" /
 "aead_limit_reached" /
 "no_viable_path" /
 "unknown"
 ; there is no value to reflect CRYPTO_ERROR
 ; use the CryptoError type instead

 Figure 75: TransportError definition

8.13.24. ApplicationError

 By definition, an application error is defined by the application-
 level protocol running on top of QUIC (e.g., HTTP/3).

 As such, it cannot be defined here completely. It is instead defined
 as a CDDL "type socket" extension point, with a single "unknown"
 value.

 $ApplicationError /= "unknown"

 Figure 76: ApplicationError definition

 Application-level qlog definitions that wish to define new
 ApplicationError strings MUST do so by extending the
 $ApplicationError socket as such:

 $ApplicationError /= "new_error_name" /
 "another_new_error_name"

Marx, et al. Expires 23 April 2026 [Page 58]

Internet-Draft QUIC event definitions for qlog October 2025

8.13.25. CryptoError

 These errors are defined in the TLS document as "A TLS alert is
 turned into a QUIC connection error by converting the one-byte alert
 description into a QUIC error code. The alert description is added
 to 0x100 to produce a QUIC error code from the range reserved for
 CRYPTO_ERROR."

 This approach maps badly to a pre-defined enum. As such, the
 crypto_error string is defined as having a dynamic component here,
 which should include the hex-encoded and zero-padded value of the TLS
 alert description.

 ; all strings from "crypto_error_0x100" to "crypto_error_0x1ff"
 CryptoError = text .regexp "crypto_error_0x1[0-9a-f][0-9a-f]"

 Figure 77: CryptoError definition

9. Security and Privacy Considerations

 The security and privacy considerations discussed in [QLOG-MAIN]
 apply to this document as well.

10. IANA Considerations

 This document registers a new entry in the "qlog event schema URIs"
 registry (created in Section 15 of [QLOG-MAIN]):

 Event schema URI: urn:ietf:params:qlog:events:quic

 Namespace quic

 Event Types server_listening, connection_started, connection_closed,
 connection_id_updated, spin_bit_updated, connection_state_updated,
 tuple_assigned, mtu_updated, version_information,
 alpn_information, parameters_set, parameters_restored,
 packet_sent, packet_received, packet_dropped, packet_buffered,
 packets_acked, udp_datagrams_sent, udp_datagrams_received,
 udp_datagram_dropped, stream_state_updated, frames_processed,
 stream_data_moved, datagram_data_moved, migration_state_updated,
 key_updated, key_discarded, recovery_parameters_set,
 recovery_metrics_updated, congestion_state_updated, timer_updated,
 packet_lost, marked_for_retransmit, ecn_state_updated

 Description: Event definitions related to the QUIC transport
 protocol.

 Reference: This Document

Marx, et al. Expires 23 April 2026 [Page 59]

Internet-Draft QUIC event definitions for qlog October 2025

11. References

11.1. Normative References

 [CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

 [GREASEBIT]
 Thomson, M., "Greasing the QUIC Bit", RFC 9287,
 DOI 10.17487/RFC9287, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9287>.

 [QLOG-MAIN]
 Marx, R., Niccolini, L., Seemann, M., and L. Pardue,
 "qlog: Structured Logging for Network Protocols", Work in
 Progress, Internet-Draft, draft-ietf-quic-qlog-main-
 schema-12, 7 July 2025,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 qlog-main-schema-12>.

 [QUIC-DATAGRAM]
 Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", RFC 9221,
 DOI 10.17487/RFC9221, March 2022,
 <https://www.rfc-editor.org/rfc/rfc9221>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
 May 2021, <https://www.rfc-editor.org/rfc/rfc9002>.

 [QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9001>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

Marx, et al. Expires 23 April 2026 [Page 60]

Internet-Draft QUIC event definitions for qlog October 2025

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC9221] Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", RFC 9221,
 DOI 10.17487/RFC9221, March 2022,
 <https://www.rfc-editor.org/rfc/rfc9221>.

11.2. Informative References

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/rfc/rfc7301>.

Acknowledgements

 Much of the initial work by Robin Marx was done at the Hasselt and KU
 Leuven Universities.

 Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
 Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja
 Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian Huitema, Hugo
 Landau, Will Hawkins, Mathis Engelbart, Kazuho Oku, and Jonathan
 Lennox for their feedback and suggestions.

Change Log

 This section is to be removed before publishing as an RFC.

Since draft-ietf-qlog-quic-events-11:

 * Updated several fields to be uint64 per QUIC spec

 * Renamed error and error_code fields and logic (#473)

 * Clarified parameters_set usage (#493)

 * Replaced all length fields with raw.length (#495)

 * Change loss_timer_updated to timer_updated (#496)

 * Renamed path_assigned to tuple_assigned (#491)

 * Reworked stream_state_updated (#497)

 * Renamed owner to initiator (#498)

Marx, et al. Expires 23 April 2026 [Page 61]

Internet-Draft QUIC event definitions for qlog October 2025

 * Split up flags in PacketHeader (#478)

Since draft-ietf-qlog-quic-events-09:

 * Several editorial changes

 * Reworked QUICConnectionStarted to use PathEndpointInfo (#453)

 * Consistent use of RawInfo and _bytes fields to log raw data (#450)

Since draft-ietf-qlog-quic-events-08:

 * Removed individual categories and put every event in the single
 quic event schema namespace. Major change (#439)

 * Renamed recovery:metrics_updated to quic:recovery_metrics_updated
 and recovery:parameters_set to quic:recovery_parameters_set (#439)

 * Added unknown_parameters field to parameters_set (#438)

 * Added extra parameters to parameters_restored (#441)

Since draft-ietf-qlog-quic-events-07:

 * TODO (we forgot...)

Since draft-ietf-qlog-quic-events-06:

 * Added PathAssigned and MigrationStateUpdated events (#336)

 * Added extension points to parameters_set and parameters_restored
 (#400)

 * Removed error_code_value from connection_closed (#386, #392)

 * Renamed generation to key_phase for key_updated and key_discarded
 (#390)

 * Removed retry_token from packet_sent and packet_received (#389)

 * Updated ALPN handling (#385)

 * Added key_unavailable trigger to packet_dropped (#381)

 * Updated several uint32 to uint64

 * ProtocolEventBody is now called ProtocolEventData (#352)

Marx, et al. Expires 23 April 2026 [Page 62]

Internet-Draft QUIC event definitions for qlog October 2025

 * Editorial changes (#402, #404, #394, #393)

Since draft-ietf-qlog-quic-events-05:

 * SecurityKeyUpdated: the new key is no longer mandatory to log
 (#294)

 * Added ECN related events and metadata (#263)

Since draft-ietf-qlog-quic-events-04:

 * Updated guidance on logging events across connections (#279)

 * Renamed ’transport’ category to ’quic’ (#302)

 * Added support for multiple packet numbers in
 ’quic:frames_processed’ (#307)

 * Added definitions for RFC9287 (QUIC GREASE Bit extension) (#311)

 * Added definitions for RFC9221 (QUIC Datagram Frame extension)
 (#310)

 * (Temporarily) removed definitions for connection migration events
 (#317)

 * Editorial and formatting changes (#298, #299, #304, #306, #327)

Since draft-ietf-qlog-quic-events-03:

 * Ensured consistent use of RawInfo to indicate raw wire bytes
 (#243)

 * Renamed UnknownFrame:raw_frame_type to :frame_type_value (#54)

 * Renamed ConnectionCloseFrame:raw_error_code to :error_code_value
 (#54)

 * Changed triggers for packet_dropped (#278)

 * Added entries to TransportError enum (#285)

 * Changed minimum_congestion_window to uint64 (#288)

Since draft-ietf-qlog-quic-events-02:

 * Renamed key_retired to key_discarded (#185)

Marx, et al. Expires 23 April 2026 [Page 63]

Internet-Draft QUIC event definitions for qlog October 2025

 * Added fields and events for DPLPMTUD (#135)

 * Made packet_number optional in PacketHeader (#244)

 * Removed connection_retried event placeholder (#255)

 * Changed QuicFrame to a CDDL plug type (#257)

 * Moved data definitions out of the appendix into separate sections

 * Added overview Table of Contents

Since draft-ietf-qlog-quic-events-01:

 * Added Stateless Reset Token type (#122)

Since draft-ietf-qlog-quic-events-00:

 * Change the data definition language from TypeScript to CDDL (#143)

Since draft-marx-qlog-event-definitions-quic-h3-02:

 * These changes were done in preparation of the adoption of the
 drafts by the QUIC working group (#137)

 * Split QUIC and HTTP/3 events into two separate documents

 * Moved RawInfo, Importance, Generic events and Simulation events to
 the main schema document.

 * Changed to/from value options of the data_moved event

Since draft-marx-qlog-event-definitions-quic-h3-01:

 Major changes:

 * Moved data_moved from http to transport. Also made the "from" and
 "to" fields flexible strings instead of an enum (#111,#65)

 * Moved packet_type fields to PacketHeader. Moved packet_size field
 out of PacketHeader to RawInfo:length (#40)

 * Made events that need to log packet_type and packet_number use a
 header field instead of logging these fields individually

 * Added support for logging retry, stateless reset and initial
 tokens (#94,#86,#117)

Marx, et al. Expires 23 April 2026 [Page 64]

Internet-Draft QUIC event definitions for qlog October 2025

 * Moved separate general event categories into a single category
 "generic" (#47)

 * Added "transport:connection_closed" event (#43,#85,#78,#49)

 * Added version_information and alpn_information events
 (#85,#75,#28)

 * Added parameters_restored events to help clarify 0-RTT behaviour
 (#88)

 Smaller changes:

 * Merged loss_timer events into one loss_timer_updated event

 * Field data types are now strongly defined (#10,#39,#36,#115)

 * Renamed qpack instruction_received and instruction_sent to
 instruction_created and instruction_parsed (#114)

 * Updated qpack:dynamic_table_updated.update_type. It now has the
 value "inserted" instead of "added" (#113)

 * Updated qpack:dynamic_table_updated. It now has an "owner" field
 to differentiate encoder vs decoder state (#112)

 * Removed push_allowed from http:parameters_set (#110)

 * Removed explicit trigger field indications from events, since this
 was moved to be a generic property of the "data" field (#80)

 * Updated transport:connection_id_updated to be more in line with
 other similar events. Also dropped importance from Core to Base
 (#45)

 * Added length property to PaddingFrame (#34)

 * Added packet_number field to transport:frames_processed (#74)

 * Added a way to generically log packet header flags (first 8 bits)
 to PacketHeader

 * Added additional guidance on which events to log in which
 situations (#53)

 * Added "simulation:scenario" event to help indicate simulation
 details

Marx, et al. Expires 23 April 2026 [Page 65]

Internet-Draft QUIC event definitions for qlog October 2025

 * Added "packets_acked" event (#107)

 * Added "datagram_ids" to the datagram_X and packet_X events to
 allow tracking of coalesced QUIC packets (#91)

 * Extended connection_state_updated with more fine-grained states
 (#49)

Since draft-marx-qlog-event-definitions-quic-h3-00:

 * Event and category names are now all lowercase

 * Added many new events and their definitions

 * "type" fields have been made more specific (especially important
 for PacketType fields, which are now called packet_type instead of
 type)

 * Events are given an importance indicator (issue #22)

 * Event names are more consistent and use past tense (issue #21)

 * Triggers have been redefined as properties of the "data" field and
 updated for most events (issue #23)

Authors’ Addresses

 Robin Marx (editor)
 Akamai
 Email: rmarx@akamai.com

 Luca Niccolini (editor)
 Meta
 Email: lniccolini@meta.com

 Marten Seemann (editor)
 Email: martenseemann@gmail.com

 Lucas Pardue (editor)
 Cloudflare
 Email: lucas@lucaspardue.com

Marx, et al. Expires 23 April 2026 [Page 66]

QUIC D. Schinazi

Internet-Draft Google LLC

Updates: 8999 (if approved) E. Rescorla

Intended status: Standards Track Mozilla

Expires: 22 June 2023 19 December 2022

 Compatible Version Negotiation for QUIC

 draft-ietf-quic-version-negotiation-14

Abstract

 QUIC does not provide a complete version negotiation mechanism but

 instead only provides a way for the server to indicate that the

 version the client chose is unacceptable. This document describes a

 version negotiation mechanism that allows a client and server to

 select a mutually supported version. Optionally, if the client’s

 chosen version and the negotiated version share a compatible first

 flight format, the negotiation can take place without incurring an

 extra round trip. This document updates RFC 8999.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at

 https://quicwg.github.io/version-negotiation/draft-ietf-quic-version-

 negotiation.html. Status information for this document may be found

 at https://datatracker.ietf.org/doc/draft-ietf-quic-version-

 negotiation/.

 Discussion of this document takes place on the QUIC Working Group

 mailing list (mailto:quic@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/quic/. Subscribe at

 https://www.ietf.org/mailman/listinfo/quic/.

 Source for this draft and an issue tracker can be found at

 https://github.com/quicwg/version-negotiation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

Schinazi & Rescorla Expires 22 June 2023 [Page 1]

Internet-Draft QUIC Compatible VN December 2022

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 June 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Conventions . 3

 1.2. Definitions . 3

 2. Version Negotiation Mechanism 4

 2.1. Incompatible Version Negotiation 5

 2.2. Compatible Versions 5

 2.3. Compatible Version Negotiation 6

 2.4. Connections and Version Negotiation 8

 2.5. Client Choice of Original Version 8

 3. Version Information . 9

 4. Version Downgrade Prevention 10

 5. Server Deployments of QUIC 12

 6. Application Layer Protocol Considerations 14

 7. Considerations for Future Versions 14

 7.1. Interaction with Retry 15

 7.2. Interaction with TLS resumption 15

 7.3. Interaction with 0-RTT 15

 8. Special Handling for QUIC Version 1 16

 9. Security Considerations 16

 10. IANA Considerations . 16

 10.1. QUIC Transport Parameter 16

 10.2. QUIC Transport Error Code 16

 11. References . 17

 11.1. Normative References 17

 11.2. Informative References 17

Schinazi & Rescorla Expires 22 June 2023 [Page 2]

Internet-Draft QUIC Compatible VN December 2022

 Acknowledgments . 18

 Authors’ Addresses . 18

1. Introduction

 The version-invariant properties of QUIC [QUIC-INVARIANTS] define a

 Version Negotiation packet but do not specify how an endpoint reacts

 when it receives one. QUIC version 1 [QUIC] allows the server to use

 a Version Negotiation packet to indicate that the version the client

 chose is unacceptable, but doesn’t allow the client to safely make

 use of that information to create a new connection with a mutually

 supported version. This document updates [QUIC-INVARIANTS] by

 defining version negotiation mechanisms that leverage the Version

 Negotiation packet.

 With proper safety mechanisms in place, the Version Negotiation

 packet can be part of a mechanism to allow two QUIC implementations

 to negotiate between two totally disjoint versions of QUIC. This

 document specifies version negotiation using Version Negotiation

 packets, which adds an extra round trip to connection establishment

 if needed.

 It is beneficial to avoid additional round trips whenever possible,

 especially given that most incremental versions are broadly similar

 to the previous version. This specification also defines a simple

 version negotiation mechanism which leverages similarities between

 versions and can negotiate between "compatible" versions without

 additional round trips.

1.1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

1.2. Definitions

 The document uses the following terms:

 * In the context of a given QUIC connection, the "first flight" of

 packets refers to the set of packets the client creates and sends

 to initiate the connection before it has heard back from the

 server.

 * In the context of a given QUIC connection, the "client’s chosen

 version" is the QUIC version of the connection’s first flight.

Schinazi & Rescorla Expires 22 June 2023 [Page 3]

Internet-Draft QUIC Compatible VN December 2022

 * The "original version" is the QUIC version of the very first

 packet the client sends to the server. If version negotiation

 spans multiple connections (see Section 2.4), the original version

 is equal to the client’s chosen version of the first QUIC

 connection.

 * The "negotiated version" is the QUIC version in use on the

 connection once the version negotiation process completes.

 * The "Maximum Segment Lifetime" (MSL) represents the time a QUIC

 packet can exist in the network. Implementations can make this

 configurable, and a RECOMMENDED value is one minute. Note that

 the term "segment" here originated in Section 3.4.1 of [TCP].

2. Version Negotiation Mechanism

 This document specifies two means of performing version negotiation:

 one "incompatible" which requires a round trip and is applicable to

 all versions, and one "compatible" that allows saving the round trip

 but only applies when the versions are compatible (see Section 2.2).

 The client initiates a QUIC connection by choosing an original

 version and sending a first flight of QUIC packets with a long header

 to the server [QUIC-INVARIANTS]. The client’s first flight includes

 Version Information (see Section 3) which will be used to optionally

 enable compatible version negotiation (see Section 2.3), and to

 prevent version downgrade attacks (see Section 4).

 Upon receiving this first flight, the server verifies whether it

 knows how to parse first flights from the original version. If it

 does not, then it starts incompatible version negotiation, see

 Section 2.1, which causes the client to initiate a new connection

 with a different version. For instance, if the client initiates a

 connection with version A and the server starts incompatible version

 negotiation and the client then initiates a new connection with

 version B, we say that the first connection’s client chosen version

 is A, the second connection’s client chosen version is B, and the

 original version for the entire sequence is A.

 If the server can parse the first flight, it can either establish the

 connection using the client’s chosen version, or it MAY select any

 other compatible version, as described in Section 2.3.

 Note that it is possible for a server to have the ability to parse

 the first flight of a given version without fully supporting it, in

 the sense that it implements enough of the version’s specification to

 parse first flight packets but not enough to fully establish a

 connection using that version.

Schinazi & Rescorla Expires 22 June 2023 [Page 4]

Internet-Draft QUIC Compatible VN December 2022

2.1. Incompatible Version Negotiation

 The server starts incompatible version negotiation by sending a

 Version Negotiation packet. This packet SHALL include each entry

 from the server’s set of Offered Versions (see Section 5) in a

 Supported Version field. The server MAY add reserved versions (as

 defined in Section 6.3 of [QUIC]) in Supported Version fields.

 Clients will ignore a Version Negotiation packet if it contains the

 original version attempted by the client; see Section 4. The client

 also ignores a Version Negotiation packet that contains incorrect

 connection ID fields; see Section 6 of [QUIC-INVARIANTS].

 Upon receiving the Version Negotiation packet, the client SHALL

 search for a version it supports in the list provided by the server.

 If it doesn’t find one, it SHALL abort the connection attempt.

 Otherwise, it SHALL select a mutually supported version and send a

 new first flight with that version - this version is now the

 negotiated version.

 The new first flight will allow the endpoints to establish a

 connection using the negotiated version. The handshake of the

 negotiated version will exchange version information (see Section 3)

 required to ensure that version negotiation was genuine, i.e. that no

 attacker injected packets in order to influence the version

 negotiation process, see Section 4.

 Only servers can start incompatible version negotiation: clients MUST

 NOT send Version Negotiation packets and servers MUST ignore all

 received Version Negotiation packets.

2.2. Compatible Versions

 If A and B are two distinct versions of QUIC, A is said to be

 "compatible" with B if it is possible to take a first flight of

 packets from version A and convert it into a first flight of packets

 from version B. As an example, if versions A and B are absolutely

 equal in their wire image and behavior during the handshake but

 differ after the handshake, then A is compatible with B and B is

 compatible with A. Note that the conversion of the first flight can

 be lossy: some data such as QUIC version 1 0-RTT packets could be

 ignored during conversion and retransmitted later.

Schinazi & Rescorla Expires 22 June 2023 [Page 5]

Internet-Draft QUIC Compatible VN December 2022

 Version compatibility is not symmetric: it is possible for version A

 to be compatible with version B and for B not to be compatible with

 A. This could happen for example if version B is a strict superset

 of version A: if version A includes the concept of streams and STREAM

 frames, and version B includes the concept of streams and the

 hypothetical concept of tubes along with STREAM and TUBE frames, then

 A would be compatible with B but B would not be compatible with A.

 Note that version compatibility does not mean that every single

 possible instance of a first flight will succeed in conversion to the

 other version. A first flight using version A is said to be

 "compatible" with version B if two conditions are met: first that

 version A is compatible with version B, and second that the

 conversion of this first flight to version B is well-defined. For

 example, if version B is equal to A in all aspects except it

 introduced a new frame in its first flight that version A cannot

 parse or even ignore, then B could still be compatible with A as

 conversions would succeed for connections where that frame is not

 used. In this example, first flights using version B that carry this

 new frame would not be compatible with version A.

 When a new version of QUIC is defined, it is assumed to not be

 compatible with any other version unless otherwise specified.

 Similarly, no other version is compatible with the new version unless

 otherwise specified. Implementations MUST NOT assume compatibility

 between versions unless explicitly specified.

 Note that both endpoints might disagree on whether two versions are

 compatible or not. For example, two versions could have been defined

 concurrently and then specified as compatible in a third document

 much later - in that scenario one endpoint might be aware of the

 compatibility document while the other may not.

2.3. Compatible Version Negotiation

 When the server can parse the client’s first flight using the

 client’s chosen version, it can extract the client’s Version

 Information structure (see Section 3). This contains the list of

 versions that the client knows its first flight is compatible with.

 In order to perform compatible version negotiation, the server MUST

 select one of these versions that (1) it supports and (2) it knows

 the client’s chosen version to be compatible with. This selected

 version is now the negotiated version. After selecting it, the

 server attempts to convert the client’s first flight into that

 version, and replies to the client as if it had received the

 converted first flight.

Schinazi & Rescorla Expires 22 June 2023 [Page 6]

Internet-Draft QUIC Compatible VN December 2022

 If those formats are identical, as in cases where the negotiated

 version is the same as the client’s chosen version, then this will be

 the identity transform. If the first flight is correctly formatted,

 then this conversion process cannot fail by definition of the first

 flight being compatible; if the server is unable to convert the first

 flight, it MUST abort the handshake.

 If a document specifies that a QUIC version is compatible with

 another, that document MUST specify the mechanism by which clients

 are made aware of the negotiated version. An example of such a

 mechanism is to have the client determine the server’s negotiated

 version by examining the QUIC long header Version field. Note that,

 in this example mechanism, it is possible for the server to initially

 send packets with the client’s chosen version before switching to the

 negotiated version (this can happen when the client’s Version

 Information structure spans multiple packets; in that case the server

 might acknowledge the first packet in the client’s chosen version and

 later switch to a different negotiated version). Mutually compatible

 versions SHOULD use the same mechanism.

 Note that, after the first flight is converted to the negotiated

 version, the handshake completes in the negotiated version. If the

 negotiated version has requirements that apply during the handshake,

 those requirements apply to the entire handshake, including the

 converted first flight. In particular, if the negotiated version

 mandates that endpoints perform validations on handshake packets,

 endpoints MUST also perform such validations on the converted first

 flight. For instance, if the negotiated version requires that the

 5-tuple remain stable for the entire handshake (as QUIC version 1

 does), then both endpoints need to validate the 5-tuple of all

 handshake packets, including the converted first flight.

 Note also that the client can disable compatible version negotiation

 by only including the Chosen Version in the Available Versions field

 of the Version Information; see Section 3.

 If the server does not find a compatible version (including the

 client’s chosen version), it will perform incompatible version

 negotiation instead, see Section 2.1.

 Note that it is possible to have incompatible version negotiation

 followed by compatible version negotiation. For instance, if version

 A is compatible with B and C is compatible with D, the following

 scenario could occur:

Schinazi & Rescorla Expires 22 June 2023 [Page 7]

Internet-Draft QUIC Compatible VN December 2022

 Client Server

 Chosen = A, Available Versions = (A, B) ------------->

 <------------------------ Version Negotiation = (D, C)

 Chosen = C, Available Versions = (C, D) ------------->

 <------------- Chosen = D, Available Versions = (D, C)

 Figure 1: Combined Negotiation Example

 In this example, the client selected C from the server’s Version

 Negotiation packet, but the server preferred D and then selected it

 from the client’s offer.

2.4. Connections and Version Negotiation

 QUIC connections are shared state between a client and a server

 [QUIC-INVARIANTS]. The compatible version negotiation mechanism

 defined in this document (see Section 2.3) is performed as part of a

 single QUIC connection; that is, the packets with the client’s chosen

 version are part of the same connection as the packets with the

 negotiated version.

 In comparison, the incompatible version negotiation mechanism, which

 leverages QUIC Version Negotiation packets (see Section 2.1)

 conceptually operates across two QUIC connections: the connection

 attempt prior to receiving the Version Negotiation packet is distinct

 from the connection with the incompatible version that follows.

 Note that this separation across two connections is conceptual: it

 applies to normative requirements on QUIC connections, but does not

 require implementations to internally use two distinct connection

 objects.

2.5. Client Choice of Original Version

 When the client picks its original version, it will try to avoid

 incompatible version negotiation to save a round trip. Therefore,

 the client SHOULD pick an original version to maximize the combined

 probability that both:

 * The server knows how to parse first flights from the original

 version.

 * The original version is compatible with the client’s preferred

 version.

Schinazi & Rescorla Expires 22 June 2023 [Page 8]

Internet-Draft QUIC Compatible VN December 2022

 Without additional information, this could mean selecting the oldest

 version that the client supports, while advertising newer compatible

 versions in the client’s first flight.

3. Version Information

 During the handshake, endpoints will exchange Version Information,

 which consists of a chosen version and a list of available versions.

 Any version of QUIC that supports this mechanism MUST provide a

 mechanism to exchange Version Information in both directions during

 the handshake, such that this data is authenticated.

 In QUIC version 1, the Version Information is transmitted using a new

 "version_information" transport parameter; see Section 7.4 of [QUIC].

 The contents of Version Information are shown below (using the

 notation from the "Notational Conventions" section of [QUIC]):

 Version Information {

 Chosen Version (32),

 Available Versions (32) ...,

 }

 Figure 2: Version Information Format

 The content of each field is described below:

 Chosen Version: The version that the sender has chosen to use for

 this connection. In most cases, this field will be equal to the

 value of the Version field in the long header that carries this

 data; however future versions or extensions can choose to set

 different values in the long header Version field.

 The contents of the Available Versions field depends on whether it is

 sent by the client or by the server.

 Client-Sent Available Versions: When sent by a client, the Available

 Versions field lists all the versions that this first flight is

 compatible with, ordered by descending preference. Note that the

 version in the Chosen Version field MUST be included in this list

 to allow the client to communicate the chosen version’s

 preference. Note that this preference is only advisory, servers

 MAY choose to use their own preference instead.

 Server-Sent Available Versions: When sent by a server, the Available

Schinazi & Rescorla Expires 22 June 2023 [Page 9]

Internet-Draft QUIC Compatible VN December 2022

 Versions field lists all the Fully-Deployed Versions of this

 server deployment, see Section 5. The ordering of the versions in

 this field does not carry any semantics. Note that the version in

 the Chosen Version field is not necessarily included in this list,

 because the server operator could be in the process of removing

 support for this version. For the same reason, the Available

 Versions field MAY be empty.

 Clients and servers MAY both include versions following the pattern

 0x?a?a?a?a in their Available Versions list. Those versions are

 reserved to exercise version negotiation (see the Versions section of

 [QUIC]), and will never be selected when choosing a version to use.

4. Version Downgrade Prevention

 A version downgrade is an attack where a malicious entity manages to

 make the QUIC endpoints negotiate a QUIC version different from the

 one they would have negotiated in the absence of the attack. The

 mechanism described in this document is designed to prevent downgrade

 attacks.

 Clients MUST ignore any received Version Negotiation packets that

 contain the original version. A client that makes a connection

 attempt based on information received from a Version Negotiation

 packet MUST ignore any Version Negotiation packets it receives in

 response to that connection attempt.

 Both endpoints MUST parse their peer’s Version Information during the

 handshake. If that leads to a parsing failure (for example, if it is

 too short or if its length is not divisible by four), then the

 endpoint MUST close the connection; if the connection was using QUIC

 version 1, that connection closure MUST use a transport error of type

 TRANSPORT_PARAMETER_ERROR. If an endpoint receives a Chosen Version

 equal to zero, or any Available Version equal to zero, it MUST treat

 it as a parsing failure. If a server receives a Version Information

 where the Chosen Version is not included in Available Versions, it

 MUST treat it as a parsing failure.

 Every QUIC version that supports version negotiation MUST define a

 method for closing the connection with a version negotiation error.

 For QUIC version 1, version negotiation errors are signaled using a

 transport error of type VERSION_NEGOTIATION_ERROR; see Section 10.2.

 When a server receives a client’s first flight, the server will first

 establish which QUIC version is in use for this connection in order

 to properly parse the first flight. For example, the server

 determines that QUIC version 1 is in use by observing that the

 Version field of the first Long Header packet it receives is set to

Schinazi & Rescorla Expires 22 June 2023 [Page 10]

Internet-Draft QUIC Compatible VN December 2022

 0x00000001. When the server then processes the client’s Version

 Information, the server MUST validate that the client’s Chosen

 Version matches the version in use for the connection. If the two

 differ, the server MUST close the connection with a version

 negotiation error. For example, if a server receives the client’s

 Version Information over QUIC version 1 (as indicated by the Version

 field of the Long Header packets that carried the transport

 parameters) and the client’s Chosen Version is not set to 0x00000001,

 the server will close the connection with a version negotiation

 error.

 If a client receives a Version Information where the server’s Chosen

 Version was not sent by the client as part of its Available Versions,

 the client MUST close the connection with a version negotiation

 error.

 If the Version Information was missing, the endpoints MAY complete

 the handshake. However, if a client has reacted to a Version

 Negotiation packet and the Version Information was missing, the

 client MUST close the connection with a version negotiation error.

 If the client received and acted on a Version Negotiation packet, the

 client MUST validate the server’s Available Versions field. The

 Available Versions field is validated by confirming that the client

 would have attempted the same version with knowledge of the versions

 the server supports. That is, the client would have selected the

 same version if it received a Version Negotiation packet that listed

 the versions in the server’s Available Versions field, plus the

 negotiated version. If the client would have selected a different

 version, the client MUST close the connection with a version

 negotiation error. In particular, if the client reacted to a Version

 Negotiation packet and the server’s Available Versions field is

 empty, the client MUST close the connection with a version

 negotiation error. These connection closures prevent an attacker

 from being able to use forged Version Negotiation packets to force a

 version downgrade.

 As an example, let’s assume a client supports hypothetical QUIC

 versions 10, 12, and 14 with a preference for higher versions. The

 client initiates a connection attempt with version 12. Let’s explore

 two independent example scenarios:

 * In the first scenario, the server supports versions 10, 13, and 14

 but only 13 and 14 are Fully-Deployed (see Section 5). The server

 sends a Version Negotiation packet with versions 10, 13, and 14.

 This triggers an incompatible version negotiation and the client

 initiates a new connection with version 14. Then the server’s

 Available Versions field contains 13 and 14. In that scenario,

Schinazi & Rescorla Expires 22 June 2023 [Page 11]

Internet-Draft QUIC Compatible VN December 2022

 the client would have also picked 14 if it had received a Version

 Negotiation packet with versions 13 and 14, therefore the

 handshake succeeds using negotiated version 14.

 * In the second scenario, the server supports versions 10, 13, and

 14 and they are all Fully-Deployed. However, the attacker forges

 a Version Negotiation packet with versions 10 and 13. This

 triggers an incompatible version negotiation and the client

 initiates a new connection with version 10. Then the server’s

 Available Versions field contains 10, 13 and 14. In that

 scenario, the client would have picked 14 instead of 10 if it had

 received a Version Negotiation packet with versions 10, 13 and 14,

 therefore the client aborts the handshake with a version

 negotiation error.

 This validation of Available Versions is not sufficient to prevent

 downgrade. Downgrade prevention also depends on the client ignoring

 Version Negotiation packets that contain the original version; see

 Section 2.1.

 After the process of version negotiation in this document completes,

 the version in use for the connection is the version that the server

 sent in the Chosen Version field of its Version Information. That

 remains true even if other versions were used in the Version field of

 long headers at any point in the lifetime of the connection. In

 particular, since during compatible version negotiation the client is

 made aware of the negotiated version by the QUIC long header version

 (see Section 2.3), clients MUST validate that the server’s Chosen

 Version is equal to the negotiated version; if they do not match, the

 client MUST close the connection with a version negotiation error.

 This prevents an attacker’s ability to influence version negotiation

 by forging the Version long header field.

5. Server Deployments of QUIC

 While this document mainly discusses a single QUIC server, it is

 common for deployments of QUIC servers to include a fleet of multiple

 server instances. We therefore define the following terms:

 Acceptable Versions: This is the set of versions supported by a

 given server instance. More specifically, these are the versions

 that a given server instance will use if a client sends a first

 flight using them.

 Offered Versions: This is the set of versions that a given server

 instance will send in a Version Negotiation packet if it receives

 a first flight from an unknown version. This set will most often

 be equal to the Acceptable Versions set, except during short

 transitions while versions are added or removed (see below).

Schinazi & Rescorla Expires 22 June 2023 [Page 12]

Internet-Draft QUIC Compatible VN December 2022

 Fully-Deployed Versions: This is the set of QUIC versions that is

 supported and negotiated by every single QUIC server instance in

 this deployment. If a deployment only contains a single server

 instance, then this set is equal to the Offered Versions set,

 except during short transitions while versions are added or

 removed (see below).

 If a deployment contains multiple server instances, software updates

 may not happen at exactly the same time on all server instances.

 Because of this, a client might receive a Version Negotiation packet

 from a server instance that has already been updated and the client’s

 resulting connection attempt might reach a different server instance

 which hasn’t been updated yet.

 However, even when there is only a single server instance, it is

 still possible to receive a stale Version Negotiation packet if the

 server performs its software update while the Version Negotiation

 packet is in flight.

 This could cause the version downgrade prevention mechanism described

 in Section 4 to falsely detect a downgrade attack. To avoid that,

 server operators SHOULD perform a three-step process when they wish

 to add or remove support for a version:

 When adding support for a new version:

 * The first step is to progressively add support for the new version

 to all server instances. This step updates the Acceptable

 Versions but not the Offered Versions nor the Fully-Deployed

 Versions. Once all server instances have been updated, operators

 wait for at least one MSL to allow any in-flight Version

 Negotiation packets to arrive.

 * Then, the second step is to progressively add the new version to

 Offered Versions on all server instances. Once complete,

 operators wait for at least another MSL.

 * Finally, the third step is to progressively add the new version to

 Fully-Deployed Versions on all server instances.

 When removing support for a version:

 * The first step is to progressively remove the version from Fully-

 Deployed Versions on all server instances. Once it has been

 removed on all server instances, operators wait for at least one

 MSL to allow any in-flight Version Negotiation packets to arrive.

Schinazi & Rescorla Expires 22 June 2023 [Page 13]

Internet-Draft QUIC Compatible VN December 2022

 * Then, the second step is to progressively remove the version from

 Offered Versions on all server instances. Once complete,

 operators wait for at least another MSL.

 * Finally, the third step is to progressively remove support for the

 version from all server instances. That step updates the

 Acceptable Versions.

 Note that, during the update window, connections are vulnerable to

 downgrade attacks for partially-deployed versions. This is because a

 client cannot distinguish such a downgrade attack from legitimate

 exchanges with both updated and non-updated server instances.

6. Application Layer Protocol Considerations

 When a client creates a QUIC connection, its goal is to use an

 application layer protocol. Therefore, when considering which

 versions are compatible, clients will only consider versions that

 support one of the intended application layer protocols. If the

 client’s first flight advertises multiple Application Layer Protocol

 Negotiation (ALPN) [ALPN] tokens and multiple compatible versions, it

 is possible for some application layer protocols to not be able to

 run over some of the offered compatible versions. It is the server’s

 responsibility to only select an ALPN token that can run over the

 compatible QUIC version that it selects.

 A given ALPN token MUST NOT be used with a new QUIC version different

 from the version for which the ALPN token was originally defined,

 unless all the following requirements are met:

 * The new QUIC version supports the transport features required by

 the application protocol.

 * The new QUIC version supports ALPN.

 * The version of QUIC for which the ALPN token was originally

 defined is compatible with the new QUIC version.

 When incompatible version negotiation is in use, the second

 connection which is created in response to the received version

 negotiation packet MUST restart its application layer protocol

 negotiation process without taking into account the original version.

7. Considerations for Future Versions

 In order to facilitate the deployment of future versions of QUIC,

 designers of future versions SHOULD attempt to design their new

 version such that commonly deployed versions are compatible with it.

Schinazi & Rescorla Expires 22 June 2023 [Page 14]

Internet-Draft QUIC Compatible VN December 2022

 QUIC version 1 defines multiple features which are not documented in

 the QUIC invariants. Since, at the time of writing, QUIC version 1

 is widely deployed, this section discusses considerations for future

 versions to help with compatibility with QUIC version 1.

7.1. Interaction with Retry

 QUIC version 1 features Retry packets, which the server can send to

 validate the client’s IP address before parsing the client’s first

 flight. A server that sends a Retry packet can do so before parsing

 the client’s first flight. A server that sends a Retry packet

 therefore might not have processed the client’s Version Information

 before doing so.

 If a future document wishes to define compatibility between two

 versions that support retry, that document MUST specify how version

 negotiation (both compatible and incompatible) interacts with retry

 during a handshake that requires both. For example, that could be

 accomplished by having the server first send a Retry packet in the

 original version thereby validating the client’s IP address before

 attempting compatible version negotiation. If both versions support

 authenticating Retry packets, the compatibility definition needs to

 define how to authenticate the Retry in the negotiated version

 handshake even though the Retry itself was sent using the client’s

 chosen version.

7.2. Interaction with TLS resumption

 QUIC version 1 uses TLS 1.3, which supports session resumption by

 sending session tickets in one connection that can be used in a later

 connection; see Section 2.2 of [TLS]. New versions that also use TLS

 1.3 SHOULD mandate that their session tickets are tightly scoped to

 one version of QUIC; i.e., require that clients not use them across

 multiple version and that servers validate this client requirement.

 This helps mitigate cross-protocol attacks.

7.3. Interaction with 0-RTT

 QUIC version 1 allows sending data from the client to the server

 during the handshake, by using 0-RTT packets. If a future document

 wishes to define compatibility between two versions that support

 0-RTT, that document MUST address the scenario where there are 0-RTT

 packets in the client’s first flight. For example, this could be

 accomplished by defining which transformations are applied to 0-RTT

 packets. That document could specify that compatible version

 negotiation causes 0-RTT data to be rejected by the server.

Schinazi & Rescorla Expires 22 June 2023 [Page 15]

Internet-Draft QUIC Compatible VN December 2022

8. Special Handling for QUIC Version 1

 Because QUIC version 1 was the only IETF Standards Track version of

 QUIC published before this document, it is handled specially as

 follows: if a client is starting a QUIC version 1 connection in

 response to a received Version Negotiation packet, and the

 version_information transport parameter is missing from the server’s

 transport parameters, then the client SHALL proceed as if the

 server’s transport parameters contained a version_information

 transport parameter with a Chosen Version set to 0x00000001 and an

 Available Version list containing exactly one version set to

 0x00000001. This allows version negotiation to work with servers

 that only support QUIC version 1. Note that implementations which

 wish to use version negotiation to negotiate versions other than QUIC

 version 1 will need to implement the version negotiation mechanism

 defined in this document.

9. Security Considerations

 The security of this version negotiation mechanism relies on the

 authenticity of the Version Information exchanged during the

 handshake. In QUIC version 1, transport parameters are authenticated

 ensuring the security of this mechanism. Negotiation between

 compatible versions will have the security of the weakest common

 version.

 The requirement that versions not be assumed compatible mitigates the

 possibility of cross-protocol attacks, but more analysis is still

 needed here. That analysis is out of scope for this document.

10. IANA Considerations

10.1. QUIC Transport Parameter

 IANA has registered the following value in the "QUIC Transport

 Parameters" registry maintained at <https://www.iana.org/assignments/

 quic>.

 Value: 0x11

 Parameter Name: version_information

 Status: permanent

 Specification: This document

10.2. QUIC Transport Error Code

 IANA has registered the following value in the "QUIC Transport Error

 Codes" registry maintained at <https://www.iana.org/assignments/

 quic>.

Schinazi & Rescorla Expires 22 June 2023 [Page 16]

Internet-Draft QUIC Compatible VN December 2022

 Value: 0x11

 Code: VERSION_NEGOTIATION_ERROR

 Description: Error negotiating version

 Status: permanent

 Specification: This document

11. References

11.1. Normative References

 [ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/rfc/rfc7301>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

 Multiplexed and Secure Transport", RFC 9000,

 DOI 10.17487/RFC9000, May 2021,

 <https://www.rfc-editor.org/rfc/rfc9000>.

 [QUIC-INVARIANTS]

 Thomson, M., "Version-Independent Properties of QUIC",

 RFC 8999, DOI 10.17487/RFC8999, May 2021,

 <https://www.rfc-editor.org/rfc/rfc8999>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/rfc/rfc8446>.

11.2. Informative References

 [TCP] Eddy, W., Ed., "Transmission Control Protocol (TCP)",

 STD 7, RFC 9293, DOI 10.17487/RFC9293, August 2022,

 <https://www.rfc-editor.org/rfc/rfc9293>.

Schinazi & Rescorla Expires 22 June 2023 [Page 17]

Internet-Draft QUIC Compatible VN December 2022

Acknowledgments

 The authors would like to thank Nick Banks, Mike Bishop, Martin Duke,

 Ryan Hamilton, Roberto Peon, Anthony Rossi, and Martin Thomson for

 their input and contributions.

Authors’ Addresses

 David Schinazi

 Google LLC

 1600 Amphitheatre Parkway

 Mountain View, CA 94043

 United States of America

 Email: dschinazi.ietf@gmail.com

 Eric Rescorla

 Mozilla

 Email: ekr@rtfm.com

Schinazi & Rescorla Expires 22 June 2023 [Page 18]

Internet Engineering Task Force N. Kuhn
Internet-Draft CNES
Intended status: Informational E. Stephan
Expires: 26 April 2022 Orange
 G. Fairhurst
 T. Jones
 University of Aberdeen
 C. Huitema
 Private Octopus Inc.
 23 October 2021

 Transport parameters for 0-RTT connections
 draft-kuhn-quic-0rtt-bdp-11

Abstract

 QUIC 0-RTT transport features currently focuses on egress traffic
 optimization. This draft describes a QUIC extension that can be used
 to improve the performance of ingress traffic.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 26 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

Kuhn, et al. Expires 26 April 2022 [Page 1]

Internet-Draft Transport for 0-RTT October 2021

 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notations and terms 4
 1.2. Requirements Language 5
 2. Safe jump start . 5
 2.1. Rationale behind the safety guidelines 5
 2.2. Rationale #1: Variable network conditions 6
 2.3. Rationale #2: Malicious clients 7
 2.4. Trade-off between the different solutions 8
 2.4.1. Security aspects 8
 2.4.2. Interoperability and use-cases 8
 2.4.3. Summary . 9
 3. Safety guidelines . 10
 4. Implementation considerations 12
 4.1. Rationale behind the different implementation options . . 12
 4.2. Independent local storage of values 12
 4.3. Using NEW_TOKEN frames 13
 4.4. BDP Frame . 13
 4.4.1. BDP Frame Format 13
 4.4.2. Extension activation 14
 5. Discussion . 15
 5.1. BDP extension protected as much as initial_max_data . . . 15
 5.2. Other use-cases . 15
 5.2.1. Optimizing client’s requests 15
 5.2.2. Sharing transport information across multiple
 connections . 16
 6. Acknowledgments . 16
 7. IANA Considerations . 16
 8. Security Considerations 16
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Authors’ Addresses . 17

1. Introduction

 QUIC 0-RTT transport features currently focus on egress traffic
 optimization. This draft describes a QUIC extension that can be used
 to improve the performance of ingress traffic.

Kuhn, et al. Expires 26 April 2022 [Page 2]

Internet-Draft Transport for 0-RTT October 2021

 [RFC9000] mentions that "Generally, implementations are advised to be
 cautious when using previous values on a new path." This draft
 proposes a discussion on how using previous values can be achieved in
 a interoperable manner and how it can be done safely.

 When clients resume a session to download a large object, the
 congestion control algorithms will require time to ramp-up the packet
 rate as a sequence of Round-Trip Time (RTT)-based increases. This
 document specifies a method that can improve traffic delivery by
 allowing a QUIC connection to avoid a the slow process to discover
 key path parameters including a way to more rapidly grow the
 congestion window (cwnd):

 1. During a previous session, current RTT (current_rtt), bottleneck
 bandwidth (current_bb) and current client IP (current_client_ip)
 are stored as saved_rtt, saved_bb and saved_client_ip;

 2. When resuming a session to the same IP address, the server can
 then utilize the current_rtt and the current_bb to the saved_rtt
 and saved_bb of a previous connection.

 This method applies to any resumed QUIC session: both saved_session
 and recon_session can be a 0-RTT QUIC connection or a 1-RTT QUIC
 connection.

 The current version of this draft considers several possible
 solutions: (1) the saved parameters are stored at the server; they
 are not sent to the client; (2) the saved parameters are sent to the
 client as an encrypted opaque blob; although the client is unable to
 read the parameters can include this opaque blob in a subsequent
 request to the server; (3) the saved parameters are sent to the
 client and the client is notified of their value, but the parameters
 also include a cryptographic integrity check; the client can include
 both the parameters and the integrity check in a subsequent request
 to the server.

 None of these possible solutions allow q client to modify the
 parameters that will be used by the server.

 There are several cases where the parameters of a previous session
 are not appropriate. These include:

 (1) the network conditions have changed and the current capacity
 is less than the previously estimated bottleneck bandwidth. Using
 the saved congestion control state would increase congestion;

Kuhn, et al. Expires 26 April 2022 [Page 3]

Internet-Draft Transport for 0-RTT October 2021

 (2) the network path has changed and the new path is different.
 Using the saved congestion control state could increase
 congestion. This case might be accompanied by a change in the RTT
 or IP address.

 (3) a client uses parameters that are no longer appropriate, e.g.,
 to intentionally try to use a CWND larger than appropriate.

 This document:

 1. proposes guidelines for how to safely apply the previously
 computed parameters to new sessions;

 2. describes different implementation considerations for the
 proposed method using QUIC;

 3. discusses the trade-offs associated with the different
 implementation solutions.

1.1. Notations and terms

 * IW: Initial Window (e.g., from [RFC6928]);

 * current_iw: Current Initial Window

 * recom_iw: Recommended Initial Window

 * BDP: defined below

 * CWND: the congestion window used by server (maximum number of
 bytes allowed in flight by the CC)

 * current_bb : Current estimated bottleneck bandwidth

 * saved_bb: Estimated bottleneck bandwidth preserved from a previous
 connection

 * RTT: Round-Trip Time

 * current_rtt: Current RTT

 * saved_rtt: RTT preserved from a previous connection

 * client_ip : IP address of the client

 * current_client_ip : Current IP address of the client

Kuhn, et al. Expires 26 April 2022 [Page 4]

Internet-Draft Transport for 0-RTT October 2021

 * saved_client_ip : IP address of the client preserved from a
 previous connection

 * remembered BDP parameters: a combination of saved_rtt and saved_bb

 * ITT : Interpacket Transmission Time

 * MSS : Maximum Message Size

 * AEAD : Authenticated Encryption with Associated Data

 * LRU : Least Recently Used

 [RFC6349] defines the BDP as follows: "Derived from Round-Trip Time
 (RTT) and network Bottleneck Bandwidth (BB), the Bandwidth-Delay
 Product (BDP) determines the Send and Received Socket buffer sizes
 required to achieve the maximum TCP Throughput." This draft
 considers the BDP estimated by a server that includes all buffering
 along the network path. In that sense, the BDP estimated is related
 to the amount of bytes in flight.

 A QUIC connection might not reproduce the procedure detailed in
 [RFC6349] to measure the BDP. A server might be able to exploit an
 internal evaluation of the Bottleneck Bandwidth to estimate the BDP.

 This document refers to the saved_bb and current_bb for the
 previously estimated bottleneck bandwidth. This value can be easilly
 estimated when using a rate-based congestion controller, such as BBR.
 Other congestion controllers, such as CUBIC or RENO, could estimate
 the bottleneck bandwidth by utilizing a combinatioin of the cwnd and
 the minimum RTT. This approach could result in over estimating the
 bottleneck bandwidth and ought to be used with caution.

1.2. Requirements Language

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Safe jump start

2.1. Rationale behind the safety guidelines

 The previously measured saved_rtt and saved_bb SHOULD NOT be used as-
 is, to avoid potential congestion collapse:

Kuhn, et al. Expires 26 April 2022 [Page 5]

Internet-Draft Transport for 0-RTT October 2021

 * Rationale #1: Internet path capacity can change at any time. An
 Internet method needs to be robust to network conditions that can
 differ from one session to the next.

 * Rationale #2: Information sent by a malicious client is not
 relevant. A client could try to convince a server to use a CWND
 higher than appropriate, to gain an unfair share of capacity for
 itself or to induce congestion for other flows.

2.2. Rationale #1: Variable network conditions

 The server MUST check the validity of the saved_rtt and saved_bb
 parameters, whether these are sent by a client or are stored at the
 server. The following events indicates cases where use of these
 parameters is inappropriate:

 * IP address changed: If the client changes its IP address (i.e.
 the saved_client_ip is different from the current_client_ip), the
 different address is to be takne as an indication of a different
 network path. This new path does not necessarily exhibit the same
 characteristics as the old one. If the server changes its IP
 address after a migration, it would not be safe to exploit
 previously estimated parameters.

 * RTT changed: A significant change in RTT might be an indication
 that the the network conditions changed. Since the CC information
 is directly impacted by the RTT, a significant change in RTT is a
 strong indication that the previously estimated BDP parameters are
 likely to not be valid for the current path.

 * Lifetime of the extension: The CC information is temporal.
 Frequent connections to the same IP address are likely to track
 changes, but long-term use of previous values are not appropriate.

 * BB over estimation: There are cases where using the cwnd would
 infralte the bottleneck bandwidth. However, at the end of a CC
 slow start, the value of cwnd can be significantly larger than the
 value, that the CC finally converges to (after a few more rounds).
 Directly exploiting such value for the bottleneck bandwidth
 estimation may be inappropriate. One mitigation could be to
 restrict to only a fraction (e.g., 1/2) of the previously used
 cwnd; another mitigation might be to calculate the bottleneck
 bandwidth based on the flightsize.

 There are different solutions for the variable network conditions:

Kuhn, et al. Expires 26 April 2022 [Page 6]

Internet-Draft Transport for 0-RTT October 2021

 * Rationale #1 - Solution #1 : When resuming a session, restore the
 current_bb and current_rtt from the saved_bb and saved_rtt
 parameters estimated from a previous connection.

 * Rationale #1 - Solution #2 : When resuming a session, implement a
 safety check to measure avoid using the saved_bb and saved_rtt
 parameters to cause congestion over the path. In this case, the
 current_bb and current_rtt might not be set directly to the
 saved_bb and saved_rtt: the server might wait for the completion
 of the safety check before doing so.

 Section 3 describes various approaches for Rationale #1 - Solution
 #2.

2.3. Rationale #2: Malicious clients

 The server MUST check the integrity of the saved_rtt and saved_bb
 parameters received from a client.

 There are several solutions to avoid attacks by malicious clients:

 * Rationale #2 - Solution #1 : The server stores a local estimate of
 the bottleneck bandwidth and RTT parameters as the saved_bb and
 saved_rtt.

 * Rationale #2 - Solution #2 : The server sends the estimate of the
 bottleneck bandwidth and RTT parameters to the client as the
 saved_bb and saved_rtt. This information is encrypted by the
 server. The client resends the same encrypted information when
 resuming a connection. The client can neither read nor modify the
 saved_rtt and saved_bb parameters.

 * Rationale #2 - Solution #3 : The server sends an estimate of the
 saved_rtt and saved_bb parameters to the client. The information
 includes an integrity protection check. The client can resend the
 information when resuming a connection. This allows a client to
 read, but not modify, the saved_rtt and saved_bb parameters. This
 might enable a client to decide whether the new parameters are
 appropriate, based on client-side information about the network
 conidtions or connectivity.

 Section 4 describes various implementation approaches for each of
 these solutions using local storage (Section 4.2 for Rationale #2 -
 Solution #1), NEW_TOKEN Frame (Section 4.3 for Rationale #2 -
 Solution #2), BDP extension Frame (Section 4.4 for Rationale #2 -
 Solution #3).

Kuhn, et al. Expires 26 April 2022 [Page 7]

Internet-Draft Transport for 0-RTT October 2021

2.4. Trade-off between the different solutions

 This section provides a description of different implementation
 options and discusses their respective advantages and drawbacks.
 While there are some discussions for the solutions regarding
 Rationale #2, the server MUST consider Rationale #1 - Solution #2 and
 avoid Rationale #1 - Solution #1: the server MUST implement a safety
 check to measure whether the saved BDP parameters (i.e. saved_rtt and
 saved_bb) are relevant or check that their usage would not cause
 excessive congestion over the path.

2.4.1. Security aspects

 The client can send information related to the saved_rtt and saved_bb
 to the server with the BDP Frame extension using either Rationale #2
 - Solution #2 or Rationale #2 - Solution #3. However, the server
 SHOULD NOT trust the client. Indeed, even if 0-RTT packets
 containing the BDP Frame are encrypted, a client could modify the
 values within the extension and encrypt the 0-RTT packet.
 Authentication mechanisms might not guarantee that the values are
 safe. It is not an easy operation for a client to modify
 authenticated or encrypted data without this being detected by a
 server. Modification could be realized by malicious clients. One
 way to avoid this is for a server to also store the saved_rtt and
 saved_bb parameters.

 A malicious client might modify the saved_bb parameter to convince
 the server to use a larger CWND than appropriate. Using the
 algorithms proposed in Section 3, the server may reduce any intended
 harm and can check that part of the information provided by the
 client are valid.

 Storing the BDP parameters locally at the server reduces the
 associated risks by allowing the client to transmit information
 related to the BDP of the path in the case of a malicious client
 trying to break the encryption mechanism that it had received.

2.4.2. Interoperability and use-cases

 If the server stores a resumption ticket for each client to protect
 against replay on a third party IP, it could also store the IP
 address (i.e. saved_client_ip) and BDP parameters (i.e. saved_rtt
 and saved_bb) of the previous session of the client.

 In cases where the BDP Frame extension is exploited, the approach of
 storing the BDP parameters locally at the server can provide a cross-
 check of the BDP parameters sent by a client. The server can anyway
 enable a safe jumpstart, but without the BDP Frame extension.

Kuhn, et al. Expires 26 April 2022 [Page 8]

Internet-Draft Transport for 0-RTT October 2021

 However, the client does not have the choice of accepting to use this
 or not, and is unable to utilize local knowledge of the network
 conditions or conenctivity.

 Storing local values related to the BDP would help in improving the
 ingress for 0-RTT connections, however, not using a BDP Frame
 extension could reduce the interest of the approach where (1) the
 client knows the BDP estimations done at the server, (2) the client
 decides to accept or reject ingress optimization, (3) the client
 tunes application level requests.

2.4.3. Summary

 As a summary, the approach of local storage of values can be secure
 and the BDP Frame extension provides more information to the client
 and more interoperability. The Figure 1 provides a summary of the
 advantages and drawbacks of each approach.

 +---------+-----------+----------------+---------------+-----------+
 |Rationale| Solution | Advantage | Drawback | Comment |
 +---------+-----------+----------------+---------------+-----------+
#1	#1			
Variable	set	Ingress optim.	Risks of adding	MUST NOT
Network	current_*		congestion	implement
	to saved_*			
+-----------+----------------+---------------+-----------+				
	#2			
	Implement	Reduce risks of	Negative impact	MUST
	safety	adding	on ingress	implement
	check	congestion	optim.	Section 3
+---------+-----------+----------------+---------------+-----------+				
#2	#1			
Malicious	Local	Enforced	Client unable	
client	storage	security	to decide to	
			reject	
			Malicious	
			server could	
			fill client’s	
			buffer	
			Limited	
			use-cases	Section 4.2
+-----------+----------------+---------------+-----------+				
	#2			
	NEW_TOKEN	Save resource	Malicious	
		at server	client could	
		Opaque token	change token	
		protected	even if	
			protected	

Kuhn, et al. Expires 26 April 2022 [Page 9]

Internet-Draft Transport for 0-RTT October 2021

			Malicious	
			server could	
			fill client’s	
			buffer	
			Server may not	
			trust client	Section 4.3
+-----------+----------------+---------------+-----------+				
	#3			
	BDP	Extended	Malicious	
	extension	use-cases	client could	
		Save resource	change BDP	
		at server	even if	
		Client can	protected	
		read and decide	Server may not	
		to reject	trust client	
		BDP extension		
		protected		
				Section 4.4
 +---------+-----------+----------------+---------------+-----------+

 Figure 1: Comparing solutions

3. Safety guidelines

 The safety guidelines are designed to avoid a server adding excessive
 congestion to an already congested path. The following mechanisms
 help in fulfilling this objective:

 * The server SHOULD compare the measured transport parameters (in
 particular current_rtt) of the 0-RTT connection with those of the
 1-RTT connection (in particular saved_rtt);

 * The server SHOULD NOT consider the saved_bb parameter when there
 is any indicated congestion (e.g., loss of packet during the first
 transmission of data or ECN-CE mark);

 * The server MUST NOT send more than the recommended maximum IW
 (recom_iw) in the first transmission of data. This value could be
 based on a local understanding of the path characteristics.
 Knowing the congestion status of the network in closed
 environments may help in increasing the recommended maximum IW.

 * The server SHOULD NOT store and/or send information related to the
 previously estimated bottleneck bandwidth (saved_bb) (see
 Section 1.1 for more details on bottleneck bandwidth definition),
 if this estimation has not been computed after some rounds during
 the 1-RTT connection. At least, the 1-RTT connection should have
 reached the congestion avoidance phase.

Kuhn, et al. Expires 26 April 2022 [Page 10]

Internet-Draft Transport for 0-RTT October 2021

 The proposed mechanisms SHOULD be limited by any rate-limitation
 mechanisms of QUIC, such as flow control mechanisms or amplification
 attack prevention. In particular, it may be necessary to issue
 proactive MAX_DATA frames to increase the flow control limits of a
 connection. In particular, the maximum number of packets that can be
 sent without acknowledgment needs to be chosen to avoid the creation
 and the increase of congestion for the path.

 This extension should not provide an opportunity for the current
 connection to be a vector of an amplification attack. The address
 validation process, used to prevent amplification attacks, SHOULD be
 performed [RFC9000].

 The following mechanisms could be implemented:

 * Exploit a standard IW:

 1. The server sends the first data packet using the IW - this is
 a safe starting point for any path where there is no path
 information or where there is no congestion state. This
 avoids adding excessive congestion to the path;

 2. If the reception of IW exhibits characteristics that resemble
 those of a recent previous session from the client (i.e.
 current_rtt < 1.2*saved_rtt and all data was acknowledged
 without reported congestion), the method permits the sender to
 consider the saved_bb as an input to adapt current_bb to
 rapidly determine a new safe rate;

 3. The sender needs to avoid a burst of packets resulting from a
 step-increase in the congestion window [RFC9000]. Pacing the
 packets as a function of the current_rtt can provide this
 additional safety during the period in which the CWND is
 increased by the method.

 * Identify a relevant pacing rhythm:

 - The server estimates the pacing rhythm using saved_rtt and
 saved_bb. The Interpacket Transmission Time (ITT) is
 determined by the ratio between the current Maximum Message
 Size (MSS) for packets and the ratio between the saved_bb and
 saved_rtt. A tunable safety margin might be introduced to
 avoid sending more than a recommended maximum IW (recom_iw):

 o current_iw = min(recom_iw,saved_bb)

 o ITT = MSS/(current_iw/saved_rtt)

Kuhn, et al. Expires 26 April 2022 [Page 11]

Internet-Draft Transport for 0-RTT October 2021

 - When the IW is acknowledged, the server falls back to a
 standard slow-start mechanism.

 * Tune slow-start mechanisms: After transport parameters are set to
 a previously estimated bottleneck bandwidth, if slow-start
 mechanisms continue, the sender can overshoot the bottleneck
 capacity. This can occur even if the safety check described in
 this section is implemented.

 - For NewReno and CUBIC, it is recommended to exit slow-start and
 enter in congestion avoidance phase.

 - For BBR, it is recommended to move to the "probe bandwidth"
 state.

 This follows the idea of [RFC4782],
 [I-D.irtf-iccrg-sallantin-initial-spreading] and [CONEXT15].

4. Implementation considerations

4.1. Rationale behind the different implementation options

 The NewSessionTickets messages of TLS offer a solution. The idea
 would have been to add a ’bdp_metada’ field in the NewSessionTickets
 that the client could read. The sole extension currently defined in
 TLS1.3 that can be seen by the client is max_early_data_size (see
 section 4.6.1 of [RFC8446]). However, in the general design of QUIC,
 TLS sessions are managed by the TLS stacks.

 Three distinct approaches are presented: sending an opaque blob to
 the client that it may return to the server for a future connection
 (see Section 4.3), enable a local storage of BDP related values (see
 Section 4.2) and a BDP Frame extension (see Section 4.4).

4.2. Independent local storage of values

 This approach independently lets both a client and a server remember
 their BDP parameters:

 * During a 1-RTT session, the endpoint stores the RTT (as the
 saved_rtt) and bottleneck bandwidth (as the saved_bb) together
 with the session resume ticket. The client can also store the IP
 address of the server.

 * The server maintains a table of previously issued tickets, indexed
 by the random ticket identifier that is used to guarantee
 uniqueness of the Authenticated Encryption with Associated Data
 (AEAD) encryption. Old tokens are removed from the table using

Kuhn, et al. Expires 26 April 2022 [Page 12]

Internet-Draft Transport for 0-RTT October 2021

 the Least Recently Used (LRU) logic. For each ticket identifier,
 the table holds the RTT and bottleneck bandwidth (i.e. saved_rtt
 and saved_bb), and also the IP address of the client (i.e.
 saved_client_ip).

 During the 0-RTT session, the endpoint waits for the first RTT
 measurement from the peer’s IP address. This is used to verify that
 the current_rtt has not significantly changed from the saved_rtt, and
 hence is an indication that the BDP information is appropriate to the
 path that is currently being used.

 If this RTT is confirmed (e.g. current_rtt < 1.2*saved_rtt, the
 endpoint also verifies that an initial window of data has been
 acknowledged without requiring retransmission. This second check
 detects a path with significant incipient congestion (i.e. where it
 would not be safe to update the CWND based on the saved_bb). In
 practice, this could be realized by a proportional increase in the
 CWND, where the increase is (saved_bb/IW)*proportion_of_IW_currently-
 ACKed.

 This solution does not allow the client to refuse the exploitation of
 the BDP parameters. If the server does not want to store the metrics
 from previous connections, an equivalent of the tcp_no_metrics_save
 for QUIC may be necessary. This option could be negociated that
 alows a client to choose whether to use the saved information.

4.3. Using NEW_TOKEN frames

 Using NEW_TOKEN Frames, the server could send a token to the client
 through a NEW_TOKEN Frame. The token is an opaque blob and the
 client can not read its content (see section 19.7 of [RFC9000]). The
 client sends the received token in the header of an Initial packet
 for a later connection.

4.4. BDP Frame

 This section describes the use of a new Frame, the BDP Frame. The
 BDP Frame MUST be contained in 0-RTT packets, if sent by the client.
 The BDP Frame MUST be contained in 1-RTT packets, if sent by the
 server. The BDP Frame MUST be considered by congestion control and
 its data is not be limited by flow control limits. The server MAY
 send multiple BDP Frames in both 1-RTT and 0-RTT connections. The
 client can send BDP Frames during 1-RTT and 0-RTT connections.

4.4.1. BDP Frame Format

 A BDP Frame is formatted as shown in Figure 2.

Kuhn, et al. Expires 26 April 2022 [Page 13]

Internet-Draft Transport for 0-RTT October 2021

 BDP Frame {
 Type (i) = 0xXXX,
 Lifetime (i),
 Saved BB (i),
 Saved RTT (i),
 Saved IP length (i),
 Saved IP (...)
 }

 Figure 2: BDP Frame Format

 A BDP Frame contains the following fields:

 * Lifetime (extension_lifetime): The extension_lifetime is a value
 in milliseconds, encoded as a variable length integer. This
 follows the idea of NewSessionTicket of TLS [RFC8446]. This
 represents the validity in time of this extension.

 * Saved BB (saved_bb): The saved_bb is a value in bytes, encoded as
 a variable length integer. The bottleneck bandwidth estimated for
 the previous connection by the server. Using the previous values
 of bytes_in_flight defined in [RFC9002] can result in overshoot of
 the bottleneck capacity and is not advised.

 * Saved RTT (saved_rtt): The saved_rtt is a value in milliseconds,
 encoded as a variable length integer. This could be set to the
 minimum RTT (min_rtt). The saved_rtt can be set to min_rtt.
 NOTE: The min_rtt defined in [RFC9002], does not track a
 decreasing RTT: therefore min_rtt reported might be larger than
 the actual minimum RTT measured during the 1-RTT connection.

 * Saved IP length (saved_ip_length) : The length of the IP address
 set to either 4 (IPv4) or 16 (IPv6).

 * Saved IP (saved_client_ip) : The saved_client_ip could be set to
 the IP address of the client.

4.4.2. Extension activation

 The client can accept the transmission of BDP Frames from the server
 by using the enable_bdp transport extension.

 enable_bdp (0xTBD): in the 1-RTT connection, the client indicates to
 the server that it wishes to receive BDP extension Frames for
 improving ingress of 0-RTT connection. The default value is 0.
 Values strictly above 3 are invalid, and receipt of these values MUST
 be treated as a connection error of type TRANSPORT_PARAMETER_ERROR.

Kuhn, et al. Expires 26 April 2022 [Page 14]

Internet-Draft Transport for 0-RTT October 2021

 * 0: Default value. If the client does not send this parameter, the
 server considers that the client does not support or does not wish
 to activate the BDP extension.

 * 1: The client indicates to the server that it wishes to receive
 BDP Frame and activates the ingress optimization for the 0-RTT
 connection.

 * 2: The client indicates that it does not wish to receive BDP
 Frames but activates ingress optimization.

 * 3: The client indicates that it wishes to receive BDP Frames but
 does not activate ingress optimization.

 This Transport Parameter is encoded as per Section 18 of [RFC9000].

5. Discussion

5.1. BDP extension protected as much as initial_max_data

 The BDP metadata parameters are measured by the server during a
 previous connection. The BDP extension is protected by the mechanism
 that protects the exchange of the 0-RTT transport parameters. For
 version 1 of QUIC, the BDP extension is protected using the mechanism
 that already protects the "initial_max_data" parameter. This is
 defined in sections 4.5 to 4.7 of [RFC9001]. This provides a way for
 the server to verify that the parameters proposed by the client are
 the same as those that the server sent to the client during the
 previous connection.

5.2. Other use-cases

5.2.1. Optimizing client’s requests

 When using Dynamic Adaptive Streaming over HTTPS (DASH), clients
 might encounter issues in knowing the available path capacity or DASH
 can encounter issues in reaching the best available video playback
 quality. The client requests could then be adapted and specific
 traffic could utilize information from the path characteristics (such
 as encouraging the client to increase the quality of video chunks, to
 fill the buffers and avoid video blocking or to send high quality
 adds).

 In other cases, applications could provide additional services if
 clients can know the server estimation of the path characteristics.

Kuhn, et al. Expires 26 April 2022 [Page 15]

Internet-Draft Transport for 0-RTT October 2021

5.2.2. Sharing transport information across multiple connections

 There can be benefit in sharing transport information across multiple
 connections. [I-D.ietf-tcpm-2140bis] considers the sharing of
 transport parameters between TCP connections originating from the
 same host. The proposal in this document has the advantage of
 storing server-generated information at the client and not requiring
 the server to retain additional state for each client.

6. Acknowledgments

 The authors would like to thank Gabriel Montenegro, Patrick McManus,
 Ian Swett, Igor Lubashev, Robin Marx, Roland Bless and Franklin Simo
 for their fruitful comments on earlier versions of this document.

7. IANA Considerations

 TBD: Text is required to register the BDP Frame and the enable_bdp
 transport parameter. Parameters are registered using the procedure
 defined in [RFC9000].

8. Security Considerations

 Security considerations are discussed in Section 5 and in Section 3.

9. References

9.1. Normative References

 [I-D.ietf-tcpm-2140bis]
 Touch, J., Welzl, M., and S. Islam, "TCP Control Block
 Interdependence", Work in Progress, Internet-Draft, draft-
 ietf-tcpm-2140bis-11, 12 April 2021,
 <https://www.ietf.org/archive/id/draft-ietf-tcpm-2140bis-
 11.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick-
 Start for TCP and IP", RFC 4782, DOI 10.17487/RFC4782,
 January 2007, <https://www.rfc-editor.org/info/rfc4782>.

Kuhn, et al. Expires 26 April 2022 [Page 16]

Internet-Draft Transport for 0-RTT October 2021

 [RFC6349] Constantine, B., Forget, G., Geib, R., and R. Schrage,
 "Framework for TCP Throughput Testing", RFC 6349,
 DOI 10.17487/RFC6349, August 2011,
 <https://www.rfc-editor.org/info/rfc6349>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP’s Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC9001] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/info/rfc9001>.

 [RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
 May 2021, <https://www.rfc-editor.org/info/rfc9002>.

9.2. Informative References

 [CONEXT15] Li, Q., Dong, M., and P B. Godfrey, "Halfback: Running
 Short Flows Quickly and Safely", ACM CoNEXT , 2015.

 [I-D.irtf-iccrg-sallantin-initial-spreading]
 Sallantin, R., Baudoin, C., Arnal, F., Dubois, E., Chaput,
 E., and A. Beylot, "Safe increase of the TCP’s Initial
 Window Using Initial Spreading", Work in Progress,
 Internet-Draft, draft-irtf-iccrg-sallantin-initial-
 spreading-00, 15 January 2014,
 <https://www.ietf.org/archive/id/draft-irtf-iccrg-
 sallantin-initial-spreading-00.txt>.

Authors’ Addresses

Kuhn, et al. Expires 26 April 2022 [Page 17]

Internet-Draft Transport for 0-RTT October 2021

 Nicolas Kuhn
 CNES

 Email: nicolas.kuhn.ietf@gmail.com

 Emile Stephan
 Orange

 Email: emile.stephan@orange.com

 Godred Fairhurst
 University of Aberdeen
 Department of Engineering
 Fraser Noble Building
 Aberdeen

 Email: gorry@erg.abdn.ac.uk

 Tom Jones
 University of Aberdeen
 Department of Engineering
 Fraser Noble Building
 Aberdeen

 Email: tom@erg.abdn.ac.uk

 Christian Huitema
 Private Octopus Inc.

 Email: huitema@huitema.net

Kuhn, et al. Expires 26 April 2022 [Page 18]

QUIC Working Group Y. Liu
Internet-Draft Y. Ma
Intended status: Standards Track Alibaba Inc.
Expires: 28 April 2022 Q. De Coninck
 O. Bonaventure
 UCLouvain
 C. Huitema
 Private Octopus Inc.
 M. Kuehlewind, Ed.
 Ericsson
 25 October 2021

 Multipath Extension for QUIC
 draft-lmbdhk-quic-multipath-00

Abstract

 This document specifies a multipath extension for the QUIC protocol
 to enable the simultaneous usage of multiple paths for a single
 connection.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the QUIC Working Group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/quic/.

 Source for this draft and an issue tracker can be found at
 https://github.com/mirjak/draft-lmbdhk-quic-multipath.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Liu, et al. Expires 28 April 2022 [Page 1]

Internet-Draft Multipath QUIC October 2021

 This Internet-Draft will expire on 28 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions and Definitions 4
 2. Handshake Negotiation and Transport Parameter 5
 3. Path Setup and Removal 6
 3.1. Path Initiation . 7
 3.2. Path Close . 7
 3.2.1. Use PATH_ABANDON Frame to Close a Path 7
 3.2.2. Effect of RETIRE_CONNECTION_ID Frame 8
 3.2.3. Idle Timeout . 9
 3.3. Path States . 9
 4. Congestion Control . 11
 5. Computing Path RTT . 11
 6. Packet Scheduling . 12
 7. Packet Number Space and Use of Connection ID 13
 7.1. Using One Packet Number Space 13
 7.1.1. Sending Acknowledgements and Handling Ranges 14
 7.2. Using Multiple Packet Number Spaces 15
 7.2.1. Packet Protection for QUIC Multipath 15
 7.2.2. Key Update for QUIC Multipath 16
 8. Examples . 17
 8.1. Path Establishment 17
 8.2. Path Closure . 18
 9. Implementation Considerations 19
 10. New Frames . 19
 10.1. PATH_ABANDON Frame 19
 10.2. ACK_MP Frame . 21
 11. Error Codes . 22
 12. IANA Considerations . 22
 13. Security Considerations 23
 14. Contributors . 23

Liu, et al. Expires 28 April 2022 [Page 2]

Internet-Draft Multipath QUIC October 2021

 15. Acknowledgments . 23
 16. References . 23
 16.1. Normative References 23
 16.2. Informative References 24
 Authors’ Addresses . 25

1. Introduction

 This document specifies an extension to QUIC v1 [QUIC-TRANSPORT] to
 enable the simultaneous usage of multiple paths for a single
 connection.

 This proposal is based on several basic design points:

 * Re-use as much as possible mechanisms of QUIC-v1. In particular
 this proposal uses path validation as specified for QUIC v1 and
 aims to re-use as much as possible of QUIC’s connection migration.

 * Use the same packet header formats as QUIC v1 to avoid the risk of
 packets being dropped by middleboxes (which may only support QUIC
 v1)

 * Congestion Control, RTT measurements and PMTU discovery should be
 per-path (following [QUIC-TRANSPORT])

 * A path is determined by the 4-tuple of source and destination IP
 address as well as source and destination port. Therefore there
 can be at most one active paths/connection ID per 4-tuple.

 The path management specified in section 9 of [QUIC-TRANSPORT]
 fulfills multiple goals: it directs a peer to switch sending through
 a new preferred path, and it allows the peer to release resources
 associated with the old path. Multipath requires several changes to
 that mechanism:

 * Allow simultaneous transmission of non probing frames on multiple
 paths.

 * Continue using an existing path even if non-probing frames have
 been received on another path.

 * Manage the removal of paths that have been abandoned.

 As such this extension specifies a departure from the specification
 of path management in section 9 of [QUIC-TRANSPORT] and therefore
 requires negotiation between the two endpoints using a new transport
 parameter, as specified in Section 2.

Liu, et al. Expires 28 April 2022 [Page 3]

Internet-Draft Multipath QUIC October 2021

 This proposal supports the negotiation of either the use of one
 packet number space for all paths or the use of separate packet
 number spaces per path. While separate packet number spaces allow
 for more efficient ACK encoding, especially when paths have highly
 different latencies, this approach requires the use of a connection
 ID. Therefore use of a single number space can be beneficial in
 highly constrained networks that do not benefit from exposing the
 connection ID in the header. While both approaches are supported by
 the specification in this version of the document, the intention for
 the final publication of a multipath extension for QUIC is to choose
 one option in order to avoid incompatibility. More evaluation and
 implementation experience is needed to select one approach before
 final publication. Some discussion about pros and cons can be found
 here: https://github.com/mirjak/draft-lmbdhk-quic-
 multipath/blob/master/presentations/PacketNumberSpace_s.pdf

 As currently defined in this version of the draft the use of multiple
 packet number spaces requires the use of connection IDs is both
 directions. Today’s deployments often only use destination
 connection ID when sending packets from the client to the server as
 this addresses the most important use cases for migration, like NAT
 rebinding or mobility events. Further discussion and work is
 required to evaluate if the use of multiple packet number spaces
 could be supported as well when the connection ID is only present in
 one direction.

 This proposal does not cover address discovery and management.
 Addresses and the actual decision process to setup or tear down paths
 are assumed to be handled by the application that is using the QUIC
 multipath extension. Further, this proposal only specifies a simple
 basic packet scheduling algorithm in order to provide some basic
 implementation guidance. However, more advanced algorithms as well
 as potential extensions to enhance signaling of the current path
 state are expected as future work.

1.1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 We assume that the reader is familiar with the terminology used in
 [QUIC-TRANSPORT]. In addition, we define the following terms:

Liu, et al. Expires 28 April 2022 [Page 4]

Internet-Draft Multipath QUIC October 2021

 * Path Identifier (Path ID): An identifier that is used to identify
 a path in a QUIC connection at an endpoint. Path Identifier is
 used in multi-path control frames (etc. PATH_ABANDON frame) to
 identify a path. By default, it is defined as the sequence number
 of the destination Connection ID used for sending packets on that
 particular path, but alternative definitions can be used if the
 length of that connection ID is zero.

 * Packet Number Space Identifier (PN Space ID): An identifier that
 is used to distinguish packet number spaces for different paths.
 It is used in 1-RTT packets and ACK_MP frames. Each node
 maintains a list of "Received Packets" for each of the CID that it
 provided to the peer, which is used for acknowledging packets
 received with that CID.

 The difference between Path Identifier and Packet Number Space
 Identifier, is that the Path Identifier is used in multipath control
 frames to identify a path, and the Packet Number Space Identifier is
 used in 1-RTT packets and ACK_MP frames to distinguish packet number
 spaces for different paths. Both identifiers have the same value,
 which is the sequence number of the connection ID, if a non-zero
 connection ID is used. If the connection ID is zero length, the
 Packet Number Space Identifier is 0, while the Path Identifier is
 selected on path establishment.

2. Handshake Negotiation and Transport Parameter

 This extension defines a new transport parameter, used to negotiate
 the use of the multipath extension during the connection handshake,
 as specified in [QUIC-TRANSPORT]. The new transport parameter is
 defined as follow:

 * name: enable_multipath (TBD - experiments use 0xbabf)

 * value: 0 (default) for disabled. Endpoints use 2-bits in the
 value field for negotiating one or more PN spaces, available
 option value for client and server are listed in Table 1 :

Liu, et al. Expires 28 April 2022 [Page 5]

Internet-Draft Multipath QUIC October 2021

 +===============+===========================+================+
 | Client Option | Definition | Allowed server |
 | | | responses |
 +===============+===========================+================+
 | 0x0 | don’t support multi-path | 0x0 |
 +---------------+---------------------------+----------------+
 | 0x1 | only support one PN space | 0x0 or 0x1 |
 | | for multi-path | |
 +---------------+---------------------------+----------------+
 | 0x2 | only support multiple PN | 0x0 or 0x2 |
 | | spaces for multi-path | |
 +---------------+---------------------------+----------------+
 | 0x3 | support both one PN space | 0x0, 0x1 or |
 | | and multiple PN space | 0x2 |
 +---------------+---------------------------+----------------+

 Table 1: Available value for enable_multipath

 If the peer does not carry the enable_multipath transport parameter,
 which means the peer does not support multipath, endpoint MUST
 fallback to [QUIC-TRANSPORT] with single path and MUST NOT use any
 frame or mechanism defined in this document. If endpoint receives
 unexpected value for the transport parameter "enable_multipath", it
 MUST treat this as a connection error of type MP_CONNECTION_ERROR and
 close the connection.

 Note that the transport parameter "active_connection_id_limit"
 [QUIC-TRANSPORT] limits the number of usable Connection IDs, and also
 limits the number of concurrent paths. For the QUIC multipath
 extension this limit even applies when no connection ID is exposed in
 the QUIC header.

3. Path Setup and Removal

 After completing the handshake, endpoints have agreed to enable
 multipath feature and can start using multiple paths. This document
 does not discuss when a client decides to initiate a new path. We
 delegate such discussion in separate documents.

 This proposal adds one multi-path control frame for path management:

 * PATH_ABANDON frame for the receiver side to abandon the path
 Section 10.1

 All the new frames are sent in 1-RTT packets [QUIC-TRANSPORT].

Liu, et al. Expires 28 April 2022 [Page 6]

Internet-Draft Multipath QUIC October 2021

3.1. Path Initiation

 When the multipath option is negotiated, clients that want to use an
 additional path MUST first initiate the Address Validation procedure
 with PATH_CHALLENGE and PATH_RESPONSE frames described in Section 8
 of [QUIC-TRANSPORT]. After receiving packets from the client on the
 new paths, the servers MAY in turn attempt to validate these paths
 using the same mechanisms.

 If validation succeed, the client can send non-probing, 1-RTT packets
 on the new paths. In contrast with the specification in section 9 of
 [QUIC-TRANSPORT], the server MUST NOT assume that receiving non-
 probing packets on a new path indicates an attempt to migrate to that
 path. Instead, servers SHOULD consider new paths over which non-
 probing packets have been received as available for transmission.

3.2. Path Close

 Each endpoint manages the set of paths that are available for
 transmission. At any time in the connection, each endpoint can
 decide to abandon one of these paths, following for example changes
 in local connectivity or changes in local preferences. After an
 endpoint abandons a path, the peer will not receive any more non-
 probing packets on that path.

 An endpoint that wants to close a path SHOULD NOT rely on implicit
 signals like idle time or packet losses, but instead SHOULD use
 explicit request to terminate path by sending the PATH_ABANDON frame
 (see Section 10.1).

3.2.1. Use PATH_ABANDON Frame to Close a Path

 Both endpoints, namely the client and the server, can close a path,
 by sending PATH_ABANDON frame (see Section 10.1) which abandons the
 path with a corresponding Path Identifier. Once a path is marked as
 "abandoned", it means that the resources related to the path, such as
 the used connection IDs, can be released. However, information
 related to data delivered over that path SHOULD not be released
 immediately as acknowledgments can still be received or other frames
 that also may trigger retransmission of data on another path.

 The endpoint sending the PATH_ABANDON frame SHOULD consider a path as
 abandoned when the packet that contained the PATH_ABANDON frame is
 acknowledged. When releasing resources of a path, the endpoint
 SHOULD send a RETIRE_CONNECTION_ID frame for the connection IDs used
 on the path, if any.

Liu, et al. Expires 28 April 2022 [Page 7]

Internet-Draft Multipath QUIC October 2021

 The receiver of a PATH_ABANDON frame SHOULD NOT release its resources
 immediately but SHOULD wait for the receive of the
 RETIRE_CONNECTION_ID frame for the used connection IDs or 3 RTOs.

 Usually it is expected that the PATH_ABANDON frame is used by the
 client to indicate to the server that path conditions have changed
 such that the path is or will be not usable anymore, e.g. in case of
 an mobility event. The PATH_ABANDON frame therefore indicates to the
 receiving peer that the sender does not intend to send any packets on
 that path anymore but also recommends to the receiver that no packets
 should be sent in either direction. The receiver of an PATH_ABANDON
 frame MAY also send an PATH_ABANDON frame to signal its own
 willingness to not send any packet on this path anymore.

 If connection IDs are used, PATH_ABANDON frames can be sent on any
 path, not only the path that is intended to be closed. Thus a
 connection can be abandoned even if connectivity on that path is
 already broken. If no connection IDs are used and the PATH_ABANDON
 frame has to sent on the path that is intended to be closed, it is
 possible that the packet containing the PATH_ABANDON frame or the
 packet containing the ACK for the PATH_ABANDON frame cannot be
 received anymore and the endpoint might need to rely on an idle time
 out to close the path, as described in Section Section 3.2.3.

 Retransmittable frames, that have previously been send on the
 abandoned path and are considered lost, SHOULD be retransmitted on a
 different path.

 If a PATH_ABANDON frame is received for the only active path of a
 QUIC connection, the receiving peer SHOULD send a CONNECTION_CLOSE
 frame and enters the closing state. If the client received a
 PATH_ABANDON frame for the last open path, it MAY instead try to open
 a new path, if available, and only initiate connection closure if
 path validation fails or a CONNECTION_CLOSE frame is received from
 the server. Similarly the server MAY wait for a short, limited time
 such as one RTO if a path probing packet is received on a new path
 before sending the CONNECTION_CLOSE frame.

3.2.2. Effect of RETIRE_CONNECTION_ID Frame

 Receiving a RETIRE_CONNECTION_ID frame causes the endpoint to discard
 the resources associated with that connection ID. If the connection
 ID was used by the peer to identify a path from the peer to this
 endpoint, the resources include the list of received packets used to
 send acknowledgements. The peer MAY decide to keep sending data
 using the same IP addresses and UDP ports previously associated with
 the connection ID, but MUST use a different connection ID when doing
 so.

Liu, et al. Expires 28 April 2022 [Page 8]

Internet-Draft Multipath QUIC October 2021

3.2.3. Idle Timeout

 [QUIC-TRANSPORT] allows for closing of connections if they stay idle
 for too long. The connection idle timeout in multipath QUIC is
 defined as "no packet received on any path for the duration of the
 idle timeout". When only one path is available, servers MUST follow
 the specifications in [QUIC-TRANSPORT].

 When more than one path is available, servers shall monitor the
 arrival of non-probing packets on the available paths. Servers
 SHOULD stop sending traffic on paths through where no non-probing
 packet was received in the last 3 path RTTs, but MAY ignore that rule
 if it would disqualify all available paths. Server MAY release the
 resource associated with paths for which no non-probing packet was
 received for a sufficiently long path-idle delay, but SHOULD only
 release resource for the last available path if no traffic is
 received for the duration of the idle timeout, as specified in
 section 10.1 of [QUIC-TRANSPORT]. This means if all paths remain
 idle for the idle timeout, the connection is implicitly closed.

 Server implementations need to select the sub-path idle timeout as a
 trade- off between keeping resources, such as connection IDs, in use
 for an excessive time or having to promptly reestablish a path after
 a spurious estimate of path abandonment by the client.

3.3. Path States

 Figure 1 shows the states that an endpoint’s path can have.

Liu, et al. Expires 28 April 2022 [Page 9]

Internet-Draft Multipath QUIC October 2021

 o
 | PATH_CHALLENGE sent/received on new path
 v
 +------------+ Path validation abandoned
 | Validating |----------------------------------+
 +------------+ |
 | |
 | PATH_RESPONSE received |
 | |
 v Associated CID have been retired |
 +------------+ Path’s idle timeout |
 | Active |----------------------------------+
 +------------+ |
 | |
 | PATH_ABANDONED sent/received |
 v |
 +------------+ |
 | Closing | |
 +------------+ |
 | |
 | Associated CID have been retired |
 | Path’s idle timeout |
 v |
 +------------+ |
 | Closed |<---------------------------------+
 +------------+

 Figure 1: States of a path

 In non-final states, hosts have to track the following information.

 * Associated 4-tuple: The tuple (source IP, source port, destination
 IP, destination port) used by the endhost to send packets over the
 path.

 * Associated Destination Connection ID: The Connection ID used to
 send packets over the path.

 If multiple packet number spaces are used over the connection, hosts
 MUST also track the following information.

 * Path Packet Number Space: The endpoint maintains a separate packet
 number for sending and receiving packets over this path. Packet
 number considerations described in [QUIC-TRANSPORT] apply within
 the given path.

 In the "Active" state, hosts MUST also track the following
 information.

Liu, et al. Expires 28 April 2022 [Page 10]

Internet-Draft Multipath QUIC October 2021

 * Associated Source Connection ID: The Connection ID used to receive
 packets over the path.

 A path in the "Validating" state performs path validation as
 described in Section 8.2 of [QUIC-TRANSPORT]. An endhost should not
 send non-probing frames on a path in "Validating" state, as it has no
 guarantee that packets will actually reach the peer.

 The endhost can use all the paths in the "Active" state, provided
 that the congestion control and flow control currently allow sending
 of new data on a path.

 In the "Closing" state, the endhost SHOULD NOT send packets on this
 path anymore, as there is no guarantee that the peer can still map
 the packets to the connection. The endhost SHOULD wait for the
 acknowledgment of the PATH_ABANDONED frame before moving the path to
 the "Closed" state to ensure a graceful termination of the path.

 When a path reaches the "Closed" state, the endhost releases all the
 path’s associated resources. Consequently, the endhost is not able
 to send nor receive packets on this path anymore.

4. Congestion Control

 Senders MUST manage per-path congestion status, and MUST NOT send
 more data on a given path than congestion control on that path
 allows. This is already a requirement of [QUIC-TRANSPORT].

 When a Multipath QUIC connection uses two or more paths, there is no
 guarantee that these paths are fully disjoint. When two (or more
 paths) share the same bottleneck, using a standard congestion control
 scheme could result in an unfair distribution of the bandwidth with
 the multipath connection getting more bandwidth than competing single
 paths connections. Multipath TCP uses the LIA congestion control
 scheme specified in [RFC6356] to solve this problem. This scheme can
 immediately be adapted to Multipath QUIC. Other coupled congestion
 control schemes have been proposed for Multipath TCP such as [OLIA].

5. Computing Path RTT

 Acknowledgement delays are the sum of two one-way delays, the delay
 on the packet sending path and the delay on the return path chosen
 for the acknowledgements. When different paths have different
 characteristics, this can cause acknowledgement delays to vary
 widely. Consider for example multipath transmission using both a
 terrestrial path, with a latency of 50ms in each direction, and a
 geostationary satellite path, with a latency of 300ms in both
 directions. The acknowledgement delay will depend on the combination

Liu, et al. Expires 28 April 2022 [Page 11]

Internet-Draft Multipath QUIC October 2021

 of paths used for the packet transmission and the ACK transmission,
 as shown in Table 2.

 +======================+=============+===========+
 | ACK Path \ Data path | Terrestrial | Satellite |
 +======================+=============+===========+
 | Terrestrial | 100ms | 350ms |
 +----------------------+-------------+-----------+
 | Satellite | 350ms | 600ms |
 +----------------------+-------------+-----------+

 Table 2: Example of ACK delays using multiple
 paths

 Using the default algorithm specified in [QUIC-RECOVERY] would result
 in suboptimal performance, computing average RTT and standard
 deviation from series of different delay measurements of different
 combined paths. At the same time, early tests showed that it is
 desirable to send ACKs through the shortest path, because a shorter
 ACK delay results in a tighter control loop and better performances.
 The tests also showed that it is desirable to send copies of the ACKs
 on multiple paths, for robustness if a path experiences sudden
 losses.

 An early implementation mitigated the delay variation issue by using
 time stamps, as specified in [QUIC-Timestamp]. When the timestamps
 are present, the implementation can estimate the transmission delay
 on each one-way path, and can then use these one way delays for more
 efficient implementations of recovery and congestion control
 algorithms.

 If timestamps are not available, implementations could estimate one
 way delays using statistical techniques. For example, in the example
 shown in Table 1, implementations can use use "same path"
 measurements to estimate the one way delay of the terrestrial path to
 about 50ms in each direction, and that of the satellite path to about
 300ms. Further measurements can then be used to maintain estimates
 of one way delay variations, using logical similar to Kalman filters.
 But statistical processing is error-prone, and using time stamps
 provides more robust measurements.

6. Packet Scheduling

 The transmission of QUIC packets on a regular QUIC connection is
 regulated by the arrival of data from the application and the
 congestion control scheme. QUIC packets can only be sent when the
 congestion window of at least one path is open.

Liu, et al. Expires 28 April 2022 [Page 12]

Internet-Draft Multipath QUIC October 2021

 Multipath QUIC implementations also need to include a packet
 scheduler that decides, among the paths whose congestion window is
 open, the path over which the next QUIC packet will be sent. Many
 factors can influence the definition of these algorithms and their
 precise definition is outside the scope of this document. Various
 packet schedulers have been proposed and implemented, notably for
 Multipath TCP. A companion draft [I-D.bonaventure-iccrg-schedulers]
 provides several general-purpose packet schedulers depending on the
 application goals.

7. Packet Number Space and Use of Connection ID

 If the connection ID is present (non-zero length) in the packet
 header, the connection ID is used to identify the path. If no
 connection ID is present, the 4 tuple identifies the path. The
 initial path that is used during the handshake (and multipath
 negotiation) has the path ID 0 and therefore all 0-RTT packets are
 also tracked and processed with the path ID 0. For 1-RTT packets the
 path ID is the sequence number of the Destination Connection ID
 present in the packet header, as defined in Section 5.1.1 of
 [QUIC-TRANSPORT], or also 0 if the Connection ID is zero-length.

 If non-zero-length Connection IDs are used, an endpoint MUST use
 different Connection IDs on different paths. Still, the receiver may
 observe the same Connection ID used on different 4-tuples due to,
 e.g., NAT rebinding. In such case, the receiver reacts as specified
 in Section 9.3 of [QUIC-TRANSPORT].

 Acknowledgements of Initial and Handshake packets MUST be carried
 using ACK frames, as specified in [QUIC-TRANSPORT]. The ACK frames,
 as defined in [QUIC-TRANSPORT], do not carry path identifiers. If
 for any reason ACK frames are received in 1-RTT packets while the
 state of multipath negotiation is ambiguous, they MUST be interpreted
 as acknowledging packets sent on path 0.

7.1. Using One Packet Number Space

 If the multipath option is negotiated to use one packet number space
 for all paths, the packet sequence numbers are allocated from the
 common number space, so that, for example, packet number N could be
 sent on one path and packet number N+1 on another.

 ACK frames report the numbers of packets that have been received so
 far, regardless of the path on which they have been received. That
 means the senders needs to maintain an association between sent
 packet numbers and the path over which these packets were sent. This
 is necessary to implement per path congestion control.

Liu, et al. Expires 28 April 2022 [Page 13]

Internet-Draft Multipath QUIC October 2021

 When a packet is acknowledged, the state of the congestion control
 MUST be updated for the path where the acknowledged packet was
 originally sent. The RTT is calculated based on the delay between
 the transmission of that packet and its first acknowledgement (see
 Section 5) and is used to update the RTT statistics for the sending
 path.

 Also loss detection MUST be adapted to allow for different RTTs on
 different paths. For example, timer computations should take into
 account the RTT of the path on which a packet was sent. Detections
 based on packet numbers shall compare a given packet number to the
 highest packet number received for that path.

7.1.1. Sending Acknowledgements and Handling Ranges

 If senders decide to send packets on paths with different
 transmission delays, some packets will very likely be received out of
 order. This will cause the ACK frames to carry multiple ranges of
 received packets. The large number of range increases the size of
 ACK frames, causing transmission and processing overhead.

 The size and overhead of the ACK frames can be controlled by the
 combination of one or several of the following:

 * Not transmitting again ACK ranges that were present in an ACK
 frame acknowledged by the peer.

 * Delay acknowledgements to allow for arrival of "hole filling"
 packets.

 * Limit the total number of ranges sent in an ACK frame.

 * Limiting the number of transmissions of a specific ACK range, on
 the assumption that a sufficient number of transmissions almost
 certainly ensures reception by the peer.

 * Send multiple messages for a given path in a single socket
 operation, so that a series of packets sent from a single path
 uses a series of consecutive sequence numbers without creating
 holes.

Liu, et al. Expires 28 April 2022 [Page 14]

Internet-Draft Multipath QUIC October 2021

7.2. Using Multiple Packet Number Spaces

 If the multipath option is enabled with a value of 2, each path has
 its own packet number space for transmitting 1-RTT packets and a new
 ACK frame format is used as specified in Section 10.2. Compared to
 the QUIC v1 ACK frame, the MP_ACK frames additionally contains a
 Packet Number Space Identifier (PN Space ID). The PN Space ID used
 to distinguish packet number spaces for different paths and is simply
 derived from the sequence number of Destination Connection ID.
 Therefore, the packet number space for 1-RTT packets can be
 identified based on the Destination Connection ID in each packets.

 As soon as the negotiation of multipath support with value 2 is
 completed, endpoints SHOULD use ACK_MP frames instead of ACK frames
 for acknowledgements of 1-RTT packets on path 0, as well as for 0-RTT
 packets that are acknowledged after the handshake concluded.

 Following [QUIC-TRANSPORT], each endpoint uses NEW_CONNECTION_ID
 frames to issue usable connections IDs to reach it. Before an
 endpoint adds a new path by initiating path validation, it MUST check
 whether at least one unused Connection ID is available for each side.

 If the transport parameter "active_connection_id_limit" is negotiated
 as N, the server provided N Connection IDs, and the client is already
 actively using N paths, the limit is reached. If the client wants to
 start a new path, it has to retire one of the established paths.

 ACK_MP frame Section 10.2 can be returned via either a different
 path, or the same path identified by the Path Identifier, based on
 different strategies of sending ACK_MP frames.

 Using multiple packet number spaces requires changes in the way AEAD
 is applied for packet protection, as explained in Section 7.2.1, and
 tighter constraints for key updates, as explained in Section 7.2.2.

7.2.1. Packet Protection for QUIC Multipath

 Packet protection for QUIC v1 is specified is Section 5 of
 [QUIC-TLS]. The general principles of packet protection are not
 changed for QUIC Multipath. No changes are needed for setting packet
 protection keys, initial secrets, header protection, use of 0-RTT
 keys, receiving out-of-order protected packets, receiving protected
 packets, or retry packet integrity. However, the use of multiple
 number spaces for 1-RTT packets requires changes in AEAD usage.

Liu, et al. Expires 28 April 2022 [Page 15]

Internet-Draft Multipath QUIC October 2021

 Section 5.3 of [QUIC-TLS] specifies AEAD usage, and in particular the
 use of a nonce, N, formed by combining the packet protection IV with
 the packet number. If multiple packet number spaces are used, the
 packet number alone would not guarantee the uniqueness of the nonce.

 In order to guarantee the uniqueness of the None, the nonce N is
 calculated by combining the packet protection IV with the packet
 number and with the path identifier.

 The path ID for 1-RTT packets is the sequence number of of
 [QUIC-TRANSPORT], or zero if the Connection ID is zero-length.
 Section 19 of [QUIC-TRANSPORT] encodes the Connection ID Sequence
 Number as a variable-length integer, allowing values up to 2^62-1; in
 this specification a range of less than 2^32-1 values MUST be used
 before updating the packet protection key.

 To calculate the nonce, a 96 bit path-and-packet-number is composed
 of the 32 bit Connection ID Sequence Number in byte order, two zero
 bits, and the 62 bits of the reconstructed QUIC packet number in
 network byte order. If the IV is larger than 96 bits, the path-and-
 packet-number is left-padded with zeros to the size of the IV. The
 exclusive OR of the padded packet number and the IV forms the AEAD
 nonce.

 For example, assuming the IV value is 6b26114b9cba2b63a9e8dd4f, the
 connection ID sequence number is 3, and the packet number is aead,
 the nonce will be set to 6b2611489cba2b63a9e873e2.

7.2.2. Key Update for QUIC Multipath

 The Key Phase bit update process for QUIC v1 is specified in
 Section 6 of [QUIC-TLS]. The general principles of key update are
 not changed in this specification. Following QUIC v1, the Key Phase
 bit is used to indicate which packet protection keys are used to
 protect the packet. The Key Phase bit is toggled to signal each
 subsequent key update. Because of network delays, packets protected
 with the older key might arrive later than the packets protected with
 the new key. Therefore, the endpoint needs to retain old packet keys
 to allow these delayed packets to be processed and it must
 distinguish between the new key and the old key. In QUIC V1, this is
 done using packet numbers so that the rule is made simple: Use the
 older key if packet number is lower than any packet number frame the
 current key phase.

 When using multiple packet number spaces on different paths, some
 care is needed when initiating the Key Update process, as different
 paths use different packet number spaces but share a single key.
 When a key update is initiated on one path, packets sent to another

Liu, et al. Expires 28 April 2022 [Page 16]

Internet-Draft Multipath QUIC October 2021

 path needs to know when the transition is complete. Otherwise, it is
 possible that the other paths send packets with the old keys, but
 skip sending any packets in the current key phase and directly jump
 to sending packet in the next key phase. When that happens, as the
 endpoint can only retain two sets of packet protection keys with the
 1-bit Key Phase bit, the other paths cannot distinguish which key
 should be used to decode received packets, which results in a key
 rotation synchronization problem.

 To address such a synchronization issue, if key update is initialized
 on one path, the sender SHOULD send at least one packet with the new
 key on all active paths. Further, an endpoint MUST NOT initiate a
 subsequent key update until a packet with the current key has been
 acknowledged on each path.

 Following Section 5.4 of [QUIC-TLS], the Key Phase bit is protected,
 so sending multiple packets with Key Phase bit flipping at the same
 time should not cause linkability issue.

8. Examples

8.1. Path Establishment

 Figure 2 illustrates an example of new path establishment using
 multiple packet number spaces.

 Client Server

 (Exchanges start on default path)
 1-RTT[]: NEW_CONNECTION_ID[C1, Seq=1] -->
 <-- 1-RTT[]: NEW_CONNECTION_ID[S1, Seq=1]
 <-- 1-RTT[]: NEW_CONNECTION_ID[S2, Seq=2]
 ...
 (starts new path)
 1-RTT[0]: DCID=S2, PATH_CHALLENGE[X] -->
 Checks AEAD using nonce(CID sequence 2, PN 0)
 <-- 1-RTT[0]: DCID=C1, PATH_RESPONSE[X], PATH_CHALLENGE[Y],
 ACK_MP[Seq=2,PN=0]
 Checks AEAD using nonce(CID sequence 1, PN 0)
 1-RTT[1]: DCID=S2, PATH_RESPONSE[Y],
 ACK_MP[Seq=1, PN=0], ... -->

 Figure 2: Example of new path establishment

Liu, et al. Expires 28 April 2022 [Page 17]

Internet-Draft Multipath QUIC October 2021

 In Figure Figure 2, the endpoints first exchange new available
 Connection IDs with the NEW_CONNECTION_ID frame. In this example the
 client provides one Connection ID (C1 with sequence number 1), and
 server provides two Connection IDs (S1 with sequence number 1, and S2
 with sequence number 2).

 Before the client opens a new path by sending an packet on that path
 with a PATH_CHALLENGE frame, it has to check. whether there is an
 unused Connection IDs available for each side. In this example the
 client chooses the Connection ID S2 as the Destination Connection ID
 in the new path.

 If the client has used all the allocated CID, it is supposed to
 retire those that are not used anymore, and the server is supposed to
 provide replacements, as specified in [QUIC-TRANSPORT]. Usually it
 is desired to provide one more connection ID as currently in used, to
 allow for new paths or migration.

8.2. Path Closure

 In this example the client detects the network environment change
 (client’s 4G/Wi-Fi is turned off, Wi-Fi signal is fading to a
 threshold, or the quality of RTT or loss rate is becoming worse) and
 wants to close the initial path.

 In Figure Figure 3 the server’s 1-RTT packets use DCID C1, which has
 a sequence number of 1, for the first path; the client’s 1-RTT
 packets use DCID S2, which has a sequence number of 2. For the
 second path, the server’s 1-RTT packets use DCID C2, which has a
 sequence number of 2; the client’s 1-RTT packets use CID S3, which
 has a sequence number of 3. Note that two paths use different packet
 number space.

 Thee client initiates the path closure for the path with ID 1 by
 sending a packet with an PATH_ABANDON frame. When the server
 received the PATH_ABANDON frame, it also sends an PATH_ABANDON frame
 in the next packet. Afterwards the connection IDs in both directions
 can be retired using the RETIRE_CONNECTION_ID frame.

Liu, et al. Expires 28 April 2022 [Page 18]

Internet-Draft Multipath QUIC October 2021

 Client Server

 (client tells server to abandon a path)
 1-RTT[X]: DCID=S2 PATH_ABANDON[path_id=1]->
 (server tells client to abandon a path)
 <-1-RTT[Y]: DCID=C1 PATH_ABANDON[path_id=2], ACK_MP[Seq=2, PN=X]
 (client abandons the path that it is using)
 1-RTT[U]: DCID=S3 RETIRE_CONNECTION_ID[2], ACK_MP[Seq=1, PN=Y] ->
 (server abandons the path that it is using)
 <- 1-RTT[V]: DCID=C2 RETIRE_CONNECTION_ID[1], ACK_MP[Seq=3, PN=U]

 Figure 3: Example of closing a path (path id type=0x00)

9. Implementation Considerations

 TDB

10. New Frames

 All the new frames MUST only be sent in 1-RTT packet, and MUST NOT
 use other encryption levels.

 If an endpoint receives multipath-specific frames from packets of
 other encryption levels, it MUST return MP_PROTOCOL_VIOLATION as a
 connection error and close the connection.

10.1. PATH_ABANDON Frame

 The PATH_ABANDON frame informs the peer to abandon a path. More
 complex path management can be made possible with additional
 extensions (e.g., PATH_STATUS frame in [I-D.liu-multipath-quic]).

 PATH_ABANDON frames are formatted as shown in Figure 4.

 PATH_ABANDON Frame {
 Type (i) = TBD-03 (experiments use 0xbaba05),
 Path Identifier (..),
 Error Code (i),
 Reason Phrase Length (i),
 Reason Phrase (..),
 }

 Figure 4: PATH_ABANDON Frame Format

 PATH_ABANDON frames contain the following fields:

 Path Identifier: An identifier of the path, which is formatted as
 shown in Figure 5.

Liu, et al. Expires 28 April 2022 [Page 19]

Internet-Draft Multipath QUIC October 2021

 * Identifier Type: Identifier Type field is set to indicate the type
 of path identifier.

 - Type 0: Refer to the connection identifier used by the sender
 of the control frame when sending data over the specified path.
 This method SHOULD be used if this connection identifier is
 non-zero length. This method MUST NOT be used if this
 connection identifier is zero-length.

 - Type 1: Refer to the connection identifier used by the receiver
 of the control frame when sending data over the specified path.
 This method MUST NOT be used if this connection identifier is
 zero-length.

 - Type 2: Refer to the path over which the control frame is sent
 or received.

 * Path Identifier Content: A variable-length integer specifying the
 path identifier. If Identifier Type is 2, the Path Identifier
 Content MUST be empty.

 Path Identifier {
 Identifier Type (i) = 0x00..0x02,
 [Path Identifier Content (i)],
 }

 Figure 5: Path Identifier Format

 Note: If the receiver of the PATH_ABANDON frame is using non-zero
 length Connection ID on that path, endpoint SHOULD use type 0x00 for
 path identifier in the control frame. If the receiver of the
 PATH_ABANDON frame is using zero-length Connection ID, but the peer
 is using non-zero length Connection ID on that path, endpoints SHOULD
 use type 0x01 for path identifier. If both endpoints are using
 0-length Connection IDs on that path, endpoints SHOULD only use type
 0x02 for path identifier.

 Error Code: A variable-length integer that indicates the reason for
 abandoning this path.

 Reason Phrase Length: A variable-length integer specifying the
 length of the reason phrase in bytes. Because an PATH_ABANDON
 frame cannot be split between packets, any limits on packet size
 will also limit the space available for a reason phrase.

 Reason Phrase: Additional diagnostic information for the closure.

Liu, et al. Expires 28 April 2022 [Page 20]

Internet-Draft Multipath QUIC October 2021

 This can be zero length if the sender chooses not to give details
 beyond the Error Code value. This SHOULD be a UTF-8 encoded
 string [RFC3629], though the frame does not carry information,
 such as language tags, that would aid comprehension by any entity
 other than the one that created the text.

 PATH_ABANDON frames SHOULD be acknowledged. If a packet containing a
 PATH_ABANDON frame is considered lost, the peer SHOULD repeat it.

 If the Identifier Type is 0x00 or 0x01, PATH_ABANDON frames MAY be
 sent on any path, not only the path identified by the Path Identifier
 Content field. If the Identifier Type if 0x02, the PATH_ABANDON
 frame MUST only be sent on the path that is intended to be abandoned.

10.2. ACK_MP Frame

 The ACK_MP frame (types TBD-00 and TBD-01; experiments use
 0xbaba00..0xbaba01) is an extension of the ACK frame defined by
 [QUIC-TRANSPORT]. It is used to acknowledge packets that were sent
 on different paths when using multiple packet number spaces. If the
 frame type is TBD-01, ACK_MP frames also contain the sum of QUIC
 packets with associated ECN marks received on the connection up to
 this point.

 ACK_MP frame is formatted as shown in Figure 6.

 ACK_MP Frame {
 Type (i) = TBD-00..TBD-01 (experiments use 0xbaba00..0xbaba01),
 Packet Number Space Identifier (i),
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 }

 Figure 6: ACK_MP Frame Format

 Compared to the ACK frame specified in [QUIC-TRANSPORT], the
 following field is added.

Liu, et al. Expires 28 April 2022 [Page 21]

Internet-Draft Multipath QUIC October 2021

 Packet Number Space Identifier: An identifier of the path packet
 number space, which is the sequence number of Destination Connection
 ID of the 1-RTT packets which are acknowledged by the ACK_MP frame.
 If the endpoint receives 1-RTT packets with zero-length Connection
 ID, it SHOULD use Packet Number Space Identifier 0 in ACK_MP frames.
 If an endpoint receives a ACK_MP frame with a non-existing packet
 number space ID, it MUST treat this as a connection error of type
 MP_PROTOCOL_VIOLATION and close the connection.

 When using a single packet number space, endhosts MUST NOT send
 ACK_MP frames. If an endhost receives an ACK_MP frame while a single
 packet number space was negotiated, it MUST treat this as a
 connection error of type MP_PROTOCOL_VIOLATION and close the
 connection.

11. Error Codes

 Multi-path QUIC transport error codes are 62-bit unsigned integers
 following [QUIC-TRANSPORT].

 This section lists the defined multipath QUIC transport error codes
 that can be used in a CONNECTION_CLOSE frame with a type of 0x1c.
 These errors apply to the entire connection.

 MP_PROTOCOL_VIOLATION (experiments use 0xba01): An endpoint detected
 an error with protocol compliance that was not covered by more
 specific error codes.

12. IANA Considerations

 This document defines a new transport parameter for the negotiation
 of enable multiple paths for QUIC, and two new frame types. The
 draft defines provisional values for experiments, but we expect IANA
 to allocate short values if the draft is approved.

 The following entry in Table 3 should be added to the "QUIC Transport
 Parameters" registry under the "QUIC Protocol" heading.

 +==============================+==================+===============+
 | Value | Parameter Name. | Specification |
 +==============================+==================+===============+
 | TBD (experiments use 0xbabf) | enable_multipath | Section 2 |
 +------------------------------+------------------+---------------+

 Table 3: Addition to QUIC Transport Parameters Entries

 The following frame types defined in Table 4 should be added to the
 "QUIC Frame Types" registry under the "QUIC Protocol" heading.

Liu, et al. Expires 28 April 2022 [Page 22]

Internet-Draft Multipath QUIC October 2021

 +==============================+==============+===============+
 | Value | Frame Name | Specification |
 +==============================+==============+===============+
 | TBD-00 - TBD-01 (experiments | ACK_MP | Section 10.2 |
 | use 0xbaba00-0xbaba01) | | |
 +------------------------------+--------------+---------------+
 | TBD-02 (experiments use | PATH_ABANDON | Section 10.1 |
 | 0xbaba05) | | |
 +------------------------------+--------------+---------------+

 Table 4: Addition to QUIC Frame Types Entries

 The following transport error code defined in Table 5 should be added
 to the "QUIC Transport Error Codes" registry under the "QUIC
 Protocol" heading.

 +==============+=======================+============+===============+
 | Value | Code |Description | Specification |
 +==============+=======================+============+===============+
TBD	MP_PROTOCOL_VIOLATION	Multi-path	Section 11
(experiments		protocol	
use 0xba01)		violation	
 +--------------+-----------------------+------------+---------------+

 Table 5: Error Code for Multi-path QUIC

13. Security Considerations

 TBD

14. Contributors

 This document is a collaboration of authors that combines work from
 three proposals. Further contributors that were also involved one of
 the original proposals are:

 * Qing An

 * Zhenyu Li

15. Acknowledgments

 TBD

16. References

16.1. Normative References

Liu, et al. Expires 28 April 2022 [Page 23]

Internet-Draft Multipath QUIC October 2021

 [QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/info/rfc9001>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

16.2. Informative References

 [I-D.bonaventure-iccrg-schedulers]
 Bonaventure, O., Piraux, M., Coninck, Q. D., Baerts, M.,
 Paasch, C., and M. Amend, "Multipath schedulers", Work in
 Progress, Internet-Draft, draft-bonaventure-iccrg-
 schedulers-02, 25 October 2021,
 <https://www.ietf.org/archive/id/draft-bonaventure-iccrg-
 schedulers-02.txt>.

 [I-D.liu-multipath-quic]
 Liu, Y., Ma, Y., Huitema, C., An, Q., and Z. Li,
 "Multipath Extension for QUIC", Work in Progress,
 Internet-Draft, draft-liu-multipath-quic-04, 5 September
 2021, <https://www.ietf.org/archive/id/draft-liu-
 multipath-quic-04.txt>.

 [OLIA] Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.-
 Y. Le Boudec, "MPTCP is not pareto-optimal: performance
 issues and a possible solution", Proceedings of the 8th
 international conference on Emerging networking
 experiments and technologies, ACM , 2012.

Liu, et al. Expires 28 April 2022 [Page 24]

Internet-Draft Multipath QUIC October 2021

 [QUIC-Invariants]
 Thomson, M., "Version-Independent Properties of QUIC",
 RFC 8999, DOI 10.17487/RFC8999, May 2021,
 <https://www.rfc-editor.org/info/rfc8999>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
 May 2021, <https://www.rfc-editor.org/info/rfc9002>.

 [QUIC-Timestamp]
 Huitema, C., "Quic Timestamps For Measuring One-Way
 Delays", Work in Progress, Internet-Draft, draft-huitema-
 quic-ts-06, 12 September 2021,
 <https://www.ietf.org/archive/id/draft-huitema-quic-ts-
 06.txt>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <https://www.rfc-editor.org/info/rfc6356>.

Authors’ Addresses

 Yanmei Liu
 Alibaba Inc.

 Email: miaoji.lym@alibaba-inc.com

 Yunfei Ma
 Alibaba Inc.

 Email: yunfei.ma@alibaba-inc.com

 Quentin De Coninck
 UCLouvain

 Email: quentin.deconinck@uclouvain.be

 Olivier Bonaventure
 UCLouvain

 Email: olivier.bonaventure@uclouvain.be

Liu, et al. Expires 28 April 2022 [Page 25]

Internet-Draft Multipath QUIC October 2021

 Christian Huitema
 Private Octopus Inc.

 Email: huitema@huitema.net

 Mirja Kuehlewind (editor)
 Ericsson

 Email: mirja.kuehlewind@ericsson.com

Liu, et al. Expires 28 April 2022 [Page 26]

QUIC C. Smith
Internet-Draft NVIDIA
Intended status: Informational I. Swett, Ed.
Expires: 22 January 2026 Google LLC
 J. Beshay, Ed.
 S. Jaiswal, Ed.
 Meta Platforms, Inc.
 21 July 2025

 QUIC Extended Acknowledgement for Reporting Packet Receive Timestamps
 draft-smith-quic-receive-ts-03

Abstract

 This document defines an extension to the QUIC transport protocol
 which supports reporting multiple packet receive timestamps for post-
 handshake packets.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the QUIC Working Group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/quic/.

 Source for this draft and an issue tracker can be found at
 https://github.com/wcsmith/draft-quic-receive-ts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 January 2026.

Smith, et al. Expires 22 January 2026 [Page 1]

Internet-Draft QUIC Receive Timestamps July 2025

Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Motivation . 3
 3. Conventions and Definitions 3
 4. ACK Frame Wire Format . 3
 4.1. Timestamp Ranges . 4
 5. Extension Negotiation . 6
 5.1. Multiple Extensions to the ACK Frame 6
 5.2. Receive Timestamp Basis 6
 6. Discussion . 6
 6.1. Best-Effort Behavior 7
 7. Examples . 7
 8. Security Considerations 9
 9. IANA Considerations . 9
 10. References . 9
 10.1. Normative References 9
 10.2. Informative References 10
 Acknowledgments . 10
 Authors’ Addresses . 10

1. Introduction

 The QUIC Transport Protocol [RFC9000] provides a secure, multiplexed
 connection for transmitting reliable streams of application data.

 This document defines an extension to the QUIC transport protocol
 which supports reporting multiple packet receive timestamps.

Smith, et al. Expires 22 January 2026 [Page 2]

Internet-Draft QUIC Receive Timestamps July 2025

2. Motivation

 QUIC congestion control ([RFC9002]) supports sampling round-trip time
 (RTT) by measuring the time from when a packet was sent to when it is
 acknowledged. However, more precise delay signals measured via
 packet receive timestamps have the potential to improve the accuracy
 of network bandwidth measurements and the effectiveness of congestion
 control, especially for latency-critical applications such as real-
 time video conferencing or game streaming.

 Numerous existing algorithms and techniques leverage receive receive
 timestamps to improve transport performance. Examples include:

 * The WebRTC congestion control algorithm described in
 [I-D.ietf-rmcat-gcc] uses the difference between packet inter-
 departure and packet inter-arrival times as the input to its
 delay-based controller.

 * The pathChirp ([RRBNC]) technique estimates available bandwidth by
 measuring inter-arrival time of multiple packets.

 Notably, these techniques require receive timestamps for more than
 one packet per round-trip in order to best measure the network.

 Additionally, receive timestamps can provide valuable network
 telemetry, even if they are not used by the congestion controller.

3. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. ACK Frame Wire Format

 Endpoints send ACK frames in 1-RTT packets as they otherwise would,
 with 0 or more receive timestamps following the Ack Ranges and
 optional ECN Counts. Receive timestamps MUST NOT be sent in Initial
 or Handshake packets, because the peer would not know to use the
 extended wire format. ACK frames are never sent in 0-RTT packets, so
 there is no change to 0-RTT.

 Once negotiated, the ACK format is identical to RFC9000, but with an
 additional section for receive timestamps at the end:

Smith, et al. Expires 22 January 2026 [Page 3]

Internet-Draft QUIC Receive Timestamps July 2025

 ACK Frame {
 Type (i) = 0x02..0x03,
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 // Timestamp Extension, see {{ts-ranges}}
 Receive Timestamps (..)
 }

 Figure 1: ACK Frame Format

 The fields Largest Acknowledged, ACK Delay, ACK Range Count, First
 ACK Range, ACK Range and ECN Counts are the same as for ACK
 (type=0x02..0x03) frames specified in Section 19.3 of [RFC9000].

 The format of the Receive Timestamps field is shown in Figure 2.

 Receive Timestamps {
 Timestamp Range Count (i),
 Timestamp Range (..) ...
 }

 Figure 2: Receive Timestamps Fields

 Timestamp Range Count: A variable-length integer specifying the
 number of Timestamp Range fields in the frame.

 Timestamp Ranges: Ranges of receive timestamps for contiguous
 packets in descending packet number order; see Section 4.1.

4.1. Timestamp Ranges

 Each Timestamp Range describes a series of contiguous packet receive
 timestamps in descending sequential packet number (and descending
 timestamp) order. Timestamp Ranges consist of a Delta Largest
 Acknowledged indicating the largest packet number in the range,
 followed by a list of Timestamp Deltas describing the relative
 receive timestamps for each contiguous packet in the Timestamp Range
 (descending). Packets within a range are in descending packet number
 and timestamp order. Ranges are in descending timestamp order but do
 not have to be in descending packet number order.

 Timestamp Ranges are structured as shown in Figure 3.

Smith, et al. Expires 22 January 2026 [Page 4]

Internet-Draft QUIC Receive Timestamps July 2025

 Timestamp Range {
 Delta Largest Acknowledged (i),
 Timestamp Delta Count (i),
 Timestamp Delta (i) ...,
 }

 Figure 3: Timestamp Range Format

 The fields that form each Timestamp Range are:

 Delta Largest Acknowledged: A variable-length integer indicating the
 largest packet number in the Timestamp Range as a delta to
 subtract from the Largest Acknowledged in the ACK frame. For
 example, 0 indicates the range starts with the Largest
 Acknowledged.

 Timestamp Delta Count: A variable-length integer indicating the
 number of Timestamp Deltas in the current Timestamp Range.

 The sum of Timestamp Delta Counts for all Timestamp Ranges in the
 frame MUST NOT exceed max_receive_timestamps_per_ack as specified
 in Section 5.

 Timestamp Deltas: Variable-length integers encoding the receive
 timestamp for contiguous packets in the Timestamp Range in
 descending packet number order as follows:

 For the first Timestamp Delta of the first Timestamp Range in the
 frame: the value is the difference between (a) the receive
 timestamp of the largest packet in the Timestamp Range (indicated
 by Gap) and (b) the session receive_timestamp_basis (see
 Section 5.2), decoded as described below.

 For all other Timestamp Deltas: the value is the difference
 between (a) the receive timestamp specified by the previous
 Timestamp Delta and (b) the receive timestamp of the current
 packet in the Timestamp Range, decoded as described below.

 All Timestamp Delta values are decoded by mulitplying the value in
 the field by 2 to the power of the receive_timestamps_exponent
 transport parameter received by the sender of the ACK frame (see
 Section 5):

 When the receiver receives packets out-of-order, it SHOULD report
 them with other packets in a single ACK frame, starting with the most
 recently received packet regardless of the packet number order. See
 Section 7 for examples of reporting timestamps of out-of-order
 packets.

Smith, et al. Expires 22 January 2026 [Page 5]

Internet-Draft QUIC Receive Timestamps July 2025

5. Extension Negotiation

 max_receive_timestamps_per_ack (0xff0a002 temporary value for
 draft use): A variable-length integer indicating that the maximum
 number of receive timestamps the sending endpoint would like to
 receive in an ACK frame.

 Each ACK frame sent MUST NOT contain more than the peer’s maximum
 number of receive timestamps.

 receive_timestamps_exponent (0xff0a003 temporary value for draft
 use): A variable-length integer indicating the exponent to be used
 when encoding and decoding timestamp delta fields in ACK frames
 sent by the peer (see Section 4.1). If this value is absent, a
 default value of 0 is assumed (indicating microsecond precision).
 Values above 20 are invalid.

5.1. Multiple Extensions to the ACK Frame

 Multiple extensions can alter the ACK Frame or define new codepoints
 for variations on the ACK frame, such as [MP-QUIC]. Each extension
 defines how it co-exists with past extensions. If multiple
 extensions add more information to the ACK Frame, as this receive
 timestamp extension does, the additional extensions are appended at
 the end of the ACK Frame in the order of their RFC number, unless
 otherwise specified.

5.2. Receive Timestamp Basis

 Endpoints which negotiate the extension need to determine a value,
 receive_timestamp_basis, relative to which all receive timestamps for
 the session will be reported (see Section 4.1).

 The value of receive_timestamp_basis MUST be less than the smallest
 receive timestamp reported, and MUST remain constant for the entire
 duration of the session. The receive_timestamp_basis is a local
 value that is not communicated to the peer.

 Receive timestamps are reported relative to the basis, rather than in
 absolute time to avoid requiring clock synchronization between
 endpoints and to make the frame more compact.

6. Discussion

Smith, et al. Expires 22 January 2026 [Page 6]

Internet-Draft QUIC Receive Timestamps July 2025

6.1. Best-Effort Behavior

 Receive timestamps are sent on a best-effort basis. Endpoints MUST
 gracefully handle scenarios where the receiver does not communicate
 receive timestamps for acknowledged packets. Examples of such
 scenarios are:

 * A packet containing an ACK frame is lost.

 * The sender truncates the number of timestamps sent in order to (a)
 avoid sending more than max_receive_timestamps_per_ack
 (Section 5); or (b) fit the ACK frame into a packet.

7. Examples

 To illustrate the usage of the Receive Timestamps fields, consider a
 peer that sent 14 packets with numbers 87 to 100.

 Assume the receiver receives packets 87 to 91 and 96 to 100 at the
 following timestamps relative to the basis:

 +===============+====================+
 | Packet Number | Relative Timestamp |
 +===============+====================+
 | 87 | 300 |
 +---------------+--------------------+
 | 88 | 305 |
 +---------------+--------------------+
 | 89 | 310 |
 +---------------+--------------------+
 | 90 | 320 |
 +---------------+--------------------+
 | 91 | 330 |
 +---------------+--------------------+
 | 96 | 350 |
 +---------------+--------------------+
 | 97 | 355 |
 +---------------+--------------------+
 | 98 | 360 |
 +---------------+--------------------+
 | 99 | 370 |
 +---------------+--------------------+
 | 100 | 380 |
 +---------------+--------------------+

 Table 1

Smith, et al. Expires 22 January 2026 [Page 7]

Internet-Draft QUIC Receive Timestamps July 2025

 When it’s time to acknowledge these packets, the receiver will send
 an ACK frame with two ranges, as follows:

 Largest Acknowledged: 100
 ...
 Timestamp Ranges Count: 2

 Timestamp Range 1:
 Delta Largest Acknowledged: 0 // Starting at packet 100
 Timestamp Delta Count: 5
 Timestamps Deltas: 380, 10, 10, 5, 5

 Timestamp Range 2:
 Delta Largest Acknowledged: 9 // Starting at packet 91
 Timestamp Delta Count: 5
 Timestamp Deltas: 20, 10, 10, 5, 5

 After that assume that the receiver receives packets 92 to 95 out-of-
 order at the following timestamps relative to the basis:

 +===============+====================+
 | Packet Number | Relative Timestamp |
 +===============+====================+
 | 92 | 390 |
 +---------------+--------------------+
 | 93 | 392 |
 +---------------+--------------------+
 | 94 | 394 |
 +---------------+--------------------+
 | 95 | 395 |
 +---------------+--------------------+

 Table 2

 The receiver can send a new ACK frame with all of the timestamps, as
 follows:

Smith, et al. Expires 22 January 2026 [Page 8]

Internet-Draft QUIC Receive Timestamps July 2025

 Largest Acknowledged: 100
 ...
 Timestamp Ranges Count: 3

 Timestamp Range 1:
 Delta Largest Acknowledged: 5 // Starting at packet 95
 Timestamp Delta Count: 4
 Timestamps Deltas: 395, 1, 2, 2

 Timestamp Range 2:
 Delta Largest Acknowledged: 0 // Starting at packet 100
 Timestamp Delta Count: 5
 Timestamps Deltas: 10, 10, 10, 5, 5

 Timestamp Range 3:
 Delta Largest Acknowledged: 9 // Starting at packet 91
 Timestamp Delta Count: 5
 Timestamp Deltas: 20, 10, 10, 5, 5

 In this particular scenario, the receiver can also choose to report
 the first timestamp range only since the timestamps for the other two
 ranges have already been reported.

8. Security Considerations

 TODO Security

9. IANA Considerations

 This document has no IANA actions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

Smith, et al. Expires 22 January 2026 [Page 9]

Internet-Draft QUIC Receive Timestamps July 2025

10.2. Informative References

 [I-D.ietf-rmcat-gcc]
 Holmer, S., Lundin, H., Carlucci, G., De Cicco, L., and S.
 Mascolo, "A Google Congestion Control Algorithm for Real-
 Time Communication", Work in Progress, Internet-Draft,
 draft-ietf-rmcat-gcc-02, 8 July 2016,
 <https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-
 gcc-02>.

 [MP-QUIC] Liu, Y., Ma, Y., De Coninck, Q., Bonaventure, O., Huitema,
 C., and M. KÃ¼hlewind, "Multipath Extension for QUIC", Work
 in Progress, Internet-Draft, draft-ietf-quic-multipath-15,
 7 July 2025, <https://datatracker.ietf.org/doc/html/draft-
 ietf-quic-multipath-15>.

 [RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
 May 2021, <https://www.rfc-editor.org/rfc/rfc9002>.

 [RRBNC] Cottrel, R. V. R. R. B. R. N. J. and L., "pathChirp:
 Efficient Available Bandwidth Estimation for Network
 Paths", 2003.

Acknowledgments

 The editors would like to thank Ilango Purushothaman and Brandon
 Schlinker for their contributions to the design of this QUIC
 extension.

Authors’ Addresses

 Connor Smith
 NVIDIA
 Email: connorsmith.ietf@gmail.com

 Ian Swett (editor)
 Google LLC
 Email: ianswett@google.com

 Joseph Beshay (editor)
 Meta Platforms, Inc.
 Email: jbeshay@meta.com

Smith, et al. Expires 22 January 2026 [Page 10]

Internet-Draft QUIC Receive Timestamps July 2025

 Sharad Jaiswal (editor)
 Meta Platforms, Inc.
 Email: sj77@meta.com

Smith, et al. Expires 22 January 2026 [Page 11]

	draft-duke-quic-v2-02
	draft-ietf-quic-load-balancers-21
	draft-ietf-quic-qlog-h3-events-12
	draft-ietf-quic-qlog-main-schema-13
	draft-ietf-quic-qlog-quic-events-12
	draft-ietf-quic-version-negotiation-14
	draft-kuhn-quic-0rtt-bdp-11
	draft-lmbdhk-quic-multipath-00
	draft-smith-quic-receive-ts-03

