QUIC M. Duke
Internet-Draft F5 Networks, Inc.
Intended status: Standards Track 9 July 2021
Expires: 10 January 2022

QUIC Version 2
draft-duke-quic-v2-02

Abstract

This document specifies QUIC version 2, which is identical to QUIC
version 1 except for some trivial details. Its purpose is to combat
various ossification vectors and exercise the version negotiation
framework. Over time, it may also serve as a vehicle for needed
protocol design changes.

Discussion of this work is encouraged to happen on the QUIC IETF
mailing list quic@ietf.org or on the GitHub repository which contains
the draft: https://github.com/martinduke/draft-duke-quic-v2.

Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the mailing list
(quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at
https://github.com/martinduke/draft-duke-quic-v2.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It 1s inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 January 2022.

Duke Expires 10 January 2022 [Page 1]

Internet-Draft QUICv2 July 2021

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

Introduction
Conventions .
Changes from QUIC Ver31on 1
Version Negotiation Considerations
Ossification Considerations
Applicability .
Security Con51deratlons
IANA Considerations
References Coe e
9 1. Normative References
9.2. Informative References
Appendix A. Changelog .
A.l. since draft-duke-quic- v2 Ol
A.2. since draft-duke-quic-v2-00
Author’s Address

kOOO\lO‘\U‘Inb(,«)Nl—‘

<o ooyt Ul ugl oW WN

1. 1Introduction

QUIC [RFC9000] has numerous extension points, including the version
number that occupies the second through fifth octets of every long
header (see [RFC8999]). If experimental versions are rare, and QUIC
version 1 constitutes the vast majority of QUIC traffic, there is the
potential for middleboxes to ossify on the version octets always
being 0x00000001.

Furthermore, version 1 Initial packets are encrypted with keys
derived from a universally known salt, which allow observers to
inspect the contents of these packets, which include the TLS Client
Hello and Server Hello messages. Again, middleboxes may ossify on
the version 1 key derivation and packet formats.

Duke Expires 10 January 2022 [Page 2]

Internet-Draft QUICv2 July 2021

Finally [QUIC-VN] provides two mechanisms for endpoints to negotiate
the QUIC version to use. The "incompatible" version negotiation
method can support switching from any initial QUIC version to any
other version with full generality, at the cost of an additional
round-trip at the start of the connection. "Compatible" version
negotiation eliminates the round-trip penalty but levies some
restrictions on how much the two versions can differ semantically.

QUIC version 2 is meant to mitigate ossification concerns and
exercise the version negotiation mechanisms. The only change is a
tweak to the inputs of some crypto derivation functions to enforce
full key separation. Any endpoint that supports two versions needs
to implement version negotiation to protect against downgrade
attacks.

This document may, over time, also serve as a vehicle for other
needed changes to QUIC version 1.

[I-D.duke-quic-version-aliasing] is a more robust, but much more
complicated, proposal to address these ossification problems. By
design, it requires incompatible version negotiation. QUICv2 enables
exercise of compatible version negotiation mechanism.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC21109].

3. Changes from QUIC Version 1

QUIC version 2 endpoints MUST implement the QUIC version 1
specification as described in [RFC9000], [RFC9001], and [RFC9002],
with the following changes:

* The version field of long headers is TBD. Note: Unless this
document is published as an RFC, implementations should use the
provisional value 0xff010001, which might change with each edition
of this document.

* The salt used to derive Initial keys in Sec 5.2 of [RFC9001]
changes to

initial_salt = 0xa707c203a59047184ald62ca570406ea77ae3e5d3
* The labels used in [RFC9001] to derive packet protection keys (Sec

5.1), header protection keys (Sec 5.4), Retry Integrity Tag keys
(Sec 5.8), and key updates (Sec 6.1) change from "quic key" to

Duke Expires 10 January 2022 [Page 3]

Internet-Draft QUICv2 July 2021

"quicv2 key", from "quic iv" to "quicv2 iv", from "quic hp" to
"quicv2 hp", and from "quic ku" to "quicv2 ku," to meet the
guidance for new versions in Section 9.6 of that document.

* The key and nonce used for the Retry Integrity Tag (Sec 5.8 of
[RFC9001]) change to:

secret = 0x3425c20cf88779df2ff71e8abfa78249891e763bbed2£f13c048343d348c060e2
key = 0xba858dc7b43de5dbf87617ff4ab253db
nonce = 0x141b99c239b03e785d6a2e9f

4. Version Negotiation Considerations

QUIC version 2 endpoints SHOULD also support QUIC version 1. Any
QUIC endpoint that supports multiple versions MUST fully implement
[QUIC-VN] to prevent version downgrade attacks.

Note that version 2 meets that document’s definition of a compatible
version with version 1. Therefore, v2-capable servers MUST use
compatible version negotiation unless they do not support version 1.

As version 1 support is more likely than version 2 support, a client
SHOULD use QUIC version 1 for its original version unless it has out-
of-band knowledge that the server supports version 2.

5. Ossification Considerations

QUIC version 2 provides protection against some forms of
ossification. Devices that assume that all long headers will contain
encode version 1, or that the version 1 Initial key derivation
formula will remain version-invariant, will not correctly process
version 2 packets.

However, many middleboxes such as firewalls focus on the first packet
in a connection, which will often remain in the version 1 format due
to the considerations above.

Clients interested in combating firewall ossification can initiate a
connection using version 2 if they are either reasonably certain the
server supports it, or are willing to suffer a round-trip penalty if
they are incorrect.

Duke Expires 10 January 2022 [Page 4]

Internet-Draft QUICv2 July 2021

6. Applicability

This version of QUIC provides no change from QUIC version 1 relating

to the capabilities available to applications. Therefore, all
Application Layer Protocol Negotiation (ALPN) ([RFC7301]) codepoints
specified to operate over QUICv]l can also operate over this version
of QUIC.

7. Security Considerations

QUIC version 2 introduces no changes to the security or privacy
properties of QUIC version 1.

The mandatory version negotiation mechanism guards against downgrade
attacks, but downgrades have no security implications, as the version
properties are identical.

8. IANA Considerations

This document requests that IANA add the following entry to the QUIC
version registry:

Value: TBD
Status: permanent
Specification: This Document
Change Controller: IETF
Contact: QUIC WG
9. References
9.1. Normative References
[QUIC-VN] Schinazi, D. and E. Rescorla, "Compatible Version
Negotiation for QUIC", Work in Progress, Internet-Draft,
draft-ietf-quic-version—-negotiation-03, 4 February 2021,
<https://www.ietf.org/archive/id/draft-ietf-quic-version-—
negotiation-03.txt>.
[REFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,

DOI 10.17487/RFC9000, May 2021,
<https://www.rfc—editor.org/info/rfc9000>.

Duke Expires 10 January 2022 [Page 5]

Internet-Draft QUICv2 July 2021

[RFC9001] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
<https://www.rfc-editor.org/info/rfc9001>.

[RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
May 2021, <https://www.rfc-editor.org/info/rfc9002>.

9.2. Informative References

[I-D.duke—-quic-version—-aliasing]

Duke, M., "QUIC Version Aliasing", Work in Progress,
Internet-Draft, draft-duke-quic-version-aliasing-04, 30
October 2020, <https://www.ietf.org/archive/id/draft-duke-
quic-version-aliasing-04.txt>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
"Transport Layer Security (TLS) Application-Layer Protocol
Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
July 2014, <https://www.rfc-editor.org/info/rfc7301>.

[RFC8999] Thomson, M., "Version-Independent Properties of QUIC",
RFC 8999, DOI 10.17487/RFC8999, May 2021,
<https://www.rfc-editor.org/info/rfc8999>.

Appendix A. Changelog

RFC Editor’s Note: Please remove this section prior to
publication of a final version of this document.

A.l1. since draft-duke-quic-v2-01
* Made the final version number TBD.
* Added ALPN considerations
A.2. since draft-duke-quic-v2-00
* Added provisional versions for interop
* Change the vl Retry Tag secret

* Change labels to create full key separation

Duke Expires 10 January 2022 [Page 6]

Internet-Draft QUICv2 July 2021

Author’s Address

Martin Duke
F5 Networks, Inc.

Email: martin.h.duke@gmail.com

Duke Expires 10 January 2022 [Page 7]

QUIC M. Duke

Internet-Draft Google
Intended status: Standards Track N. Banks
Expires: 28 February 2026 Microsoft

C. Huitema
Private Octopus Inc.
27 August 2025

QUIC-LB: Generating Routable QUIC Connection IDs
draft-ietf-quic-load-balancers-21

Abstract

QUIC address migration allows clients to change their IP address
while maintaining connection state. To reduce the ability of an
observer to link two IP addresses, clients and servers use new
connection IDs when they communicate via different client addresses.
This poses a problem for traditional "layer-4" load balancers that
route packets via the IP address and port 4-tuple. This
specification provides a standardized means of securely encoding
routing information in the server’s connection IDs so that a properly
configured load balancer can route packets with migrated addresses
correctly. As it proposes a structured connection ID format, it also
provides a means of connection IDs self-encoding their length to aid
some hardware offloads.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 February 2026.

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the
document authors. All rights reserved.

Duke, et al. Expires 28 February 2026 [Page 1]

Internet-Draft QUIC-1LB August 2025

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction 4
1.1. Terminology 5
1.2. Notation 5

2. Overview 5

3. First CID octet 6
3.1. Config Rotation . 6
3.2. Configuration Failover 7
3.3. Length Self-Description 8
3.4. Format 8

4. Unroutable Connectlon IDs 8
4.1. Definition . 8
4.2. Load Balancer Forwardlng 9
4.3. Fallback Algorithms 10

4.3. Baseline Fallback Algorlthm 10
4.3.2. Advanced Fallback Algorithm 11

5. Server ID Encoding in Connection IDs 11
5.1. Server ID Allocation 12
5.2. CID format 12
5.3. Configuration Agent ACthDS 13
5.4. Server Actions e e e e e e e e 13

5.4.1. Special Case: Single Pass Encryption 14
5.4.2. General Case: Four-Pass Encryption 14
5.5. Load Balancer Actions . . 19
5.5.1. Special Case: Single Pass Encryptlon 19
5.5.2. General Case: Four-Pass Encryption 19

6. Per-connection state 20

7. Additional Use Cases 21
7.1. Load balancer chains . 21
7.2. Server Process Demultlplex1ng 22
7.3. Moving connections between servers 22

8. Version Invariance of QUIC-LB 23

9. Security Considerations . 24
9.1. Attackers not between the load balancer and server 25
9.2 Attackers between the load balancer and server 25
9.3 Multiple Configuration IDs 25
9.4 Limited configuration scope 25
9.5 Stateless Reset Oracle 26

Duke, et al. Expires 28 February 2026 [Page 2]

Internet-Draft QUIC-LB

10.
11.
1
1

O O O

6
7.
8

Connection ID Entropy

Distinguishing Attacks .
Early deletion of load balancer connectlon state

IANA Considerations
References

1.1.
1.2.

Normative References
Informative References

Appendix A. QUIC-LB YANG Model
A.1l. .
Appendix B. Load Balancer Test Vectors

B.1l. Unencrypted CIDs
B.2. Encrypted CIDs
Appendix C. Interoperablllty w1th DTLS over UDP
C.l1. DTLS 1.0 and 1.2
C.2. DTLS 1.3
C.3. Future Versions of DTLS

Tree Diagram

Appendix D. Acknowledgments
Appendix E. Change Log

E.

E.

Duke,

[s I e O e I O e Y e O O Y e 3 I s I Y I I x|

1.

O Jo 0 W

.9.

et al.

.10.
11,
.12,
.13.
.14.
.15.
.16.
17,
.18.
.19.
.20.
21,
22,
.23.
.24,
.25.
.26.
27.
28.
Authors’

since draft-ietf-quic- load balancers 20
since draft-ietf-quic-load-balancers-19
since draft-ietf-quic-load-balancers-18
since draft-ietf-quic-load-balancers-17
since draft-ietf-quic-load-balancers-16
since draft-ietf-quic-load-balancers-15
since draft-ietf-quic-load-balancers-14
since draft-ietf-quic-load-balancers-13
since draft-ietf-quic-load-balancers-12
since draft-ietf-quic-load-balancers-11
since draft-ietf-quic-load-balancers-10
since draft-ietf-quic-load-balancers-09
since draft-ietf-quic-load-balancers-08
since draft-ietf-quic-load-balancers-07
since draft-ietf-quic-load-balancers-06
since draft-ietf-quic-load-balancers-05
since draft-ietf-quic-load-balancers-04
since-draft-ietf-quic-load-balancers-03
since-draft-ietf-quic-load-balancers-02
since-draft-ietf-quic-load-balancers-01
since-draft-ietf-quic-load-balancers-00
Since draft-duke—-quic-load-balancers-06
Since draft-duke—-quic-load-balancers-05
Since draft-duke-quic-load-balancers-04
Since draft-duke-quic-load-balancers-03
Since draft-duke-quic-load-balancers-02
Since draft-duke—-quic-load-balancers-01
Since draft-duke—-quic—-load-balancers-00
Addresses

Expires 28 February 2026

August 2025

27
28
28
29
29
29
29
30
36
37
37
37
38
38
39
39
39
40
40
40
40
40
40
40
40
41
41
41
41
41
41
42
42
42
42
43
43
43
43
43
43
44
44
44
44
44
44

[Page 3]

Internet-Draft QUIC-1LB August 2025

1.

Introduction

QUIC packets [RFC9000] usually contain a connection ID to allow
endpoints to associate packets with different address/port 4-tuples
to the same connection context. This feature makes connections
robust in the event of NAT rebinding. QUIC endpoints usually
designate the connection ID which peers use to address packets.
Server—generated connection IDs create a potential need for out-of-
band communication to support QUIC.

QUIC allows servers (or load balancers) to encode useful routing

information for load balancers in connection IDs. It also encourages
servers, 1n packets protected by cryptography, to provide additional
connection IDs to the client. This allows clients that know they are

going to change IP address or port to use a separate connection ID on
the new path, thus reducing linkability as clients move through the
world.

There is a tension between the requirements to provide routing
information and mitigate linkability. Ultimately, because new
connection IDs are in protected packets, they must be generated at
the server if the load balancer does not have access to the
connection keys. However, it is the load balancer that has the
context necessary to generate a connection ID that encodes useful
routing information. In the absence of any shared state between load
balancer and server, the load balancer must maintain a relatively
expensive table of server—-generated connection IDs, and will not
route packets correctly if they use a connection ID that was
originally communicated in a protected NEW_CONNECTION_ID frame.

This specification provides common algorithms for encoding the server
mapping in a connection ID given some shared parameters. The mapping
is generally only discoverable by observers that have the parameters,
preserving unlinkability as much as possible.

As this document proposes a structured QUIC Connection ID, it also
proposes a system for self-encoding connection ID length in all
packets, so that crypto offload can efficiently obtain key
information.

While this document describes a small set of configuration parameters
to make the server mapping intelligible, the means of distributing
these parameters between load balancers, servers, and other trusted
intermediaries is out of its scope. There are numerous well-known
infrastructures for distribution of configuration.

Duke, et al. Expires 28 February 2026 [Page 4]

Internet-Draft QUIC-1LB August 2025

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC21109].

In this document, these words will appear with that interpretation
only when in ALL CAPS. Lower case uses of these words are not to be
interpreted as carrying significance described in RFC 2119.

In this document, "client" and "server" refer to the endpoints of a
QUIC connection unless otherwise indicated. A "load balancer" is an
intermediary for that connection that does not possess QUIC
connection keys, but it may rewrite IP addresses or conduct other IP
or UDP processing. A "configuration agent" is the entity that
determines the QUIC-LB configuration parameters for the network and
leverages some system to distribute that configuration.

Note that stateful load balancers that act as proxies, by terminating
a QUIC connection with the client and then retrieving data from the
server using QUIC or another protocol, are treated as a server with
respect to this specification.

For brevity, "Connection ID" will often be abbreviated as "CID".
1.2. Notation

All wire formats will be depicted using the notation defined in
Section 1.3 of [RFC9000].

2. Overview

In QUIC-LB, load balancers do not generate individual connection IDs
for servers. Instead, they communicate the parameters of an
algorithm to generate routable connection IDs.

The algorithms differ in the complexity of configuration at both load
balancer and server. Increasing complexity improves obfuscation of
the server mapping.

This specificationn describes three participants: the configuration
agent, the load balancer, and the server. For any given QUIC-LB
configuration that enables connection-ID-aware load balancing, there
must be a choice of (1) routing algorithm, (2) server ID allocation
strategy, and (3) algorithm parameters.

Duke, et al. Expires 28 February 2026 [Page 5]

Internet-Draft QUIC-1LB August 2025

Fundamentally, servers generate connection IDs that encode their
server ID. Load balancers decode the server ID from the CID in
incoming packets to route to the correct server.

[RFC8999] specifies that endpoints generate their own connection IDs,
implying that all QUIC versions will have a mechanism to communicate
their connection IDs to the peer. In QUIC version 1 and 2, the
server does so using the Source Connection ID field of its long
header packets for the first connection ID, and NEW_CONNECTION_ID
frames for subsequent CIDs.

There are situations where a server pool might be operating two or
more routing algorithms or parameter sets simultaneously. The load
balancer uses the first three bits of the connection ID to multiplex
incoming Destination Connection IDs (DCIDs) over these schemes (see
Section 3.1).

3. First CID octet

The Connection ID construction schemes defined in this document
reserve the first octet of a CID for two special purposes: one
mandatory (config rotation) and one optional (length self-
description).

Subsequent sections of this document refer to the contents of this
octet as the "first octet.”

3.1. Config Rotation

The first three bits of any connection ID MUST encode an identifier
for the configuration that the connection ID uses. This enables
incremental deployment of new QUIC-LB settings (e.g., keys). A
configuration MUST NOT use the reserved identifier 0Oblll (see
Section 3.2 below).

When new configuration is distributed to servers, there will be a
transition period when connection IDs reflecting old and new
configuration coexist in the network. The rotation bits allow load
balancers to apply the correct routing algorithm and parameters to
incoming packets.

Configuration Agents SHOULD deliver new configurations to load

balancers before doing so to servers, so that load balancers are
ready to process CIDs using the new parameters when they arrive.

Duke, et al. Expires 28 February 2026 [Page 6]

Internet-Draft QUIC-1LB August 2025

A Configuration Agent SHOULD NOT use a codepoint to represent a new
configuration until it takes precautions to make sure that all
connections using CIDs with an old configuration at that codepoint
have closed or transitioned.

Servers MUST NOT generate new connection IDs using an old
configuration after receiving a new one from the configuration agent.
Servers MUST use that QUIC version’s methods to update the client
with CIDs (e.g., NEW_CONNECTION_ID frames) using the new
configuration and retire CIDs using the old configuration.

It also possible to use these bits for more long-lived distinction of
different configurations, but this has privacy implications (see
Section 9.3).

3.2. Configuration Failover

In some deployments, an infrastructure will not receive traffic
unless all servers have received a configuration, and load balancers
have a superset of all configurations that are active in the server
pool, thus guaranteeing that any CID generated by a server is

decodable by any load balancer. Servers and load balancers deployed
under all of these assumptions can ignore the provisions in this
subsection.

Load balancers treat connection IDs for which they have no
corresponding config ID as unroutable (see Section 4). If they have
no configuration at all, then all connection IDs are unroutable.

Servers with no active configuration MUST issue connection IDs with
the reserved value of the three most significant bits set to 0blll to
signify the connection ID is unroutable. These connection IDs MUST
self-encode their length (see Section 3.3).

Servers with no active configuration SHOULD provide the client
exactly one CID over the life of the connection. In QUIC versions 1
and 2, therefore, servers SHOULD NOT send any NEW_CONNECTION_ID
frames, instead delivering a single CID via the Source Connection ID
of long headers it sends.

Servers with no active configuration SHOULD send the
"disable_active_migration" transport parameter, or a similar message
in future QUIC versions.

When using codepoint 0bl1ll, all bytes but the first SHOULD have no
larger of a chance of collision as random bytes. The connection ID
SHOULD be of at least length 8 to provide 7 bytes of entropy after
the first octet with a low chance of collision.

Duke, et al. Expires 28 February 2026 [Page 7]

Internet-Draft QUIC-1LB August 2025

3.3. Length Self-Description

Local hardware cryptographic offload devices may accelerate QUIC
servers by receiving keys from the QUIC implementation indexed to the
connection ID. However, on physical devices operating multiple QUIC
servers, it might be impractical to efficiently lookup keys if the
connection ID varies in length and does not self-encode its own
length.

Note that this is a function of particular server devices and is
irrelevant to load balancers. As such, load balancers MAY omit this
from their configuration. However, the remaining 5 bits in the first
octet of the Connection ID are reserved to express the length of the
following connection ID, not including the first octet.

A server not using this functionality SHOULD choose the five bits so
as to have no observable relationship to previous connection IDs
issued for that connection.
3.4. Format

First Octet {

Config Rotation (3),

CID Len or Random Bits (5),

Figure 1: First Octet Format

The first octet has the following fields:

Config Rotation: Indicates the configuration used to interpret the
CID.

CID Len or Random Bits: Length Self-Description (if applicable), or
random bits otherwise. Encodes the length of the Connection ID
following the First Octet.

4. Unroutable Connection IDs

4.1. Definition
QUIC-1LB servers with a valid configuration will generate Connection
IDs that are decodable to extract a server ID in accordance with a

specified algorithm and parameters. However, QUIC often uses client-
generated Connection IDs prior to receiving a packet from the server.

Duke, et al. Expires 28 February 2026 [Page 8]

Internet-Draft QUIC-1LB August 2025

Furthermore, servers without a valid configuration, or a
configuration not present at the load balancer, will also generate
connection IDs that are not decodable, and these CIDs are likely to
persist for the duration of the connection.

These CIDs might not conform to the expectations of the routing
algorithm and therefore not be routable by the load balancer. Those
that are not routable are "unroutable DCIDs" and receive similar
treatment regardless of why they’re unroutable:

* The config rotation bits (Section 3.1) do not correspond to an
active configuration. Note: a packet with a DCID with config ID
codepoint 0blll (see Section 3.2) is always unroutable.

* 1If the packet header encodes the DCID length, the DCID is not long
enough for the decoder to process.

* The extracted server mapping does not correspond to an active
server.

If the load balancer has knowledge that all servers in the pool are
encoding CID length in the first octet (see Section 3.3), it MAY
perform additional checks based on that self-encoded length:

* In a long header, verify that the self-encoded length is
consistent with the CID length field in the header (i.e. the self-

encoded length is one less)

* Verify that the self-encoded length is consistent with the QUIC
version, if known.

* Verify that the self-encoded length is large enough for the
decoder to process using the indicated config ID.

DCIDs that do not meet any of these criteria are routable.

4.2. Load Balancer Forwarding
Load balancers execute the following steps in order until one results
in a routing decision. The steps refer to state that some load
balancers will maintain, depending on the deployment’s underlying

assumptions. See Section 4.3 for further discussion of this state.

1. If the packet contains a routable CID, route the packet
accordingly.

Duke, et al. Expires 28 February 2026 [Page 9]

Internet-Draft QUIC-1LB August 2025

2. If the packet has a long header and matches an entry in a table
of routing decisions indexed by a concatenation of 4-tuple and
Source CID, route the packet accordingly.

3. If the packet matches an entry in a table of routing decisions by
destination CID, route the packet accordingly.

4. TIf packet matches an entry in a table of routing decisions by
4-tuple, route the packet accordingly.

5. Use the fallback algorithm to make a routing decision and, if
applicable, record the results in the tables indexed by 4-tuple
and/or CID. In some cases, described below, the load balancer
might buffer the packet to defer a decision.

4.3. Fallback Algorithms

There are conditions described above where a load balancer routes a
packet using a "fallback algorithm." A standardized algorithm design
is not necessary for interoperability, so load balancers can
implement any algorithm that meets the relevant requirements below.

There is a baseline case that has relatively simple requirements of
the chosen fallback algorithm, and an advanced case with more
capabilities and more complex requirements.

4.3.1. Baseline Fallback Algorithm

All load balancers MUST implement a baseline fallback algorithm that
takes only the 4-tuple as an input and outputs a routing decision.

If it is impossible for the server to generate CIDs that the load
balancer cannot decode (see Section 3.2), there are no further
requirements in this subsection.

Otherwise, the load balancer SHOULD maintain a table of 4-tuples that
carried unroutable DCIDs and the resulting routing decision.

Provided the table does not overflow, and the load balancer does not
lose state, this allows connections to survive when the server pool
changes, which would sometimes change the output of the fallback
algorithm.

The load balancer MAY maintain a table of observed unroutable DCIDs
and the resulting routing decision. Provided the table does not

overflow, these connections will be robust to NAT rebinding.

Load balancers SHOULD maintain per-flow timers to periodically purge
state in the tables described above.

Duke, et al. Expires 28 February 2026 [Page 10]

Internet-Draft QUIC-1LB August 2025

4.3.2. Advanced Fallback Algorithm

Some architectures might require a load balancer to choose a server
pool based on deep packet inspection of a client packet. For
example, it may use the TLS 1.3 Server Name Indication (SNI)
([RFC6066]) field. The advanced fallback algorithm enables this
capability but levies several additional requirements to make
consistent routing decisions.

For packets not known to belong to a QUIC version the load balancer
can parse, load balancers MUST use the baseline fallback algorithm if
the DCID is unroutable.

For known QUIC versions, the fallback algorithm MAY parse packets and
use that information to make a routing decision.

If so, it MUST have the ability to buffer packets with unroutable
DCIDs to await further packets that allow it to make a routing
decision, as the fields of interest can be an arbitary number of
packets into the connection.

4-tuple routing is not sufficient for this use case, because a client
can use the same 4-tuple for two connections that should be routed
differently (e.g. because they target different SNIs), as long as the
packet contains a source connection ID of nonzero length.

Therefore, the load balancer SHOULD maintain two tables that map
different values to a routing decision:

* a table indexed by a concatenation of the 4-tuple and source CID,
which might be zero-length, to route subsequent long header
packets that do not contain the server—-generated connection ID;

* a table indexed by destination CID, if and only if it is possible
for the server to generate unroutable CIDs. This table can be

shared with the one in use for the baseline fallback algorithm.

If either table overflows, or if the load balancer loses state, it is
likely the load balancer will misroute packets.

Load balancers SHOULD maintain per-flow timers to periodically purge
state in the tables described above.

5. Server ID Encoding in Connection IDs

Duke, et al. Expires 28 February 2026 [Page 11]

Internet-Draft QUIC-1LB August 2025

5.1. Server ID Allocation

Load Balancer configurations include a mapping of server IDs to
forwarding addresses. The corresponding server configurations
contain one or more unique server IDs.

The configuration agent chooses a server ID length for each
configuration that MUST be at least one octet.

A QUIC-ILB configuration MAY significantly over—-provision the server
ID space (i.e., provide far more codepoints than there are servers)
to increase the probability that a randomly generated Destination
Connection ID is unroutable.

The configuration agent SHOULD provide a means for servers to express
the number of server IDs it can usefully employ, because a single
routing address actually corresponds to multiple server entities (see
Section 7.1).

Conceptually, each configuration has its own set of server ID
allocations, though two static configurations with identical server
ID lengths MAY use a common allocation between them.

A server encodes one of its assigned server IDs in any CID it
generates using the relevant configuration.

5.2. CID format
All connection IDs use the following format:

QUIC-LB Connection ID {

First Octet (8),

Plaintext Block (40..152),
}
Plaintext Block {

Server ID (8..),

Nonce (32..),

Figure 2: CID Format

The First Octet field serves one or two purposes, as defined in
Section 3.

The Server ID field encodes the information necessary for the load

balancer to route a packet with that connection ID. It is often
encrypted.

Duke, et al. Expires 28 February 2026 [Page 12]

Internet-Draft QUIC-1LB August 2025

The server uses the Nonce field to make sure that each connection ID
it generates is unique, even though they all use the same Server ID.

5.3. Configuration Agent Actions

The configuration agent assigns a server ID to every server in its
pool in accordance with Section 5.1, and determines a server ID
length (in octets) sufficiently large to encode all server IDs,
including potential future servers.

Each configuration specifies the length of the Server ID and Nonce
fields, with limits defined for each algorithm.

Optionally, it also defines a l6-octet key. Note that failure to
define a key means that observers can determine the assigned server
of any connection, significantly increasing the linkability of QUIC
address migration.

The nonce length MUST be at least 4 octets. The server ID length
MUST be at least 1 octet.

As QUIC version 1 limits connection IDs to 20 octets, the server ID
and nonce lengths MUST sum to 19 octets or less.

5.4. Server Actions

The server writes the first octet and its server ID into their
respective fields.

If there is no key in the configuration, the server MUST fill the
Nonce field with bytes that have no observable relationship to the
field in previously issued connection IDs. If there is a key, the
server fills the nonce field with a nonce of its choosing. See
Section 9.6 for details.

The server MAY append additional bytes to the connection ID, up to

the limit specified in that version of QUIC, for its own use. These
bytes MUST NOT provide observers with any information that could link
two connection IDs to the same connection, client, or server. In

particular, all servers using a configuration MUST consistently add
the same length to each connection ID, to preserve the linkability
objectives of QUIC-LB. Any additional bytes SHOULD NOT provide any
observable correlation to previous connection IDs for that connection
(e.g., the bytes can be chosen at random).

If there is no key in the configuration, the Connection ID is

complete. Otherwise, there are further steps, as described in the
two following subsections.

Duke, et al. Expires 28 February 2026 [Page 13]

Internet-Draft QUIC-1LB August 2025

Encryption below uses the AES-128-ECB cipher [NIST-AES-ECB]. Future
standards could add new algorithms that use other ciphers to provide
cryptographic agility in accordance with [RFC7696]. QUIC-LB

implementations SHOULD be extensible to support new algorithms.
5.4.1. Special Case: Single Pass Encryption

When the nonce length and server ID length sum to exactly 16 octets,
the server MUST use a single-pass encryption algorithm. All
connection ID octets except the first form an AES-ECB block. This
block is encrypted once, and the result forms the second through
seventeenth most significant bytes of the connection ID.

5.4.2. General Case: Four-Pass Encryption

Any other field length requires four passes for encryption and at
least three for decryption. To understand this algorithm, it is
useful to define four functions that minimize the amount of bit-
shifting necessary in the event that there are an odd number of
octets.

When configured with both a key, and a nonce length and server ID
length that sum to any number other than 16, the server MUST follow
the algorith below to encrypt the connection ID.

5.4.2.1. Overview

The 4-pass algorithm is a four-round Feistel Network with the round
function being AES-ECB. Most modern applications of Feistel Networks
have more than four rounds. The implications of this choice, which
is meant to limit the per-packet compute overhead at load balancers,
are discussed in Section 9.7.

The server concatenates the server ID and nonce into a single field,
which is then split into equal halves. In successive passes, one of
these halves is expanded into a 16B plaintext, encrypted with AES-
ECB, and the result XORed with the other half. The diagram below
shows the conceptual processing of a plaintext server ID and nonce
into a connection ID. 'FO’ stands for ’'First Octet’.

Duke, et al. Expires 28 February 2026 [Page 14]

Internet-Draft QUIC-LB
F———— Fem e +
FO Server ID Nonce
F——t +——— Fo—— +
|
v
= = +
| left_0 | right_0 |
i Fmm +—=+
| |
| |
I . \%
Fm———— >| AES-ECB +-——————— >a\212\225
| e ' |
v immmme | right_1
a\212\225<-—————————— + AES-ECB |<-———-— +
4 4
———————— |
| left 1 .—-——————- . \%
Fm———— >| AES-ECB +-——————— >a\212\225
| e ' |
12 et . |
a\212\225<-—————————— + AES-ECB |<-———-— +
| s ' |
| |
\Y% \Y%
Fom Fom +
| left_2 right_2 |
F———— Fo—— R Fm— +
| |
v v v
- - +
| FO | Ciphertext
Fm——— et +
5.4.2.2. Useful functions

Two functions are useful to define:

August 2025

The expand(length, pass, input_bytes) function concatenates three
arguments and outputs 16 zero—-padded octets.

The output of expand is as follows:

ExpandResult {

Duke,

input_bytes(...),
ZeroPad(...),
length (8),
pass(8)
et al. Expires 28 February 2026

[Page 15]

Internet-Draft QUIC-1LB August 2025

in which:

* ’input_bytes’ is drawn from one half of the plaintext. It forms
the N most significant octets of the output, where N is half the
"length’ argument, rounded up, and thus a number between 3 and 10,
inclusive.

* 'Zeropad’ is a set of 14-N octets set to zero.

* 'length’ is an 8-bit integer that reports the sum of the
configured nonce length and server id length in octets, and forms
the fifteenth octet of the output. The ’length’ argument MUST NOT
exceed 19 and MUST NOT be less than 5.

* ’pass’ i1s an 8-bit integer that reports the ’'pass’ argument of the
algorithm, and forms the sixteenth (least significant) octet of
the output. It guarantees that the cryptographic input of every
pass of the algorithm is unique.

For example,

expand (0x06, 0x02, Oxaaba3c) = 0xaaba3c00000000000000000000000602

Similarly, truncate(input, n) returns the first n octets of ’input’.

truncate (0x2094842ca49256198c2deaalbab53caal, 4) = 0x2094842c

Let 'half_len’ be equal to ’'plaintext_len’ / 2, rounded up.

5.4.2.3. Algorithm Description

The example at the end of this section helps to clarify the steps
described below.

1. The server concatenates the server ID and nonce to create
plaintext_CID. The length of the result in octets is
plaintext_len.

2. The server splits plaintext_CID into components left_0 and
right_0 of equal length half_len. If plaintext_len is odd,
right_0 clears its first four bits, and left_0 clears its last
four bits. For example, 0x7040b81b55ccf3 would split into a
left_0 of 0x7040b810 and right_0 of 0x0b55ccf3.

3. Encrypt the result of expand(plaintext_len, 1, left_0) using an
AES-ECB-128 cipher to obtain a ciphertext.

Duke, et al. Expires 28 February 2026 [Page 16]

Internet-Draft QUIC-1LB August 2025

10.

11.

12.

Duke,

XOR the first half_len octets of the ciphertext with right_0 to
form right_1. Steps 3 and 4 can be summarized as

result = AES_ECB(key, expand(plaintext_len, 1, left_0))
right_1 = XOR(right_0, truncate(result, half_len))

If the plaintext_len is odd, clear the first four bits of
right_1.

Repeat steps 3 and 4, but use them to compute left_1 by expanding
and encrypting right_1 with pass = 2, and XOR the results with
left_0.

result = AES_ECB (key, expand(plaintext_len, 2, right_1))
left_1 XOR(left_0, truncate(result, half_len))

If the plaintext_len is odd, clear the last four bits of left_1.

Repeat steps 3 and 4, but use them to compute right_2 by
expanding and encrypting left_1 with pass = 3, and XOR the
results with right_1.

result = AES_ECB(key, expand(plaintext_len, 3, left_1))
right_2 = XOR(right_1, truncate(result, half_len))

If the plaintext_len is odd, clear the first four bits of
right_2.

Repeat steps 3 and 4, but use them to compute left_2 by expanding
and encrypting right_2 with pass = 4, and XOR the results with
left_1.

result = AES_ECB(key, expand(plaintext_len, 4, right_2))
left_2 = XOR(left_1, truncate (result, half_len))

If the plaintext_len is odd, clear the last four bits of left_2.

The server concatenates left_2 with right_2 to form the
ciphertext CID, which it appends to the first octet. If
plaintext_len is odd, the four least significant bits of left_2
and four most significant bits of right_2, which are all zero,
are stripped off before concatenation to make the resulting
ciphertext the same length as the original plaintext.

et al. Expires 28 February 2026 [Page 17]

Internet-Draft QUIC-1LB August 2025

5.4.2.4. Encryption Example

The following example executes the steps for the provided inputs.
Note that the plaintext is of odd octet length, so the middle octet
will be split evenly left_0 and right_0.

server_id = 0x31441la
nonce = 0x9c69c275
key = 0xfdf726a9893ec05c0632d3956680baf0

// step 1
plaintext CID = 0x31441a9c69c275
plaintext_len = 7

// step 2

hash_len = 4

left_0 = 0x31441a90
right_0 = 0x0c69c275

// step 3
aes_input = 0x31441a90000000000000000000000701
aes_output = 0xa255dd8cdacf01948d3a848c3c7fee23

NN

// step
right_1

0x0c69c275 ~ 0xa255dd8c = 0Oxae3clff9

// step 5 (clear bits)
right_1 = 0x0e3clff9

// step 6

aes_input = 0x0e3clf£9000000000000000000000702
aes_output = 0xe5e452cb9%elbedb0b2b£f830506bf4dcde
left_1 = 0x31441a90 ~ Oxeb5ed52cb = 0xd4a0485b

// step 7 (clear bits)
left_1 = 0xd4a04850

// step 8

aes_input = 0xd4a04850000000000000000000000703

aes_output = 0xb7821ab3024fed0913b6a04d18e3216f
right_2 = 0x0e3clff9 ~ 0xb7821lab3 = 0xb9%bel054a

// step 9 (clear bits)
right_2 0x09be054a

// step 10
aes_input = 0x09be054a000000000000000000000704
aes_output = 0xb334357cfdf8le3fafel80154eaf7378

Duke, et al. Expires 28 February 2026 [Page 18]

Internet-Draft QUIC-1LB August 2025

left_2 = 0xd4a04850 ~ 0xb3e4357c = 0x67947d2c

// step 11 (clear bits)
left_2 = 0x67947d20

// step 12
cid = first_octet || left_2 || right_2 = 0x0767947d29be054a
5.5. Load Balancer Actions

On each incoming packet, the load balancer extracts consecutive
octets, beginning with the second octet. TIf there is no key, the
first octets correspond to the server ID.

If there is a key, the load balancer takes one of two actions:
5.5.1. Special Case: Single Pass Encryption

If server ID length and nonce length sum to exactly 16 octets, they

form a ciphertext block. The load balancer decrypts the block using

the AES-ECB key and extracts the server ID from the most significant

bytes of the resulting plaintext.

5.5.2. General Case: Four-Pass Encryption

First, split the ciphertext CID (excluding the first octet) into its
equal- length components left_2 and right_2. Then follow the process

below:
result = AES_ECB(key, expand(plaintext_len, 4, right_2))
left_1 = XOR(left_2, truncate(result, half_len))
if (plaintext_len_is_odd()) clear_ last_bits(left_1, 4)

result = AES_ECB(key, expand(plaintext_len, 3, left_1))
right_1 = XOR(right_2, truncate(result, half_len))
if (plaintext_len_is_odd()) clear_first_bits(left_1, 4)

result = AES_ECB (key, expand(plaintext_len, 2, right_1))
left_0 = XOR(left_1, truncate(result, half_len))
if (plaintext_len_is_odd()) clear_last_bits(left_0, 4)

As the load balancer has no need for the nonce, it can conclude after
3 passes as long as the server ID is entirely contained in left_0
(i.e., the nonce is at least as large as the server ID). If the
server ID is longer, a fourth pass is necessary:

Duke, et al. Expires 28 February 2026 [Page 19]

Internet-Draft QUIC-1LB August 2025

result = AES_ECB (key, expand(plaintext_len, 1, left_0))
right_0 = XOR(right_1, truncate(result, half_len))
if (plaintext_len_is_odd()) clear_first_bits(right_0, 4)

and the load balancer has to concatenate left_0 and right_0O to obtain
the complete server ID.

6. Per-connection state

The CID allocation methods QUIC-LB defines no per-connection state at
the load balancer, with a few conditional exceptions described in

Section 4. Otherwise, the load balancer can extract the server ID
from the connection ID of each incoming packet and route that packet
accordingly.

However, once a routing decision has been made, the load balancer MAY
associate the 4-tuple or connection ID with the decision. This has
two advantages:

* The load balancer only extracts the server ID once until the
4-tuple or connection ID changes. When the CID is encrypted, this
might reduce computational load.

* Incoming Stateless Reset packets and ICMP messages are easily
routed to the correct origin server.

In addition to the increased state requirements, however, load

balancers cannot detect the packets that indicate the end of the
connection, so they rely on a timeout to delete connection state.
There are numerous considerations around setting such a timeout.

In the event a connection ends, freeing an IP and port, and a
different connection migrates to that IP and port before the timeout,
the load balancer will misroute the different connection’s packets to
the original server. A short timeout limits the likelihood of such a
misrouting.

Furthermore, if a short timeout causes premature deletion of state,
the routing is easily recoverable by decoding an incoming Connection
ID. However, a short timeout also reduces the chance that an
incoming Stateless Reset 1s correctly routed.

Duke, et al. Expires 28 February 2026 [Page 20]

Internet-Draft QUIC-1LB August 2025

Note that some heuristics to purge state early can introduce Denial
of Service vulnerabilities. For example, one heuristic might delete
flow state once the load balancer observes a routable CID on that
flow. An attacker that can observe a target flow can store a
routable CID from a previous connection and spoof the target flow’s
4-tuple with the routable CID, causing premature deletion of that
state.

Servers MAY implement the technique described in Section 14.4.1 of
[RFC9000] in case the load balancer is stateless, to increase the
likelihood a Source Connection ID is included in ICMP responses to
Path Maximum Transmission Unit (PMTU) probes. Load balancers MAY
parse the echoed packet to extract the Source Connection ID, if it
contains a QUIC long header, and extract the Server ID as if it were
in a Destination CID.

7. Additional Use Cases

This section discusses considerations for some deployment scenarios
not implied by the specification above.

7.1. Load balancer chains

Some network architectures may have multiple tiers of low-state load
balancers, where a first tier of devices makes a routing decision to
the next tier, and so on, until packets reach the server. Although

QUIC-1IB is not explicitly designed for this use case, it is possible
to support it.

If each load balancer is assigned a range of server IDs that is a
subset of the range of IDs assigned to devices that are closer to the
client, then the first devices to process an incoming packet can
extract the server ID and then map it to the correct forwarding
address. Note that this solution is extensible to arbitrarily large
numbers of load-balancing tiers, as the maximum server ID space is
quite large.

If the number of necessary server IDs per next hop is uniform, a
simple implementation would use successively longer server IDs at
each tier of load balancing, and the server configuration would match
the last tier. Load balancers closer to the client can then treat
any parts of the server ID they did not use as part of the nonce.

Duke, et al. Expires 28 February 2026 [Page 21]

Internet-Draft QUIC-1LB August 2025

7.2.

Server Process Demultiplexing

QUIC servers might have QUIC running on multiple processes or threads
listening on the same address, and have a need to demultiplex between
them. In principle, this demultiplexer is a Layer 4 load balancer,
and the guidance in Section 7.1 applies. However, in many
deployments the demultiplexer lacks the capability to perform
decryption operations. Internal server coordination is out of scope
of this specification, but this non-normative section proposes some
approaches that could work given certain server capabilities:

*

Some bytes of the server ID are reserved to encode the process ID.
The demultiplexer might operate based on the 4-tuple or other
legacy indicator, but the receiving server process extracts the
server ID, and if it does not match the one for that process, the
process could "toss" the packet to the correct destination
process.

Each process could register the connection IDs it generates with
the demultiplexer, which routes those connection IDs accordingly.

In a combination of the two approaches above, the demultiplexer
generally routes by 4-tuple. After a migration, the process
tosses the first flight of packets and registers the new
connection ID with the demultiplexer. This alternative limits the
bandwidth consumption of tossing and the memory footprint of a
full connection ID table.

When generating a connection ID, the server writes the process ID
to the random field of the first octet, or if this is being used
for length encoding, in an octet it appends after the ciphertext.
It then applies a keyed hash (with a key locally generated for the
sole use of that server). The hash result is used as a bitmask to
XOR with the bits encoding the process ID. On packet receipt, the
demultiplexer applies the same keyed hash to generate the same
mask and recoversthe process ID. (Note that this approach is
conceptually similar to QUIC header protection). It is important
that the server also appends the process ID to the server ID in
the plaintext, so that different processes do not generate the
same ciphertext. The load balancer will consider this data to be
part of the nonce.

Moving connections between servers

Some deployments may transparently move a connection from one server
to another. The means of transferring connection state between
servers is out of scope of this document.

Duke,

et al. Expires 28 February 2026 [Page 22]

Internet-Draft QUIC-1LB August 2025

To support a handover, a server involved in the transition could
issue CIDs that map to the new server via a NEW_CONNECTION_ID frame,
and retire CIDs associated with the old server using the "Retire
Prior To" field in that frame.

8. Version Invariance of QUIC-LB

The server ID encodings, and requirements for their handling, are
designed to be QUIC version independent (see [RFC8999]). A QUIC-LB
load balancer will generally not require changes as servers deploy
new versions of QUIC. However, there are several unlikely future
design decisions that could impact the operation of QUIC-LB.

A QUIC version might define limits on connection ID length that make
some or all of the mechanisms in this document unusable. For
example, a maximum connection ID length could be below the minimum
necessary to use all or part of this specification; or, the minimum
connection ID length could be larger than the largest value in this
specification. Similarly, the length self-encoding specification
cannot accommodate connection IDs longer than 32 bytes.

The advanced fallback implementation supports a requirement to
inspect version- specific elements of packets to make a routing
decision, such as the Server Name Indication (SNI) extension in the
TLS Client Hello. The format and cryptographic protection of this
information may change in future versions or extensions of TLS or
QUIC, and therefore this functionality is inherently version-
dependent. Such a load balancer, when it receives packets from an
unknown QUIC version, might misdirect initial packets to the wrong
tenant. While this can be inefficient, the design in this document
preserves the ability for tenants to deploy new versions provided
they have an out-of-band means of providing a connection ID for the
client to use.

Section 4.2 provides guidance about how load balancers should handle
unroutable DCIDs. This guidance, and the implementation of an
algorithm to handle these DCIDs, rests on some assumptions about
packets that contain client-generated DCIDs that are not specified in
RFC 8999:

1. they do not have short headers;

2. the 4-tuple remains constant;

3. 1if the load-balancer uses the Advanced Fallback Algorithm, the
packets have a constant Source Connection ID.

Duke, et al. Expires 28 February 2026 [Page 23]

Internet-Draft QUIC-1LB August 2025

While this document does not update the commitments in [RFC8999], the
additional assumptions are minimal and narrowly scoped, and provide a
likely set of constants that load balancers can use with minimal risk
of version- dependence.

If these assumptions are not valid, this specification is likely to
lead to loss of packets that contain unroutable DCIDs, and in extreme
cases connection failure. A QUIC version that violates the
assumptions in this section therefore cannot be safely deployed with
a load balancer that follows this specification. An updated or
alternative version of this specification might address these
shortcomings for such a QUIC version.

9. Security Considerations

QUIC-IB is intended to prevent linkability. Attacks would therefore
attempt to subvert this purpose.

Note that without a key for the encoding, QUIC-LB makes no attempt to
obscure the server mapping, and therefore does not address these
concerns. Without a key, QUIC-LB merely allows consistent CID
encoding for compatibility across a network infrastructure, which
makes QUIC robust to NAT rebinding. Servers that are encoding their
server ID without a key algorithm SHOULD only use it to generate new
CIDs for the Server Initial Packet and SHOULD NOT send CIDs in QUIC
NEW_CONNECTION_ID frames, except that it sends one new Connection ID

in the event of config rotation Section 3.1. Doing so might falsely
suggest to the client that said CIDs were generated in a secure
fashion.

A linkability attack would find some means of determining that two
connection IDs route to the same server. Due to the limitations of
measures at QUIC layer, there is no scheme that strictly prevents
linkability for all traffic patterns.

To see why, consider two limits. At one extreme, one client is
connected to the server pool and migrates its address. An observer
can easily link the two addresses, and there is no remedy at the QUIC
layer.

At the other extreme, a very large number of clients are connected to
each server, and they all migrate address constantly. At this limit,
even an unencrypted server ID encoding is unlikely to definitively
link two addresses.

Therefore, efforts to frustrate any analysis of server ID encoding

have diminishing returns. Nevertheless, this specification seeks to
minimize the probability two addresses can be linked.

Duke, et al. Expires 28 February 2026 [Page 24]

Internet-Draft QUIC-1LB August 2025

9.1. Attackers not between the load balancer and server

Any attacker might open a connection to the server infrastructure and
aggressively simulate migration to obtain a large sample of IDs that
map to the same server. It could then apply analytical techniques to
try to obtain the server encoding.

An encrypted encoding provides robust protection against this. An
unencrypted one provides none.

Were this analysis to obtain the server encoding, then on-path

observers might apply this analysis to correlating different client
IP addresses.

9.2. Attackers between the load balancer and server

Attackers in this privileged position are intrinsically able to map
two connection IDs to the same server. These algorithms ensure that
two connection IDs for the same connection cannot be identified as
such as long as the server chooses the first octet and any plaintext
nonce correctly.

9.3. Multiple Configuration IDs

During the period in which there are multiple deployed configuration
IDs (see Section 3.1), there is a slight increase in linkability.
The server space is effectively divided into segments with CIDs that
have different config rotation bits. Entities that manage servers
SHOULD strive to minimize these periods by quickly deploying new
configurations across the server pool.

9.4. Limited configuration scope

A simple deployment of QUIC-LB in a cloud provider might use the same
global QUIC-LB configuration across all its load balancers that route
to customer servers. An attacker could then simply become a
customer, obtain the configuration, and then extract server IDs of
other customers’ connections at will.

To avoid this, the configuration agent SHOULD issue QUIC-LB
configurations to mutually distrustful servers that have different
keys for encryption algorithms. In many cases, the load balancers
can distinguish these configurations by external IP address.

However, assigning multiple entities to an IP address 1is
complimentary with concealing DNS requests (e.g., DoH [RFC8484]) and
the TLS Server Name Indicator (SNI) ([I-D.ietf-tls—-esni]) to obscure
the ultimate destination of traffic. While the load balancer’s

Duke, et al. Expires 28 February 2026 [Page 25]

Internet-Draft QUIC-1LB August 2025

fallback algorithm (Section 4.3) can use the SNI to make a routing
decision on the first packet, there are three ways to route
subsequent packets:

* all co-tenants can use the same QUIC-LB configuration, leaking the
server mapping to each other as described above;

* co-tenants can be issued one of up to seven configurations
distinguished by the config rotation bits (Section 3.1), exposing
information about the target domain to the entire network; or

* tenants can use the 0blll codepoint in their CIDs (in which case
they SHOULD disable migration in their connections), which
neutralizes the value of QUIC-LB but preserves privacy.

When configuring QUIC-LB, administrators evaluate the privacy
tradeoff by considering the relative value of each of these
properties, given the trust model between tenants, the presence of
methods to obscure the domain name, and value of address migration in
the tenant use cases.

In the case that the administrating entity also controls a reverse
proxy between the load balancer and the tenants, this entity
generates the external CIDs, and there is no tradeoff.

As the plaintext algorithm makes no attempt to conceal the server
mapping, these deployments MAY simply use a common configuration.

9.5. Stateless Reset Oracle

Section 21.9 of [RFC9000] discusses the Stateless Reset Oracle
attack. For a server deployment to be vulnerable, an attacking
client must be able to cause two packets with the same Destination
CID to arrive at two different servers that share the same
cryptographic context for Stateless Reset tokens. As QUIC-LB
requires deterministic routing of DCIDs over the life of a
connection, it is a sufficient means of avoiding an Oracle without
additional measures.

Duke, et al. Expires 28 February 2026 [Page 26]

Internet-Draft QUIC-1LB August 2025

Note also that when a server starts using a new QUIC-LB config
rotation codepoint, new CIDs might not be unique with respect to
previous configurations that occupied that codepoint, and therefore
different clients may have observed the same CID and stateless reset
token. A straightforward method of managing stateless reset keys is
to maintain a separate key for each config rotation codepoint, and
replace each key when the configuration for that codepoint changes.
Thus, a server transitions from one config to another, it will be
able to generate correct tokens for connections using either type of
CID.

9.6. Connection ID Entropy

If a server ever reuses a nonce in generating a CID for a given
configuration, it risks exposing sensitive information. Given the
same server ID, the CID will be identical (aside from a possible
difference in the first octet). This can risk exposure of the QUIC-
IB key. If two clients receive the same connection ID, they also
have each other’s stateless reset token unless that key has changed
in the interim.

The encrypted mode needs to generate different cipher text for each
generated Connection ID instance to protect the Server ID. To do so,
at least four octets of the CID are reserved for a nonce that, if
used only once, will result in unique cipher text for each Connection
ID.

If servers simply increment the nonce by one with each generated
connection ID, then it is safe to use the existing keys until any
server’s nonce counter exhausts the allocated space and rolls over.
To maximize entropy, servers SHOULD start with a random nonce value,
in which case the configuration is usable until the nonce value wraps
around to zero and then reaches the initial value again.

Whether or not it implements the counter method, the server MUST NOT
reuse a nonce until it switches to a configuration with new keys.

Servers are forbidden from generating linkable plaintext nonces,
because observable correlations between plaintext nonces would
provide trivial linkability between individual connections, rather
than just to a common server.

For any algorithm, configuration agents SHOULD implement an out-of-
band method to discover when servers are in danger of exhausting
their nonce space, and SHOULD respond by issuing a new configuration.
A server that has exhausted its nonces MUST either switch to a
different configuration, or if none exists, use the 4-tuple routing
config rotation codepoint.

Duke, et al. Expires 28 February 2026 [Page 27]

Internet-Draft QUIC-1LB August 2025

When sizing a nonce that is to be randomly generated, the
configuration agent SHOULD consider that a server generating a N-bit
nonce will create a duplicate about every 27 (N/2) attempts, and
therefore compare the expected rate at which servers will generate
CIDs with the lifetime of a configuration.

9.7. Distinguishing Attacks

The Four Pass Encryption algorithm is structured as a 4-round Feistel
network with non-bijective round function. As such, it does not
offer a very high security level against distinguishing attacks, as
explained in [Patarin2008]. Attackers can mount these attacks if
they are in possession of O(SQRT (len/2)) pairs of ciphertext and
known corresponding plain text, where "len" is the sum of the lengths
of the Server ID and the Nonce.

The authors considered increasing the number of passes from 4 to 12,
which would definitely block these attacks. However, this would
require 12 round of AES decryption by load balancers accessing the
CID, a cost deemed prohibitive in the planned deployments.

The attacks described in [Patarin2008] rely on known plain text. In
a normal deployment, the plain text is only known by the server that
generates the ID and by the load balancer that decrypts the content
of the CID. Attackers would have to compensate by guesses about the
allocation of server identifiers or the generation of nonces. These
attacks are thus mitigated by making nonces hard to guess, as
specified in Section 9.6, and by rules related to mixed deployments
that use both clear text CID and encrypted CID, for example when
transitioning from clear text to encryption. Such deployments MUST
use different server ID allocations for the clear text and the
encrypted versions.

These attacks cannot be mounted against the Single Pass Encryption
algorithm.

9.8. Early deletion of load balancer connection state

Potential wvulnerabilities related to heuristics that delete per-—
connection state are described in Section 6. Under certain
assumptions about server configuration and fallback algorithm, this
state might be critical to maintaining connectivity. Under other
assumptions, the state provides robustness to improbable network
events.

Duke, et al. Expires 28 February 2026 [Page 28]

Internet-Draft QUIC-1LB August 2025

IANA Considerations

There are no IANA requirements.

Normative References

Dworkin, M., "Recommendation for Block Cipher Modes of
Operation: Methods and Techniques", NIST Special
Publication 800-38A, 2021,
<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38a.pdf>.

Thomson, M., "Version-Independent Properties of QUIC",
RFC 8999, DOI 10.17487/RFC8999, May 2021,
<https://www.rfc-editor.org/rfc/rfc8999>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,

DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/rfc/rfc9000>.

Informative References

Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS
Encrypted Client Hello", Work in Progress, Internet-Draft,
draft—-ietf-tls—-esni-25, 14 June 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-tls-
esni-25>.

Patarin, J., "Generic Attacks on Feistel Schemes -
Extended Version", 2008,
<https://eprint.iacr.org/2008/036.pdf>.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
<https://www.rfc-editor.org/rfc/rfc4347>.

10.

11. References

11.1.
[NIST-AES-ECB]
[RFC8999]
[RFC9000]

11.2.
[I-D.ietf-tls-esni]
[Patarin2008]
[REFC2119]
[REC4347]

Duke, et al.

Expires 28 February 2026 [Page 29]

Internet-Draft QUIC-1LB August 2025

[RFC6020]

[RFC6066]

[REFC6347]

[RFC7696]

[REFC7983]

[RFC8340]

[REC8484]

[RFC9146]

[RFC9147]

Appendix A.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/rfc/rfc6020>.

Eastlake 3rd, D., "Transport Layer Security (TLS)
Extensions: Extension Definitions", RFC 6066,

DOI 10.17487/RFC6066, January 2011,
<https://www.rfc-editor.org/rfc/rfc6066>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
January 2012, <https://www.rfc-editor.org/rfc/rfc6347>.

Housley, R., "Guidelines for Cryptographic Algorithm
Agility and Selecting Mandatory-to-Implement Algorithms",
BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
<https://www.rfc-editor.org/rfc/rfc7696>.

Petit-Huguenin, M. and G. Salgueiro, "Multiplexing Scheme
Updates for Secure Real-time Transport Protocol (SRTP)
Extension for Datagram Transport Layer Security (DTLS)",
RFC 7983, DOI 10.17487/RFC7983, September 2016,
<https://www.rfc-editor.org/rfc/rfc7983>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/rfc/rfc8340>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS
(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
<https://www.rfc—editor.org/rfc/rfc8484>.

Rescorla, E., Ed., Tschofenig, H., Ed., Fossati, T., and
A. Kraus, "Connection Identifier for DTLS 1.2", RFC 914p,
DOI 10.17487/RFC9146, March 2022,
<https://www.rfc-editor.org/rfc/rfc9146>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The
Datagram Transport Layer Security (DTLS) Protocol Version
1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
<https://www.rfc-editor.org/rfc/rfc9147>.

QUIC-LB YANG Model

These YANG models conform to [RFC6020] and express a complete QUIC-LB
configuration. There is one model for the server and one for the
middlebox (i.e the load balancer and/or Retry Service).

Duke, et al.

Expires 28 February 2026 [Page 30]

Internet-Draft QUIC-1LB August 2025

module ietf-quic-lb-server {
yang-version "1.1";
namespace "urn:ietf:params:xml:ns:yang:ietf-quic-1b";
prefix "quic-1b";

import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types.";
}

import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types.";
}

organization
"IETF QUIC Working Group";

contact
"WG Web: <http://datatracker.ietf.org/wg/quic>
WG List: <quic@ietf.org>

Authors: Martin Duke (martin.h.duke at gmail dot com)
Nick Banks (nibanks at microsoft dot com)
Christian Huitema (huitema at huitema.net)";

description
"This module enables the explicit cooperation of QUIC servers
with trusted intermediaries without breaking important
protocol features.

Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX
(https://www.rfc—editor.org/info/rfcXXXX); see the RFC itself

for full legal notices.

The key words ’'MUST’, ’'MUST NOT’, ’'REQUIRED’, ’SHALL’, ’SHALL

Duke, et al. Expires 28 February 2026 [Page 31]

Internet-Draft QUIC-1LB August 2025

NOT’, ’SHOULD’, ’SHOULD NOT’, ’'RECOMMENDED’, ’NOT RECOMMENDED’,
"MAY’, and 'OPTIONAL’ in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.";

revision "2023-07-14" {
description
"Updated to design in version 17 of the draft";
reference
"RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";
}

container quic-1lb {
presence "The container for QUIC-LB configuration.";

description
"QUIC-LB container.";

typedef quic-lb-key {
type yvang:hex-string {
length 47;
}
description
"This is a 1l6-byte key, represented with 47 bytes";
}

leaf config-id {
type uint8 {
range "0..6";
}
mandatory true;
description
"Identifier for this CID configuration.";

}

leaf first-octet-encodes-cid-length {
type boolean;
default false;
description
"If true, the six least significant bits of the first
CID octet encode the CID length minus one.";

}

leaf server-id-length {
type uint8 {
range "1..15";
}
must /. <= (19 - ../nonce-length)’ {

Duke, et al. Expires 28 February 2026 [Page 32]

Internet-Draft QUIC-1LB August 2025

error-message
"Server ID and nonce lengths must sum
to no more than 19.";
}
mandatory true;
description
"Length (in octets) of a server ID. Further range-limited
by nonce-length.";
}

leaf nonce-length {

type uint8 {
range "4..18";

}

mandatory true;

description
"Length, in octets, of the nonce. Short nonces mean there
will be frequent configuration updates.";

}

leaf cid-key {
type quic—-lb-key;
description
"Key for encrypting the connection ID.";

}

leaf server-id {
type yang:hex-string;
must "string-length(.) = 3 * ../../server—-id-length - 1";
mandatory true;
description
"An allocated server ID";

}

module ietf-quic-lb-middlebox {
yang-version "1.1";
namespace "urn:ietf:params:xml:ns:yang:ietf-quic-1b";
prefix "quic-1b";

import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types.";
}

import ietf-inet-types {

Duke, et al. Expires 28 February 2026 [Page 33]

Internet-Draft QUIC-1LB August 2025

prefix inet;
reference
"RFC 6991: Common YANG Data Types.";

}

organization
"IETF QUIC Working Group";

contact
"WG Web: <http://datatracker.ietf.org/wg/quic>
WG List: <quic@ietf.org>

Authors: Martin Duke (martin.h.duke at gmail dot com)
Nick Banks (nibanks at microsoft dot com)
Christian Huitema (huitema at huitema.net)";

description
"This module enables the explicit cooperation of QUIC servers
with trusted intermediaries without breaking important
protocol features.

Copyright (c) 2021 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX
(https://www.rfc—editor.org/info/rfcXXXX); see the RFC itself
for full legal notices.

The key words ’MUST’, ’MUST NOT’, 'REQUIRED’, ’SHALL’, ’SHALL
NOT’, ’SHOULD’, ’SHOULD NOT’, ’'RECOMMENDED’, ’NOT RECOMMENDED’,
"MAY’, and 'OPTIONAL’ in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.";

revision "2021-02-11" {
description
"Updated to design in version 13 of the draft";

reference
"RFC XXXX, QUIC-LB: Generating Routable QUIC Connection IDs";

Duke, et al. Expires 28 February 2026 [Page 34]

Internet-Draft QUIC-1LB August 2025

container quic-1lb {
presence "The container for QUIC-LB configuration.";

description
"QUIC-LB container.";

typedef quic-lb-key {
type yvang:hex-string {
length 47;
}
description
"This is a 16-byte key, represented with 47 bytes";

}

list cid-configs {
key "config-rotation-bits";
description
"List up to three load balancer configurations";

leaf config-rotation-bits {
type uint8 {
range "0..2";
}
mandatory true;
description
"Identifier for this CID configuration.";

}

leaf server-id-length {
type uint8 {
range "1..15";
}
must /. <= (19 - ../nonce-length)’ {
error-message
"Server ID and nonce lengths must sum to
no more than 19.";
}
mandatory true;
description
"Length (in octets) of a server ID. Further range-limited
by nonce-length.";
}

leaf cid-key {
type quic-lb-key;
description
"Key for encrypting the connection ID.";

Duke, et al. Expires 28 February 2026 [Page 35]

Internet-Draft QUIC-1LB August 2025

leaf nonce-length {

type uint8 {
range "4..18";

}

mandatory true;

description
"Length, in octets, of the nonce. Short nonces mean there
will be frequent configuration updates.";

}

list server-id-mappings {
key "server-id";
description "Statically allocated Server IDs";

leaf server-id {
type yang:hex-string;
must "string-length(.) = 3 * ../../server—-id-length - 1";
mandatory true;
description
"An allocated server ID";

}

leaf server—address {
type inet:ip-address;
mandatory true;
description
"Destination address corresponding to the server ID";

A.l. Tree Diagram
This summary of the YANG models uses the notation in [RFC8340].

module: ietf-quic-lb-server
+——rw quic-1b!

+——rw config-id uint8

+-—rw first-octet-encodes-cid-length? boolean

+--rw server-id-length uint8

+--rw nonce-length uint8

+——rw cid-key? quic—-1lb-key
+-——rw server-id vang:hex—-string

Duke, et al. Expires 28 February 2026 [Page 36]

Internet-Draft QUIC-1LB August 2025

module: ietf-quic-lb-middlebox
+-—-rw quic-1b!
+——rw cid-configs* [config-rotation-bits]

+——rw config-rotation-bits uint8

+-——rw server-id-length uint8

+-——rw cid-key? quic-lb-key

+--rw nonce-length uint8

+-—-rw server-id-mappings* [server-id]
+-—rw server-id yvang:hex-string
+——rw server-—address inet:ip-address

Appendix B. Load Balancer Test Vectors

This section uses the following abbreviations:

cid Connection ID
cr_bits Config Rotation Bits
LB Load Balancer

sid Server ID

In all cases, the server is configured to encode the CID length.
B.1l. Unencrypted CIDs

cr_bits sid nonce cid
0 c4605e 4504cc4f 07c4605e4504cc4f
1 350d28b420 3487d970b 20a350d28b4203487d970b

B.2. Encrypted CIDs

The key for all of these examples is
8£95£f09245765£80256934e50c66207f. The test vectors include an
example that uses the 1l6-octet single-pass special case, as well as
an instance where the server ID length exceeds the nonce length,
requiring a fourth decryption pass.

cr_bits sid nonce cid

0 ed793a ee080dbf 0720b1d07b359d3c

1 ed793a51d49p8f5fab65 ee080dbf48
2fcc381lbc74cb4fbad2823a3dlf8fed2

2 ed793a51d49b8f5f ee080dbf48c0dle5
504dd2d05a7b0de902b9907afb5ecf8cc3

3 ed793a51d49b8f5fab ee080dbf48c0dle55d
125779c9cc86beb3a3ad4al3cad96fcedbfelcdbe

Duke, et al. Expires 28 February 2026 [Page 37]

Internet-Draft QUIC-1LB August 2025

Appendix C. Interoperability with DTLS over UDP

Some environments may contain DTLS traffic as well as QUIC operating
over UDP, which may be hard to distinguish.

In most cases, the packet parsing rules above will cause a QUIC-LB
load balancer to route DTLS traffic in an appropriate way. DTLS 1.3
implementations that use the connection_id extension [RFC9146] might
use the techniques in this document to generate connection IDs and
achieve robust routability for DTLS associations if they meet a few
additional requirements. This non-normative appendix describes this
interaction.

C.l1. DTLS 1.0 and 1.2

DTLS 1.0 [RFC4347] and 1.2 [RFC6347] use packet formats that a QUIC-
LB router will interpret as short header packets with CIDs that
request 4-tuple routing. As such, they will route such packets
consistently as long as the 4-tuple does not change. Note that DTLS
1.0 has been deprecated by the IETF.

The first octet of every DTLS 1.0 or 1.2 datagram contains the
content type. A QUIC-LB load balancer will interpret any content
type less than 128 as a short header packet, meaning that the
subsequent octets should contain a connection ID.

Existing TLS content types comfortably fit in the range below 128.
Assignment of codepoints greater than 64 would require coordination
in accordance with [RFC7983], and anyway would likely create problems
demultiplexing DTLS and version 1 of QUIC. Therefore, this document
believes it is extremely unlikely that TLS content types of 128 or
greater will be assigned. Nevertheless, such an assignment would
cause a QUIC-LB load balancer to interpret the packet as a QUIC long
header with an essentially random connection ID, which is likely to
be routed irregqularly.

The second octet of every DTLS 1.0 or 1.2 datagram is the bitwise
complement of the DTLS Major version (i.e. version 1l.x = 0Oxfe). A
QUIC-1IB load balancer will interpret this as a connection ID that
requires 4-tuple based load balancing, meaning that the routing will
be consistent as long as the 4-tuple remains the same.

[REFC9146] defines an extension to add connection IDs to DTLS 1.2.
Unfortunately, a QUIC-LB load balancer will not correctly parse the
connection ID and will continue 4-tuple routing. An modified QUIC-LB
load balancer that correctly identifies DTLS and parses a DTLS 1.2
datagram for the connection ID is outside the scope of this document.

Duke, et al. Expires 28 February 2026 [Page 38]

Internet-Draft QUIC-1LB August 2025

c.2. DTLS 1.3

DTLS 1.3 [RFC9147] changes the structure of datagram headers in
relevant ways.

Handshake packets continue to have a TLS content type in the first
octet and Oxfe in the second octet, so they will be 4-tuple routed,
which should not present problems for likely NAT rebinding or address
change events.

Non-handshake packets always have zero in their most significant bit
and will therefore always be treated as QUIC short headers. If the
connection ID is present, it follows in the succeeding octets.
Therefore, a DTLS 1.3 association where the server utilizes
Connection IDs and the encodings in this document will be routed
correctly in the presence of client address and port changes.

However, if the client does not include the connection_id extension
in its ClientHello, the server is unable to use connection IDs. 1In
this case, non- handshake packets will appear to contain random
connection IDs and be routed randomly. Thus, unmodified QUIC-LB load
balancers will not work with DTLS 1.3 if the client does not
advertise support for connection IDs, or the server does not request
the use of a compliant connection ID.

A QUIC-LB load balancer might be modified to identify DTLS 1.3
packets and correctly parse the fields to identify when there is no
connection ID and revert to 4-tuple routing, removing the server
requirement above. However, such a modification is outside the scope
of this document, and classifying some packets as DTLS might be
incompatible with future versions of QUIC.

C.3. Future Versions of DTLS

As DTLS does not have an IETF consensus document that defines what
parts of DTLS will be invariant in future versions, it is difficult
to speculate about the applicability of this section to future
versions of DTLS.

Appendix D. Acknowledgments

Manasi Deval, Erik Fuller, Toma Gavrichenkov, Greg Greenway, Jana
Iyengar, Subodh Iyengar, Stefan Kolbl, Ladislav Lhotka, Jan Lindblad,
Ling Tao Nju, Ilari Liusvaara, Kazuho Oku, Udip Pant, Zaheduzzaman
Sarker, Ian Swett, Andy Sykes, Martin Thomson, Dmitri Tikhonov,
Victor Vasiliev, Xingcan Lan, Yu Zhu, and William Zeng Ke all
provided useful input to this document.

Duke, et al. Expires 28 February 2026 [Page 39]

Internet-Draft QUIC-1LB August 2025

Appendix E. Change Log

RFC Editor’s Note: Please remove this section prior to
publication of a final version of this document.

E.l1. since draft-ietf-quic-load-balancers-20
* Changed definition of Unroutable DCIDs, and rewrote sections on
config failover and fallback routing to avoid misrouted
connections.
* Deleted text on dropping packets
* Rewrote version invariance section
E.2. since draft-ietf-quic-load-balancers-19
* Further guidance on multiple server processes/threads
* Fixed error in encryption example.
* Clarified fallback algorithms and known QUIC versions.

E.3. since draft-ietf-quic-load-balancers-18

* Rearranged the output of the expand function to reduce CPU load of
decrypt

E.4. since draft-ietf-quic-load-balancers-17
* fixed regressions in draft-17 publication
E.5. since draft-ietf-quic-load-balancers-16
* added a config ID bit (now there are 3).
E.6. since draft-ietf-quic-load-balancers-15
* aasvg fixes.
E.7. since draft-ietf-quic-load-balancers-14
* Revised process demultiplexing text
* Restored lost text in Security Considerations

* Editorial comments from Martin Thomson.

Duke, et al. Expires 28 February 2026 [Page 40]

Internet-Draft QUIC-1LB August 2025

Duke,

Tweaked 4-pass algorithm to avoid accidental plaintext
similarities

since draft-ietf-quic-load-balancers-13
Incorporated Connection ID length in argument of truncate function
Added requirements for codepoint 0bll.
Describe Distinguishing Attack in Security Considerations.
Added non-normative language about server process demultiplexers
since draft-ietf-quic-load-balancers-12
Separated Retry Service design into a separate draft
since draft-ietf-quic-load-balancers-11
Fixed mistakes in test vectors
since draft-ietf-quic-load-balancers-10

Refactored algorithm descriptions; made the 4-pass algorithm
easier to implement

Revised test vectors
Split YANG model into a server and middlebox version
since draft-ietf-quic-load-balancers-09

Renamed "Stream Cipher" and "Block Cipher" to "Encrypted Short"
and "Encrypted Long"

Added section on per—-connection state

Changed "Encrypted Short" to a 4-pass algorithm.

Recommended a random initial nonce when incrementing.

Clarified what SNI LBs should do with unknown QUIC versions.
since draft-ietf-quic-load-balancers-08

Eliminate Dynamic SID allocation

Eliminated server use bytes

et al. Expires 28 February 2026 [Page 41]

Internet-Draft QUIC-1LB August 2025

E.14. since draft-ietf-quic-load-balancers-07
* Shortened SSCID nonce minimum length to 4 bytes
* Removed RSCID from Retry token body
* Simplified CID formats
* Shrunk size of SID table
E.15. since draft-ietf-gquic-load-balancers-06
* Added interoperability with DTLS
* Changed "non-compliant" to "unroutable"
* Changed "arbitrary" algorithm to "fallback"
* Revised security considerations for mistrustful tenants
* Added retry service considerations for non-Initial packets
E.16. since draft-ietf-quic-load-balancers-05
* Added low-config CID for further discussion
* Complete revision of shared-state Retry Token
* Added YANG model
* Updated configuration limits to ensure CID entropy
* Switched to notation from quic-transport
E.17. since draft-ietf-quic—-load-balancers-04

* Rearranged the shared-state retry token to simplify token
processing

* More compact timestamp in shared-state retry token

* Revised server requirements for shared-state retries
* Eliminated zero padding from the test vectors

* Added server use bytes to the test vectors

* Additional compliant DCID criteria

Duke, et al. Expires 28 February 2026 [Page 42]

Internet-Draft QUIC-1LB August 2025

E.18. since-draft-ietf-quic-load-balancers-03
* TImproved Config Rotation text
* Added stream cipher test vectors
* Deleted the Obfuscated CID algorithm
E.19. since-draft-ietf-quic-load-balancers-02
* Replaced stream cipher algorithm with three-pass version
* Updated Retry format to encode info for required TPs
* Added discussion of version invariance
* Cleaned up text about config rotation
* Added Reset Oracle and limited configuration considerations
* Allow dropped long-header packets for known QUIC versions
E.20. since-draft-ietf-quic-load-balancers-01
* Test vectors for load balancer decoding
* Deleted remnants of in-band protocol
* Light edit of Retry Services section
* Discussed load balancer chains
E.21. since-draft-ietf-quic-load-balancers-00
* Removed in-band protocol from the document
E.22. Since draft-duke-quic-load-balancers-06
* Switch to IETF WG draft.
E.23. Since draft-duke-quic-load-balancers-05
* Editorial changes
* Made load balancer behavior independent of QUIC version

* Got rid of token in stream cipher encoding, because server might
not have it

Duke, et al. Expires 28 February 2026 [Page 43]

Internet-Draft QUIC-1LB August 2025
* Defined "non-compliant DCID" and specified rules for handling
them.
* Added psuedocode for config schema
E.24. Since draft-duke-quic-load-balancers-04
* Added standard for retry services
E.25. Since draft-duke—-quic-load-balancers-03
* Renamed Plaintext CID algorithm as Obfuscated CID
* Added new Plaintext CID algorithm
* Updated to allow 20B CIDs
* Added self-encoding of CID length
E.26. Since draft-duke-quic-load-balancers-02
* Added Config Rotation
* Added failover mode
* Tweaks to existing CID algorithms
* Added Block Cipher CID algorithm
* Reformatted QUIC-LB packets
E.27. Since draft-duke-quic-load-balancers-01
* Complete rewrite
* Supports multiple security levels
* Lightweight messages
E.28. Since draft-duke-quic—-load-balancers-00
* Converted to markdown
* Added variable length connection IDs

Authors’ Addresses

Duke, et al. Expires 28 February 2026 [Page 44]

Internet-Draft QUIC-LB

Martin Duke
Google
Email: martin.h.duke@gmail.com

Nick Banks
Microsoft
Email: nibanks@microsoft.com

Christian Huitema
Private Octopus Inc.
Email: huitema@huitema.net

Duke, et al. Expires 28 February 2026

August 2025

[Page 45]

QUIC R. Marx, Ed.

Internet-Draft Akamai
Intended status: Standards Track L. Niccolini, Ed.
Expires: 23 April 2026 Meta

M. Seemann, Ed.
L. Pardue, Ed.

Cloudflare
20 October 2025

HTTP/3 glog event definitions
draft-ietf-quic-glog-h3-events-12
Abstract

This document defines a glog event schema containing concrete events
for the core HTTP/3 protocol and selected extensions.

Note to Readers
Note to RFC editor: Please remove this section before publication.

Feedback and discussion are welcome at https://github.com/quicwg/glog

(https://github.com/quicwg/glog) . Readers are advised to refer to
the "editor’s draft" at that URL for an up-to-date version of this
document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 April 2026.

Marx, et al. Expires 23 April 2026 [Page 1]

Internet-Draft

Copyright Notice

HTTP/3 glog event definitions

October 2025

Copyright (c) 2025 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal

Provisions Relating to IETF Documents
license-info)

Please review these documents carefully,

and restrictions with respect to this document.

(https://trustee.ietf.org/

in effect on the date of publication of this document.
as they describe your rights
Code Components

extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

Marx,

WwWwwwwwwww

IS

Introduction .

.1. Usage with QUIC

.2. Notational Conventions

Event Schema Definition C e e
.1. Draft Event Schema Identification
HTTP/3 Events

parameters_set
parameters_restored
Stream_type_set
priority_updated
frame_created

frame_parsed
datagram_created
datagram_parsed

. push_resolved
HTTP/3 Data Type Definitions
Initiator

HTTP3Frame

HTTP3Datagram

HTTP3DataFrame
HTTP3HeadersFrame
HTTP3CancelPushFrame
HTTP3SettingsFrame
HTTP3PushPromiseFrame
HTTP3GoAwayFrame
HTTP3MaxPushIDFrame .
HTTP3PriorityUpdateFrame
.9. HTTP3ReservedFrame

.10. HTTP3UnknownFrame

.11. HTTP3ApplicationError
Security and Privacy Considerations
IANA Considerations

O o Joy 0 WDN

O Jo Ul WD

SO DD D D DD D™D W DN
W wWwwwwwwwww

w

et al. Expires 23 April 2026

O J oy Ulul U bW

N e e e e e e e e e e e e S g e
OO JIIJOANTTUTWWWNNNNRREOO W

[Page 2]

Internet-Draft HTTP/3 glog event definitions October 2025

7. Normative References « .« « .« « < < . . 19
Acknowledgements v 4 4 e e e e e e e e e e e e .o.20
Change Log . . e e e e e e e e e e w. 20
Since draft- 1etf quic-— qlog h3 events 11: 2
Since draft-ietf-quic-glog-h3-events-09: 2
Since draft-ietf-quic-glog-h3-events-08: B
Since draft-ietf-quic-glog-h3-events-07: B
Since draft-ietf-quic-glog-h3-events-06: B
Since draft-ietf-quic—-glog-h3-events-05: 2
Since draft-ietf-quic—-glog-h3-events-04: 2
Since draft-ietf-quic—-glog-h3-events-03: C e e e e e e e e e .22
Since draft-ietf-quic-glog-h3-events-02: e e e e e e e e e e 22
Since draft-ietf-quic-glog-h3-events-01: A
Since draft-ietf-quic-glog-h3-events-00: e e e e .. 22
Since draft-marx—-glog-event-definitions—quic-— h3 02 e e e e e . 22
Since draft-marx—-glog-event-definitions-quic-h3-01: 23
Since draft-marx—-glog-event-definitions-quic-h3-00: 24
Authors’ Addresses « .+ ¢ v 0 e e e e e e e e e e e e . 24
1. Introduction

This document defines a glog event schema (Section 8 of [QLOG-MAIN])
containing concrete events for the core HTTP/3 protocol [HTTP/3] and
selected extensions ([EXTENDED-CONNECT], [H3_PRIORITIZATION], and
[H3-DATAGRAM]) .

The event namespace with identifier http3 is defined; see Section 2.
In this namespace multiple events derive from the glog abstract Event
class (Section 7 of [QLOG-MAIN]), each extending the "data" field and
defining their "name" field values and semantics.

Table 1 summarizes the name value of each event type that is defined
in this specification. Some event data fields use complex data
types. These are represented as enums or re-usable definitions,
which are grouped together on the bottom of this document for
clarity.

Marx, et al. Expires 23 April 2026 [Page 3]

Internet-Draft HTTP/3 glog event definitions October 2025

+ + + +
| Name value | Importance | Definition |
+ + + +
| http3:parameters_set | Base | section 3.1 |
o Fm Fom +
| http3:parameters_restored | Base | Section 3.2 |
Fm Fmm Fm +
| http3:stream_type_set | Base | section 3.3 |
- F————— f——————— +
| http3:priority_updated | Base | section 3.4 |
o Fm Fom +
| http3:frame created | Core | section 3.5 |
Fm Fmm Fm +
| http3:frame_parsed | Core | section 3.6

- F————— f——————— +
| http3:datagram created | Base | section 3.7 |
o Fm Fom +
| http3:datagram parsed | Base | section 3.8 |
Fm Fmm Fm +
| http3:push_resolved | Extra | section 3.9 |
- F————— = +

Table 1: HTTP/3 Events
1.1. Usage with QUIC

The events described in this document can be used with or without
logging the related QUIC events defined in [QLOG-QUIC]. If used with
QUIC events, the QUIC document takes precedence in terms of
recommended filenames and trace separation setups.

If used without QUIC events, it is recommended that the
implementation assign a globally unique identifier to each HTTP/3
connection. This ID can then be used as the value of the glog
"group_id" field, as well as the glog filename or file identifier,
potentially suffixed by the vantagepoint type (For example,
abcdl234_server.qlog would contain the server-side trace of the
connection with GUID abcdl234).

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Marx, et al. Expires 23 April 2026 [Page 4]

Internet-Draft HTTP/3 glog event definitions October 2025

The event and data structure definitions in ths document are
expressed in the Concise Data Definition Language [CDDL] and its
extensions described in [QLOG-MAIN].

The following fields from [QLOG-MAIN] are imported and used: name,
namespace, type, data, group_id, RawInfo, and time-related fields.

Events are defined with an importance level as described in
Section 8.3 of [QLOG-MAIN].

As is the case for [QLOG-MAIN], the glog schema definitions in this
document are intentionally agnostic to serialization formats. The
choice of format is an implementation decision.

2. Event Schema Definition

This document describes how the core HTTP/3 protocol and selected
extensions can be expressed in glog using a newly defined event
schema. Per the requirements in Section 8 of [QLOG-MAIN], this
document registers the http3 namespace. The event schema URI is
urn:ietf:params:glog:events:http3.

2.1. Draft Event Schema Identification
This section is to be removed before publishing as an RFC.

Only implementations of the final, published RFC can use the events
belonging to the event schema with the URI
urn:ietf:params:glog:events:http3. Until such an RFC exists,
implementations MUST NOT identify themselves using this URI.

Implementations of draft versions of the event schema MUST append the
string "-" and the corresponding draft number to the URI. For
example, draft 07 of this document is identified using the URI
urn:ietf:params:glog:events:http3-07.

The namespace identifier itself is not affected by this requirement.
3. HTTP/3 Events

HTTP/3 events extend the S$ProtocolEventData extension point defined

in [QLOG-MAIN]. Additionally, they allow for direct extensibility by

their use of per-event extension points via the $$ CDDL "group
socket" syntax, as also described in [QLOG-MAIN].

Marx, et al. Expires 23 April 2026 [Page 5]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3EventData = HTTP3ParametersSet /
HTTP3ParametersRestored /
HTTP3StreamTypeSet /
HTTP3PriorityUpdated /
HTTP3FrameCreated /
HTTP3FrameParsed /
HTTP3DatagramCreated /
HTTP3DatagramParsed /
HTTP3PushResolved

$ProtocolEventData /= HTTP3EventData
Figure 1: HTTP3EventData definition and ProtocolEventData extension

HTTP events are logged when a certain condition happens at the
application layer, and there isn’t always a one to one mapping
between HTTP and QUIC events. The exchange of data between the HTTP
and QUIC layer is logged via the "stream_data_moved" and
"datagram_data_moved" events in [QLOG-QUIC].

HTTP/3 frames are transmitted on QUIC streams, which allows them to
span multiple QUIC packets. Some implementations might send a single
large frame, rather than a sequence of smaller frames, in order to
amortize frame header overhead. HTTP/3 frame headers are represented
by the frame_created (Section 3.5) and frame_parsed (Section 3.6)
events. Subsequent frame payload data transfer is indicated by
stream_data_moved events. Furthermore, stream _data_moved events can
appear before frame_parsed events because implementations need to
read data from a stream in order to parse the frame header.

The concrete HTTP/3 event types are further defined below, their type
identifier is the heading name.

3.1. parameters_set

The parameters_set event contains HTTP/3 and QPACK-level settings,
mostly those received from the HTTP/3 SETTINGS frame. It has Base
importance level.

All these parameters are typically set once and never change.
However, they might be set at different times during the connection,
therefore a glog can have multiple instances of parameters_set with
different fields set.

The "initiator" field reflects how Settings are exchanged on a

connection. Sent settings have the value "local" and received
settings have the value "received".

Marx, et al. Expires 23 April 2026 [Page 6]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3ParametersSet = {
? initiator: Initiator

; RFC9114
? max_field_section_size: uint64

RFC9204
max_table_capacity: uinto64
? blocked_streams_count: uinté64

O e

RFC9220 (SETTINGS_ENABLE_CONNECT_PROTOCOL)
? extended_connect: uintl6

~.

RFC9297 (SETTINGS_H3_DATAGRAM)
? h3_datagram: uintlé6

~.

; glog-specific

; indicates whether this implementation waits for a SETTINGS
; frame before processing requests

? walts_for_settings: bool

* SShttp3-parametersset—-extension

Figure 2: HTTP3ParametersSet definition

The parameters_set event can contain any number of unspecified
fields. This allows for representation of reserved settings (aka
GREASE) or ad-hoc support for extension settings that do not have a
related glog schema definition.

3.2. parameters_restored

When using QUIC O0-RTT, HTTP/3 clients are expected to remember and
reuse the server’s SETTINGs from the previous connection. The
parameters_restored event is used to indicate which HTTP/3 settings
were restored and to which values when utilizing O0-RTT. It has Base
importance level.

Marx, et al. Expires 23 April 2026 [Page 7]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3ParametersRestored = {
; RFC9114
? max_field_section_size: uinto64

RFC9204
max_table_capacity: uintoe4
? blocked_streams_count: uinté4

O e

RFC9220 (SETTINGS_ENABLE_CONNECT_PROTOCOL)
? extended_connect: uintlé6

~.

RFC9297 (SETTINGS_H3_DATAGRAM)
? h3_datagram: uintl6

~.

* S$Shttp3-parametersrestored—-extension

Figure 3: HTTP3ParametersRestored definition
3.3. stream_type_set

The stream_type_set event conveys when a HTTP/3 stream type becomes
known; see Sections 6.1 and 6.2 of [HTTP/3]. It has Base importance
level.

Client bidirectional streams always have a stream type value of
"request". Server bidirectional streams have no defined use,
although extensions could change that.

Unidirectional streams in either direction begin with with a
variable-length integer type. Where the type is not known, the
stream_type value of "unknown" type can be used and the value
captured in the stream_type_bytes field; a numerical value without
variable-length integer encoding.

The generic $HTTP3StreamType 1s defined here as a CDDL "type socket"

extension point. It can be extended to support additional HTTP/3
Stream types.

Marx, et al. Expires 23 April 2026 [Page 8]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3StreamTypeSet = {
? initiator: Initiator
stream_id: uint64
stream_type: SHTTP3StreamType

only when stream type === "unknown"
stream type_bytes: uinté64

) Ne

only when stream_type === "push"
? associated_push_id: uint64

~.

* $Shttp3-streamtypeset—-extension
}

SHTTP3StreamType /= "request" /
"control" /
"push" /

"reserved" /
"unknown" /
"gpack_encode" /
"gpack_decode"

Figure 4: HTTP3StreamTypeSet definition
3.4. priority_updated

The priority_updated event is emitted when the priority of a request
stream or push stream is initialized or updated through mechanisms
defined in [RFC9218]. It has Base importance level.

There can be several reasons why a priority_updated occurs, and why a
particular value was chosen. For example, the priority can be
updated through signals received from client and/or server (e.g., in
HTTP/3 HEADERS or PRIORITY_UPDATE frames) or it can be changed or
overridden due to local policies. The trigger and reason fields can
be used to optionally capture such details.

Marx, et al. Expires 23 April 2026 [Page 9]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3PriorityUpdated = {
; 1f the prioritized element is a request stream
? stream_id: uinté64

if the prioritized element is a push stream
push_id: uint64

) Ne

? old: HTTP3Priority
new: HTTP3Priority

? trigger: "client_signal_received" /
"local" /
"other"

? reason: "client_signal_only" /

"client_server_merged" /
"local_policy" /
"other"

* $Shttp3-priorityupdated-extension

Figure 5: HTTP3PriorityUpdated definition
3.5. frame_created

The frame_created event is emitted when the HTTP/3 framing actually
happens. It has Core importance level.

This event does not necessarily coincide with HTTP/3 data getting
passed to the QUIC layer. For that, see the stream_data_moved event
in [QLOG-QUIC].
HTTP3FrameCreated = {

stream_id: uint64

frame: SHTTP3Frame

* $Shttp3-framecreated-extension

Figure 6: HTTP3FrameCreated definition
3.6. frame_parsed

The frame_parsed event is emitted when the HTTP/3 frame is parsed.
It has Core importance level.

Marx, et al. Expires 23 April 2026 [Page 10]

Internet-Draft HTTP/3 glog event definitions October 2025

This event i1s not necessarily the same as when the HTTP/3 data is
actually received on the QUIC layer. For that, see the
stream_data_moved event in [QLOG-QUIC].

HTTP3FrameParsed = {
stream_id: uinto64

frame: $SHTTP3Frame

* $$h3-frameparsed-extension

Figure 7: HTTP3FrameParsed definition
3.7. datagram_created

The datagram_created event is emitted when an HTTP/3 Datagram is
created (see [RFC92971). It has Base importance level.

This event does not necessarily coincide with the HTTP/3 Datagram
getting passed to the QUIC layer. For that, see the
datagram_data_moved event in [QLOG-QUIC].

HTTP3DatagramCreated = {
quarter_stream_id: uint64
? datagram: S$HTTP3Datagram

? raw: RawInfo

* S$$Shttp3-datagramcreated—-extension

Figure 8: HTTP3DatagramCreated definition

3.8. datagram_parsed

The datagram_parsed event is emitted when the HTTP/3 Datagram is
parsed (see [RFC9297]). It has Base importance level.

This event is not necessarily the same as when the HTTP/3 Datagram is
actually received on the QUIC layer. For that, see the
datagram_data_moved event in [QLOG-QUIC].

HTTP3DatagramParsed = {
quarter_stream id: uint64
? datagram: S$HTTP3Datagram

? raw: RawInfo

* $Shttp3-datagramparsed—-extension

Marx, et al. Expires 23 April 2026 [Page 11]

Internet-Draft HTTP/3 glog event definitions October 2025

Figure 9: HTTP3DatagramParsed definition

3.9. push_resolved

The push_resolved event is emitted when a pushed resource

(Section 4.6 of [HTTP/3]) is successfully claimed (used) or,
conversely, abandoned (rejected) by the application on top of HTTP/3
(e.g., the web browser). This event provides additional context that

can is aid debugging issues related to server push. It has Extra
importance level.

HTTP3PushResolved = {
? push_id: uinto4
; 1in case this is logged from a place that does not have access
; to the push_id
? stream_id: uinté64
decision: HTTP3PushDecision

* $Shttp3-pushresolved-extension
}

HTTP3PushDecision = "claimed" /
"abandoned"

Figure 10: HTTP3PushResolved definition
4. HTTP/3 Data Type Definitions
The following data type definitions can be used in HTTP/3 events.
4.1. Initiator

Initiator = "local" /
"remote"

Figure 11: Initiator definition
4.2. HTTP3Frame

The generic $HTTP3Frame is defined here as a CDDL "type socket"
extension point. It can be extended to support additional HTTP/3
frame types.

; The HTTP3Frame is any key-value map (e.g., JSON object)

SHTTP3Frame /= {
* text => any

Marx, et al. Expires 23 April 2026 [Page 12]

Internet-Draft HTTP/3 glog event definitions October 2025

Figure 12: HTTP3Frame type socket definition
The HTTP/3 frame types defined in this document are as follows:

HTTP3BaseFrames = HTTP3DataFrame /
HTTP3HeadersFrame /
HTTP3CancelPushFrame /
HTTP3SettingsFrame /
HTTP3PushPromiseFrame /
HTTP3GoawayFrame /
HTTP3MaxPushIDFrame /
HTTP3ReservedFrame /
HTTP3UnknownFrame

SHTTP3Frame /= HTTP3BaseFrames

Figure 13: HTTP3BaseFrames definition

4.3. HTTP3Datagram

The generic $HTTP3Datagram is defined here as a CDDL "type socket"
extension point. It can be extended to support additional HTTP/3
datagram types. This document intentionally does not define any
specific glog schemas for specific HTTP/3 Datagram types.

; The HTTP3Datagram is any key-value map (e.g., JSON obiject)
SHTTP3Datagram /= {

* text => any

}
Figure 14: HTTP3Datagram type socket definition
4.3.1. HTTP3DataFrame
HTTP3DataFrame = {

frame_type: "data"
? raw: RawInfo

Figure 15: HTTP3DataFrame definition

4.3.2. HTTP3HeadersFrame
The payload of an HTTP/3 HEADERS frame is the QPACK-encoding of an

HTTP field section; see Section 7.2.2 of [HTTP/3]. HTTP3HeaderFrame,
in contrast, contains the HTTP field section without QPACK encoding.

Marx, et al. Expires 23 April 2026 [Page 13]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3HTTPField = {
? name: text
? name_bytes: hexstring
? value: text
? value_bytes: hexstring

Figure 16: HTTP3HTTPField definition

HTTP3HeadersFrame = {

frame_type: "headers"

headers: [* HTTP3HTTPField]

? raw: RawInfo

Figure 17: HTTP3HeadersFrame definition

For example, the HTTP field section
:path: /index.html
:method: GET
rauthority: example.org

:scheme: https

would be represented in a JSON serialization as:

headers: [

{
"name": ":path",
"Value": "/"

b

{
"name": ":method",
"value": "GET"

b

{
"name": ":authority",
"value": "example.org"

b

{
"name": ":scheme",
"value": "https"

Figure 18: HTTP3HeadersFrame example

Marx, et al. Expires 23 April 2026 [Page 14]

Internet-Draft HTTP/3 glog event definitions October 2025

Section 4.2 of [HTTP/3] and Section 5.1 of [HTTP] define rules for
the characters used in HTTP field sections names and values.
Characters outside the range are invalid and result in the message
being treated as malformed. It can however be useful to also log
these invalid HTTP fields. Characters in the allowed range can be
safely logged by the text type used in the name and value fields of
HTTP3HTTPField. Characters outside the range are unsafe for the text
type and need to be logged using the name_bytes and value_bytes
field. An instance of HTTP3HTTPField MUST include either the name or
name_bytes field and MAY include both. An HTTP3HTTPField MAY include
a value or value_bytes field or neither.

4.3.3. HTTP3CancelPushFrame

HTTP3CancelPushFrame = {
frame_type: "cancel_push"
push_id: uinté4
? raw: RawInfo

Figure 19: HTTP3CancelPushFrame definition
4.3.4. HTTP3SettingsFrame

The settings field can contain zero or more entries. Each setting
has a name field, which corresponds to Setting Name as defined (or as
would be defined if registered) in the "HTTP/3 Settings" registry
maintained at https://www.iana.org/assignments/http3-parameters
(https://www.iana.org/assignments/http3-parameters) .

An endpoint that receives unknown settings is not able to log a
specific name. Instead, the name value of "unknown" can be used and
the value captured in the name_bytes field; a numerical value without
variable-length integer encoding.

Marx, et al. Expires 23 April 2026 [Page 15]

Internet-Draft HTTP/3 glog event definitions October 2025

HTTP3SettingsFrame = ({
frame_type: "settings"
settings: [* HTTP3Setting]
? raw: RawInfo

}

HTTP3Setting = {
? name: $HTTP3SettingsName
; only when name === "unknown"
? name_bytes: uinté64

value: uinto64

}

SHTTP3SettingsName /= "settings_gpack_max_table_capacity" /
"settings_max_field_section_size" /
"settings_gpack_blocked_streams" /
"settings_enable_connect_protocol" /
"settings_h3_datagram" /

"reserved" /
"unknown"

Figure 20: HTTP3SettingsFrame definition
4.3.5. HTTP3PushPromiseFrame
HTTP3PushPromiseFrame = {
frame_type: "push_promise"
push_id: uinté4
headers: [* HTTP3HTTPField]
? raw: RawInfo
Figure 21: HTTP3PushPromiseFrame definition

4.3.6. HTTP3GoAwayFrame

HTTP3GoawayFrame = {
frame_type: "goaway"

; Either stream_id or push_id.

; This is implicit from the sender of the frame
id: uinté4

? raw: RawInfo

Figure 22: HTTP3GoawayFrame definition

Marx, et al. Expires 23 April 2026 [Page 16]

Internet-Draft HTTP/3 glog event definitions October 2025

4.3.7. HTTP3MaxPushIDFrame
HTTP3MaxPushIDFrame = ({
frame_type: "max_push_id"
push_id: uinté4
? raw: RawInfo
Figure 23: HTTP3MaxPushIDFrame definition
4.3.8. HTTP3PriorityUpdateFrame

The PRIORITY_UPDATE frame is defined in [RFC9218].

HTTP3PriorityUpdateFrame = {
frame_type: "priority_update"

; 1f the prioritized element is a request stream
stream_id: uint64

[V

; 1f the prioritized element is a push stream
? push_id: uinté4

priority_ field value: HTTP3Priority
? raw: RawInfo

; The priority wvalue in ASCII text, encoded using Structured Fields
; Example: u=5, i
HTTP3Priority = text

Figure 24: HTTP3PriorityUpdateFrame definition
4.3.9. HTTP3ReservedFrame

The frame_type_bytes field is the numerical value without variable-
length integer encoding.

HTTP3ReservedFrame = {
frame_type: "reserved"

frame_type_bytes: uinté64
? raw: RawInfo

Figure 25: HTTP3ReservedFrame definition

Marx, et al. Expires 23 April 2026 [Page 17]

Internet-Draft HTTP

4.3.10. HTTP3UnknownFrame

/3 glog event definitions

October 2025

The frame_type_bytes field is the numerical value without variable-
length integer encoding.

HTTP3UnknownFrame = {
frame_type: "unknow
frame_type_bytes: u

? raw: RawInfo
}
Figure 2
4.3.11. HTTP3ApplicationE

HTTP3ApplicationError =

Figure 27:

n"
int64

6: HTTP3UnknownFrame definition
rror

"http_no_error" /
"http_general_protocol_error" /
"http_internal_error" /
"http_stream_creation_error" /
"http_closed_critical_stream" /
"http_frame_unexpected" /
"http_frame_error" /
"http_excessive_load" /
"http_id_error" /
"http_settings_error" /
"http_missing_settings" /
"http_request_rejected" /
"http_request_cancelled" /
"http_request_incomplete" /
"http_early_response" /
"http_connect_error" /
"http_version_fallback"

HTTP3ApplicationError definition

The HTTP3ApplicationError extends the general $ApplicationError

definition in the glog

QUIC document, see [QLOG-QUIC].

; ensure HTTP errors are properly validated in QUIC events as well

; €.9., QUIC’s Connecti
$ApplicationError /= HT

5. Security and Privacy C

The security and privac
apply to this document

Marx, et al.

onClose Frame
TP3ApplicationError

onsiderations

y considerations discussed in
as well.

Expires 23 April 2026

[QLOG-MAIN]

[Page 18]

Internet-Draft HTTP/3 glog event definitions October 2025

6. IANA Considerations

This document registers a new entry in the "glog event schema URIs"
registry (created in Section 15 of [QLOG-MAIN]).

Event schema URI: wurn:ietf:params:glog:events:http3
Namespace http3

Event Types parameters_set, parameters_restored, stream_type_set,
priority_updated, frame_created, frame_parsed, datagram_created,
datagram_parsed, push_resolved

Description: Event definitions related to the HTTP/3 application
protocol.

Reference: This Document
7. Normative References

[CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
Definition Language (CDDL): A Notational Convention to
Express Concise Binary Object Representation (CBOR) and
JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

[EXTENDED—-CONNECT]
Hamilton, R., "Bootstrapping WebSockets with HTTP/3",
RFC 9220, DOI 10.17487/RFC9220, June 2022,
<https://www.rfc-editor.org/rfc/rfc9220>.

[H3-DATAGRAM]
Schinazi, D. and L. Pardue, "HTTP Datagrams and the
Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August
2022, <https://www.rfc—editor.org/rfc/rfc9297>.

[H3_PRIORITIZATION]
Oku, K. and L. Pardue, "Extensible Prioritization Scheme
for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,
<https://www.rfc-editor.org/rfc/rfc9218>.

[HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
Ed., "HTTP Semantics", STD 97, RFC 9110,
DOI 10.17487/RFC9110, June 2022,
<https://www.rfc-editor.org/rfc/rfc9110>.

[HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,
June 2022, <https://www.rfc-editor.org/rfc/rfc9114>.

Marx, et al. Expires 23 April 2026 [Page 19]

Internet-Draft HTTP/3 glog event definitions October 2025

[QLOG-MAIN]
Marx, R., Niccolini, L., Seemann, M., and L. Pardue,
"glog: Structured Logging for Network Protocols", Work in
Progress, Internet-Draft, draft-ietf-quic—-glog-main-
schema-12, 7 July 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-quic-
glog-main-schema-12>.

[QLOG-QUIC]
Marx, R., Niccolini, L., Seemann, M., and L. Pardue, "QUIC
event definitions for glog", Work in Progress, Internet-
Draft, draft-ietf-quic-glog-quic-events-11, 7 July 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-quic-
glog-quic—-events—-11>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

[RFC9218] Oku, K. and L. Pardue, "Extensible Prioritization Scheme
for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,
<https://www.rfc-editor.org/rfc/rfc9218>.

[RFC9297] Schinazi, D. and L. Pardue, "HTTP Datagrams and the
Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August
2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Acknowledgements

Much of the initial work by Robin Marx was done at the Hasselt and KU
Leuven Universities.

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja
Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian Huitema, Hugo
Landau, Kazuho Oku, and Jonathan Lennox for their feedback and
suggestions.

Change Log

This section is to be removed before publishing as an RFC.

Marx, et al. Expires 23 April 2026 [Page 20]

Internet-Draft HTTP/3 glog event definitions October 2025

Since

Since

Since

Since

Marx,

draft-ietf-quic-glog-h3-events-11:

Replaced all length fields with raw.length (#495)

Renamed owner to initiator (#498)
draft-ietf-quic-glog-h3-events-09:

Several editorial changes

Consistent use of RawInfo and _bytes fields to log raw data (#450)
draft-ietf-quic-glog-h3-events-08:

Removed individual categories and put every event in the single
http3 event schema namespace. Major change (#439)

Changed protocol id from HTTP3 to HTTP/3 (#428)
draft-ietf-quic—-glog-h3-events-07:

TODO (we forgot...)

draft-ietf-quic-glog-h3-events-06:

ProtocolEventBody is now called ProtocolEventData (#352)
Editorial changes (#402)
draft-ietf-quic-glog-h3-events-05:

Removed all gpack event definitions (#335)

Various editorial changes
draft-ietf-quic-glog-h3-events-04:

Renamed "http’ category to "h3’ (#300)

H3HTTPField.value is now optional (#296)

Added definitions for RFC9297 (HTTP/3 Datagram extension) (#310)

Added definitions for RFC9218 (HTTP Extensible Prioritizations
extension) (#312)

Added definitions for RFC9220 (Extended Connect extension) (#325)

et al. Expires 23 April 2026 [Page 21]

Internet-Draft HTTP/3 glog event definitions October 2025

Since

Since

Since

Since

Marx,

Editorial and formatting changes (#298, #258, #299, #304, #327)
draft-ietf-quic-glog-h3-events-03:

Ensured consistent use of RawInfo to indicate raw wire bytes
(#243)

Changed HTTPStreamTypeSet:raw_stream type to stream_ type_value
(#54)

Changed HTTPUnknownFrame:raw_frame_type to frame_type_value (#54)
Renamed max_header_list_size to max_field section_size (#282)
draft-ietf-quic-glog-h3-events-02:

Renamed HTTPStreamType data to request (#222)

Added HTTPStreamType value unknown (#227)

Added HTTPUnknownFrame (#224)

Replaced old and new fields with stream_type in HTTPStreamTypeSet
(#240)

Changed HTTPFrame to a CDDL plug type (#257)

Moved data definitions out of the appendix into separate sections
Added overview Table of Contents
draft-ietf-quic-glog-h3-events-01:

No changes - new draft to prevent expiration
draft-ietf-quic-glog-h3-events-00:

Change the data definition language from TypeScript to CDDL (#143)
draft-marx—-glog-event-definitions—-quic-h3-02:

These changes were done in preparation of the adoption of the
drafts by the QUIC working group (#137)

Split QUIC and HTTP/3 events into two separate documents

Moved RawInfo, Importance, Generic events and Simulation events to
the main schema document.

et al. Expires 23 April 2026 [Page 22]

Internet-Draft HTTP/3 glog event definitions October 2025

Since draft-marx-glog-event-definitions—-quic-h3-01:

Major changes:

*

Moved data_moved from http to transport. Also made the "from" and
"to" fields flexible strings instead of an enum (#111, #65)

Moved packet_type fields to PacketHeader. Moved packet_size field
out of PacketHeader to RawInfo:length (#40)

Made events that need to log packet_type and packet_number use a
header field instead of logging these fields individually

Added support for logging retry, stateless reset and initial
tokens (#94,#86,#117)

Moved separate general event categories into a single category
"generic" (#47)

Added "transport:connection_closed" event (#43,#85,#78,#49)

Added version_information and alpn_information events
(#85, #75, #28)

Added parameters_restored events to help clarify O0-RTT behaviour
(#88)

Smaller changes:

*

Marx,

Merged loss_timer events into one loss_timer_ updated event
Field data types are now strongly defined (#10,#39,#36,#115)

Renamed gpack instruction_received and instruction_sent to
instruction_created and instruction_parsed (#114)

Updated gpack:dynamic_table_updated.update_type. It now has the
value "inserted" instead of "added" (#113)

Updated gpack:dynamic_table_updated. It now has an "owner" field
to differentiate encoder vs decoder state (#112)

Removed push_allowed from http:parameters_set (#110)

Removed explicit trigger field indications from events, since this
was moved to be a generic property of the "data" field (#80)

et al. Expires 23 April 2026 [Page 23]

Internet-Draft HTTP/3 glog event definitions October 2025

* Updated transport:connection_id updated to be more in line with
other similar events. Also dropped importance from Core to Base
(#45)

* Added length property to PaddingFrame (#34)

* Added packet_number field to transport:frames_processed (#74)

* Added a way to generically log packet header flags (first 8 bits)
to PacketHeader

* Added additional guidance on which events to log in which
situations (#53)

* Added "simulation:scenario" event to help indicate simulation
details

* Added "packets_acked" event (#107)

* Added "datagram_ids" to the datagram_ X and packet_X events to
allow tracking of coalesced QUIC packets (#91)

* Extended connection_state_updated with more fine-grained states
(#49)

Since draft-marx-glog-event-definitions—-quic-h3-00:
* Event and category names are now all lowercase

* Added many new events and their definitions

* "type" fields have been made more specific (especially important
for PacketType fields, which are now called packet_type instead of
type)

* Events are given an importance indicator (issue #22)
* Event names are more consistent and use past tense (issue #21)

* Triggers have been redefined as properties of the "data" field and
updated for most events (issue #23)

Authors’ Addresses
Robin Marx (editor)

Akamai
Email: rmarx@akamai.com

Marx, et al. Expires 23 April 2026 [Page 24]

Internet-Draft HTTP/3 glog event definitions October 2025

Luca Niccolini (editor)
Meta
Email: lniccolini@meta.com

Marten Seemann (editor)
Email: martenseemann@gmail.com

Lucas Pardue (editor)
Cloudflare
Email: lucas@lucaspardue.com

Marx, et al. Expires 23 April 2026 [Page 25]

QUIC R. Marx, Ed.

Internet-Draft Akamai
Intended status: Standards Track L. Niccolini, Ed.
Expires: 23 April 2026 Meta

M. Seemann, Ed.

L. Pardue, Ed.
Cloudflare
20 October 2025

glog: Structured Logging for Network Protocols
draft-ietf-quic—-glog-main-schema-13

Abstract

glog provides extensible structured logging for network protocols,
allowing for easy sharing of data that benefits common debug and
analysis methods and tooling. This document describes key concepts
of glog: formats, files, traces, events, and extension points. This
definition includes the high-level log file schemas, and generic
event schemas. Requirements and guidelines for creating protocol-
specific event schemas are also presented. All schemas are defined
independent of serialization format, allowing logs to be represented
in various ways such as JSON, CSV, or protobuf.

Note to Readers
Note to RFC editor: Please remove this section before publication.

Feedback and discussion are welcome at https://github.com/quicwg/glog

(https://github.com/quicwg/glog). Readers are advised to refer to
the "editor’s draft" at that URL for an up-to-date version of this
document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). ©Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Marx, et al. Expires 23 April 2026 [Page 1]

Internet-Draft glog

October 2025

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any

time.

It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as

"work in progress."

This Internet-Draft will expire on 23 April 2026.

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the

document authors.

All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents

license-info)
Please review these documents carefully,
and restrictions with respect to this document.

(https://trustee.ietf.org/
in effect on the date of publication of this document.

as they describe your rights
Code Components

extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

Marx,

0 o

EUEEN EEN BN AN

Introduction .o
.1. Conventions and Termlnology
.2. Use of CDDL

Design Overview

Abstract LogFile Class

.1. Concrete Log File Schema URIs
QlogFile schema

.1. Traces

.2. Trace

.3. TraceError

QlogFileSeq schema

.1. TraceSeq

VantagePoint .

Abstract Event Class

1. Timestamps

2. Tuple

3. Grouping .

4. SystemInformatlon

5. CommonFields .
Concrete Event Types and Event Schemas
1. Event Schema URIs

.2. Extending the Data Fleld

8.2.1. Triggers

.3. Event Importance Levels

.4. Tooling Expectations

et al. Expires 23 April 2026

[Page

O J o U1 b D>

10
12
13
14
15
16
17
22
23
24
25
27
29
29
33
34
35

Internet-Draft glog October 2025

8.5. Further Design Guidance < « . « « . . 35
9. The Generic Event Schemas 36
9.1. Loglevel events + ¢« « « « « « « < « « < . . 36
9.1.1. Eerror . . .« « « v 4 e 4w 4 4 4w e e e e e e e e« < < . 30
9.1.2 warning+ v 4 e e e e e e e 4 e e« . . 36
9.1.3 e o s G
9.1.4 debug 0 0 0 0 e e e e e e e e e e e e 3T
9.1.5 verbose e e e e e e e e e 3T
9.2. Simulation Events < 38
9.2.1. scenario+« « ¢ v« e e« v 4« e < « < < . 38
9.2.2. marker . . e
10. Raw packet and frame 1nformatlon e e e e e e e e e e e e e 39
11. Serializing glog . .)
11.1. glog to JSON mapping . . . e
11.2. qglog to JSON Text Sequences mapping . . e 41
11.2.1. Supporting JSON Text Sequences in toollng e e . .. 42
11.3. JSON Interoperability « « « . « « . 42
11.4. Truncated values . . . e e e e e e e e 43
11.5. Optimization of serlallzed data e e e e e e e e e .. 44
12. Methods of access and generation« . . . 45
12.1. Set file output destination via an env1ronment
variable o v v e e v e« <« . . 45
13. Tooling requirements . . . e e e e e e e e e o . . . 46
14. Security and privacy con51deratlons e e e e e e e e e e e 4T
14.1. Data at risk e e e e e e 4T
14.2. Operational 1mpllcatlons and recommendatlons « « « .« . . 48
14.3. Data minimization or anonymization 49
15. IANA Considerations« « « « o« v« e v« o < . . 4o
16. References« « ¢ v v ¢ v v v e v e e e e e e e . e o bl
16.1. Normative References 51
16.2. Informative References 053
Acknowledgements+« « + + & « < « < < . . b4
Change Log . . .o e e e e e+« « « . . b4
Since draft- 1etf quic-— qlog main-— schema 12: e« « « « « < <« . . b4
Since draft-ietf-quic-glog-main-schema-10: e« « « « « « <« . . b4
Since draft-ietf-quic-glog-main-schema-09: e« e« « « « « . . b4
Since draft-ietf-quic-glog-main-schema-08: N
Since draft-ietf-quic-glog-main-schema-07: N
Since draft-ietf-quic—-glog-main-schema-06: e e e« e « < <« . . 55
Since draft-ietf-quic—-glog-main-schema-05: e e« « « « « < . . 55
Since draft-ietf-quic—-glog-main-schema-04: e« + « « « « « < < 55
Since draft-ietf-quic-glog-main-schema-03: N
Since draft-ietf-quic-glog-main-schema-02: e e+ e+« « « . . . bo
Since draft-ietf-quic-glog-main-schema-01: e e e+« « « . . . bo
Since draft-ietf-quic—-glog-main-schema-00: e e« « « « < . . . 656
Since draft-marx-glog-main-schema-draft-02: 56
Since draft-marx-glog-main-schema-01: 56
Since draft-marx-glog-main-schema-00: 57

Marx, et al. Expires 23 April 2026 [Page 3]

Internet-Draft glog October 2025

Authors’ Addresses e 57
1. Introduction

Endpoint logging is a useful strategy for capturing and understanding
how applications using network protocols are behaving, particularly
where protocols have an encrypted wire image that restricts
observers’ ability to see what is happening.

Many applications implement logging using a custom, non-standard
logging format. This has an effect on the tools and methods that are
used to analyze the logs, for example to perform root cause analysis
of an interoperability failure between distinct implementations. A
lack of a common format impedes the development of common tooling
that can be used by all parties that have access to logs.

glog is an extensible structured logging for network protocols that
allows for easy sharing of data that benefits common debug and
analysis methods and tooling. This document describes key concepts
of glog: formats, files, traces, events, and extension points. This
definition includes the high-level log file schemas, and generic
event schemas. Requirements and guidelines for creating protocol-
specific event schemas are also presented. Accompanying documents
define event schemas for QUIC ([QLOG-QUIC]) and HTTP/3 ([QLOG-H3]).

The goal of glog is to provide amenities and default characteristics
that each logging file should contain (or should be able to contain),
such that generic and reusable toolsets can be created that can deal
with logs from a variety of different protocols and use cases.

As such, glog provides versioning, metadata inclusion, log
aggregation, event grouping and log file size reduction techniques.

All glog schemas can be serialized in many ways (e.g., JSON, CBOR,
protobuf, etc). This document describes only how to employ [JSON],
its subset [I-JSON], and its streamable derivative
[JSON-Text—-Sequences].

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Serialization examples in this document use JSON ([JSON]) unless
otherwise indicated.

Marx, et al. Expires 23 April 2026 [Page 4]

Internet-Draft glog October 2025

Events are defined with an importance level as described in
Section 8.3}.

1.2. Use of CDDL

To define events and data structures, all glog documents use the
Concise Data Definition Language [CDDL]. This document uses the
basic syntax, the specific text, uint, float32, float64, bool, and
any types, as well as the .default, .size, and .regexp control
operators, the ~ unwrapping operator, and the $ and $$ extension
points syntax from [CDDL].

Additionally, this document defines the following custom types for
clarity:

; CDDL’s uint is defined as being 64-bit in size
; but for many protocol fields it is better to be restrictive
; and explicit

uint8 = uint .size 1
uintl6 = uint .size 2
uint32 = uint .size 4
uint64 = uint .size 8

; an even—-length lowercase string of hexadecimally encoded bytes

; examples: 82dc, 027339, 4cdbfd9bf0

; this is needed because the default CDDL binary string (bytes/bstr)
; 1s only CBOR and not JSON compatible

hexstring = text .regexp " ([0-9a-f]{2})*"

Figure 1: Additional CDDL type definitions

All timestamps and time-related values (e.g., offsets) in glog are
logged as float64 in the millisecond resolution.

Other glog documents can define their own CDDL-compatible (struct)
types (e.g., separately for each Packet type that a protocol
supports) .

The ordering of member fields in glog CDDL type definitions is not
significant. The ordering of member fields in the serialization
formats defined in this document, JSON (Section 11.1) and JSON Text
Sequences (Section 11.2), is not significant and glog tools MUST NOT
assume so. Other glog serialization formats MAY define field order
significance, if they do they MUST define requirements for glog tools
supporting those formats.

Note to RFC editor: Please remove the following text in this
section before publication.

Marx, et al. Expires 23 April 2026 [Page 5]

Internet-Draft glog October 2025
The main general CDDL syntax conventions in this document a reader
should be aware of for easy reading comprehension are:

* ? obj : this object is optional

* TypeNamel / TypeName2 : a union of these two types (object can be
either type 1 OR type 2)

* obj: TypeName : this object has this concrete type

* obj: [* TypeName] : this object is an array of this type with
minimum size of 0 elements

* obj: [+ TypeName] : this object is an array of this type with
minimum size of 1 element

* TypeName = ... : defines a new type

* EnumName = "entryl" / "entry2" / entry3 / ...: defines an enum

* StructName = { ... } : defines a new struct type

* ; : single-line comment

* * text => any : special syntax to indicate 0 or more fields that

have a string key that maps to any value. Used to indicate a
generic JSON obiject.

All timestamps and time-related values (e.g., offsets) in glog are
logged as float64 in the millisecond resolution.

Other glog documents can define their own CDDL-compatible (struct)
types (e.g., separately for each Packet type that a protocol
supports) .

2. Design Overview
The main tenets for the glog design are:

* Streamable, event-based logging

* A flexible format that can reduce log producer overhead, at the
cost of increased complexity for consumers (e.g. tools)

* Extensible and pragmatic

Marx, et al. Expires 23 April 2026 [Page 6]

Internet-Draft glog October 2025

* Aggregation and transformation friendly (e.g., the top-level
element for the non-streaming format is a container for individual
traces, group_ids can be used to tag events to a particular
context)

* Metadata is stored together with event data
This is achieved by a logical logging hierarchy of:
* Log file
- Trace(s)
o Event (s)

An abstract LogFile class is declared (Section 3), from which all
concrete log file formats derive using log file schemas. This
document defines the QLogFile (Section 4) and QLogFileSeq (Section 5)
log file schemas.

A trace 1s conceptually fluid but the conventional use case is to
group events related to a single data flow, such as a single logical
QUIC connection, at a single vantage point (Section 6). Concrete
trace definitions relate to the log file schemas they are contained
in; see (Section 4.1, Section 4.2, and Section 5.1).

Events are logged at a time instant and convey specific details of
the logging use case. For example, a network packet being sent or
received. This document declares an abstract Event class (Section 7)
containing common fields, which all concrete events derive from.
Concrete events are defined by event schemas that declare or extend a
namespace, which contains one or more related event types or their
extensions. For example, this document defines two event schemas for
two generic event namespaces loglevel and simulation (see Section 9).

3. Abstract LogFile Class

A Log file is intended to contain a collection of events that are in
some way related. An abstract LogFile class containing fields common
to all log files is defined in Figure 2. Each concrete log file
schema derives from this using the CDDL unwrap operator () and can
extend it by defining semantics and any custom fields.

Marx, et al. Expires 23 April 2026 [Page 7]

Internet-Draft glog October 2025

LogFile = {
file_schema: text
serialization_format: text
? title: text
? description: text

Figure 2: LogFile definition

The required "file_schema" field identifies the concrete log file
schema. It MUST have a value that is an absolute URI; see
Section 3.1 for rules and guidance.

The required "serialization_format" field indicates the serialization
format using a media type [RFC2046]. It is case-insensitive.

In order to make it easier to parse and identify glog files and their
serialization format, the "file_schema" and "serialization_format"
fields and their values SHOULD be in the first 256 characters/bytes
of the resulting log file.

The optional "title" and "description" fields provide additional
free-text information about the file.

3.1. Concrete Log File Schema URIs

Concrete log file schemas MUST identify themselves using a URI
[RFC3986] .

Log file schemas defined by RFCs MUST register a URI in the "glog log
file schema URIs" registry and SHOULD use a URN of the form
urn:ietf:params:glog:file:<schema-identifier>, where <schema-
identifier> is a globally-unique text name using only characters in
the URI unreserved range; see Section 2.3 of [RFC3986]. This
document registers urn:ietf:params:qglog:file:contained (Section 4)
and urn:ietf:params:glog:file:sequential (Section 5).

Marx, et al. Expires 23 April 2026 [Page 8]

Internet-Draft glog October 2025

Private or non-standard log file schemas MAY register a URI in the
"glog log file schema URIs" registry but MUST NOT use a URN of the
form urn:ietf:params:glog:file:<schema-identifier>. URIs that
contain a domain name SHOULD also contain a month-date in the form
mmyyyy. For example, "https://example.org/072024/
globallyuniquelogfileschema". The definition of the log file schema
and assignment of the URI MUST have been authorized by the owner of
the domain name on or very close to that date. This avoids problems
when domain names change ownership. The URI does not need to be
dereferencable, allowing for confidential use or to cover the case
where the log file schema continues to be used after the organization
that defined them ceases to exist.

The "glog log file schema URIs" registry operates under the Expert
Review policy, per Section 4.5 of [RFC8126]. When reviewing
requests, the expert MUST check that the URI is appropriate to the
concrete log file schema and satisfies the requirements in this
section. A request to register a private or non-standard log file
schema URI using a URN of the form urn:ietf:params:glog:file:<schema-
identifier> MUST be rejected.

Registration requests should use the template defined in Section 15.
4. QlogFile schema

A glog file using the QlogFile schema can contain several individual
traces and logs from multiple vantage points that are in some way
related. The top-level element in this schema defines only a small
set of "header" fields and an array of component traces. This is
defined in Figure 3 as:

QlogFile = {
"LogFile
? traces: [+ Trace /
TraceError]

Figure 3: QlogFile definition
The QlogFile schema URI is urn:ietf:params:glog:file:contained.
QlogFile extends LogFile using the CDDL unwrap operator (7), which
copies the fields presented in Section 3. Additionally, the optional

"traces" field contains an array of glog traces (Section 4.2), each
of which contain metadata and an array of glog events (Section 7).

Marx, et al. Expires 23 April 2026 [Page 9]

Internet-Draft glog October 2025

The default serialization format for QlogFile is JSON; see

Section 11.1 for guidance on populating the "serialization_format"
field and other considerations. Where a glog file is serialized to a
JSON format, one of the downsides is that it is inherently a non-
streamable format. Put differently, it is not possible to simply
append new glog events to a log file without "closing" this file at
the end by appending "]}]}". Without these closing tags, most JSON
parsers will be unable to parse the file entirely. The alternative
QlogFileSeq (Section 5) 1is better suited to streaming use cases.

JSON serialization example:

{
"file_schema": "urn:ietf:params:glog:file:contained",
"serialization_format": "application/glog+json",
"title": "Name of this particular glog file (short)",
"description": "Description for this group of traces (long)",
"traces": [...]

Figure 4: QlogFile example
4.1. Traces

It can be advantageous to group several related glog traces together
in a single file. For example, it is possible to simultaneously
perform logging on the client, on the server, and on a single point
on their common network path. For analysis, it is useful to
aggregate these three individual traces together into a single file,
so it can be uniquely stored, transferred, and annotated.

The QlogFile "traces" field is an array that contains a list of
individual glog traces. When capturing a glog at a vantage point, it
is expected that the traces field contains a single entry. Files can
be aggregated, for example as part of a post-processing operation, by
copying the traces in component to files into the combined "traces"
array of a new, aggregated glog file.

4.2. Trace

The exact conceptual definition of a Trace can be fluid. For
example, a trace could contain all events for a single connection,
for a single endpoint, for a single measurement interval, for a
single protocol, etc. 1In the normal use case however, a trace is a
log of a single data flow collected at a single location or wvantage
point. For example, for QUIC, a single trace only contains events
for a single logical QUIC connection for either the client or the
server.

Marx, et al. Expires 23 April 2026 [Page 10]

Internet-Draft glog October 2025

A Trace contains some metadata in addition to glog events, defined in
Figure 5 as:

Trace = {
? title: text
? description: text
? common_fields: CommonFields
? vantage_point: VantagePoint
event_schemas: [ttext]
events: [* Event]

Figure 5: Trace definition

The optional "title" and "description" fields provide additional
free-text information about the trace.

The optional "common_fields" field is described in Section 7.5.
The optional "vantage_point" field is described in Section 6.

The required "event_schemas" field contains event schema URIs that
identify concrete event namespaces and their associated types
recorded in the "events" field. Requirements and guidelines are

defined in Section 8.

The semantics and context of the trace can mainly be deduced from the
entries in the "common_fields" list and "vantage_point" field.

JSON serialization example:

Marx, et al. Expires 23 April 2026 [Page 11]

Internet-Draft glog October

4.3.

A TraceError indicates that an attempt to find/convert a file for
inclusion in the aggregated glog was made,

"title": "Name of this particular trace (short)",
"description": "Description for this trace (long)",
"common_fields": {
"ODCID": "abcdel234",
"time_format": "relative_to_epoch",
"reference_time":
"clock_type": "system",
"epoch": "1970-01-01T00:00:00.000z"
by
b
"vantage_point": {
"name": "backend-67",
"type": "server"
b
"event_schemas": ["urn:ietf:params:glog:events:quic"],
"events": [...]

Figure 6: Trace example

TraceError

during the process. Rather than silently dropping the erroneous

file,

the

TraceError = {

error_description: text

; the original URI used for attempted find of the file
? uri: text

? vantage_point: VantagePoint

Figure 7: TraceError definition

JSON serialization example:

{

"error_description”: "File could not be found",
"uri": "/srv/traces/today/latest.glog",
"vantage_point": { type: "server" }

Figure 8: TraceError example

but there was an error

2025

it can be explicitly included in the glog file as an entry in
"traces" array, defined in Figure 7 as:

Marx, et al. Expires 23 April 2026 [Page 12]

Internet-Draft glog October 2025

Note that another way to combine events of different traces in a
single glog file is through the use of the "group_id" field,
discussed in Section 7.3.

5. QlogFileSeqg schema

A glog file using the QlogFileSeq schema can be serialized to a
streamable JSON format called JSON Text Sequences (JSON-SEQ)
([RFC7464]). The top-level element in this schema defines only a
small set of "header" fields and an array of component traces. This
is defined in Figure 3 as:

QlogFileSeq = {
"LogFile
trace: TraceSeq

Figure 9: QlogFileSeq definition

The QlogFileSeqg schema URI is urn:ietf:params:glog:file:sequential.

QlogFile extends LogFile using the CDDL unwrap operator (7)), which
copies the fields presented in Section 3. Additionally, the required
"trace" field contains a singular trace (Section 4.2). All glog

events in the file are related to this trace; see Section 5.1.

See Section 11.2 for guidance on populating the
"serialization_format" field and other serialization considerations.

JSON-SEQ serialization example:

Marx, et al. Expires 23 April 2026 [Page 13]

Internet-Draft glog October 2025

// list of glog events, serialized in accordance with RFC 7464,
// starting with a Record Separator character and ending with a
// newline.

// For display purposes, Record Separators are rendered as <RS>

<RS>{
"file_schema": "urn:ietf:params:gqlog:file:sequential",
"serialization_format": "application/glog+json-seq",
"title": "Name of JSON Text Sequence glog file (short)",
"description": "Description for this trace file (long)",
"trace": {

"common_fields": {
"group_id":"127ecc830d98£9d54a42c4£f0842aa87e181a",
"time_format": "relative_to_epoch",
"reference_time": {

"clock_type": "system",
"epoch": "1970-01-01T00:00:00.000Z"
b
b
"vantage_point": {
"name" :"backend-67",
"type":"server"
by
"event_schemas": ["urn:ietf:params:glog:events:quic",
"urn:ietf:params:glog:events:http3"]
}
}
<RS>{"time": 2, "name": "quic:parameters_set", "data": { ... } }
<RS>{"time": 7, "name": "quic:packet_sent", "data": { ... } }

Figure 10: Top-level element
5.1. TraceSeq

TraceSeq is used with QlogFileSeq. It is conceptually similar to a
Trace, with the exception that glog events are not contained within
it, but rather appended after it in a QlogFileSeq.

TraceSeq = {
? title: text
? description: text
? common_fields: CommonFields
? vantage_point: VantagePoint
event_schemas: [ttext]

Figure 11: TraceSeq definition

Marx, et al. Expires 23 April 2026 [Page 14]

Internet-Draft glog October 2025

6. VantagePoint

A VantagePoint describes the vantage point from which a trace
originates, defined in Figure 12 as:

VantagePoint = {
? name: text
type: VantagePointType
? flow: VantagePointType

; client = endpoint which initiates the connection
; server = endpoint which accepts the connection

; network = observer in between client and server
VantagePointType = "client" /

"server" /
"network" /
"unknown"
Figure 12: VantagePoint definition

JSON serialization examples:

{

"name": "aioquic client",
"type": "client"

}

{
"name": "wireshark trace",
"type": "network",
"flow": "client"

Figure 13: VantagePoint example

The flow field is only required if the type is "network" (for
example, the trace is generated from a packet capture). It is used
to disambiguate events like "packet sent" and "packet received".

This is indicated explicitly because for multiple reasons (e.g.,
privacy) data from which the flow direction can be otherwise inferred
(e.g., IP addresses) might not be present in the logs.

Meaning of the different values for the flow field:

* "client" indicates that this vantage point follows client data
flow semantics (a "packet sent" event goes in the direction of the
server) .

Marx, et al. Expires 23 April 2026 [Page 15]

Internet-Draft glog October 2025

* "server" indicates that this vantage point follow server data flow
semantics (a "packet sent" event goes in the direction of the
client).

* "unknown" indicates that the flow’s direction is unknown.

Depending on the context, tools confronted with "unknown" wvalues in
the vantage_point can either try to heuristically infer the semantics
from protocol-level domain knowledge (e.g., in QUIC, the client
always sends the first packet) or give the user the option to switch
between client and server perspectives manually.

7. Abstract Event Class

Events are logged at a time instant and convey specific details of
the logging use case. An abstract Event class containing fields
common to all events is defined in Figure 14.

Event = {
time: floaté64
name: text
data: S$ProtocolEventData
? tuple: TuplelD
? time_format: TimeFormat
? group_id: GroupID
? system_info: SystemInformation

events can contain any amount of custom fields
* text => any

~.

Figure 14: Event definition

Each glog event MUST contain the mandatory fields: "time"
(Section 7.1), "name" (Section 8), and "data" (Section 8.2).

Each glog event is an instance of a concrete event type that derives

from the abstract Event class; see Section 8. They extend it by
defining the specific values and semantics of common fields, in
particular the name and data fields. Furthermore, they can

optionally add custom fields.
Each glog event MAY contain the optional fields: "time_format"

(Section 7.1), tuple (Section 7.2) "trigger" (Section 8.2.1), and
"group_id" (Section 7.3).

Marx, et al. Expires 23 April 2026 [Page 16]

Internet-Draft glog October 2025

Multiple events can appear in a Trace or TraceSeq and they might
contain fields with identical values. It is possible to optimize out
this duplication using "common_fields" (Section 7.5).

Example glog event:

{
"time": 1553986553572,

"name": "quic:packet_sent",
"data": { ... },

"group_id": "127ecc830d98£9d54a42c4f0842aa87el181a",
"time_format": "relative_to_epoch",

"ODCID": "127ecc830d98£9d54a42c4£0842aa87el1l81a"

Figure 15: Event example
7.1. Timestamps

Each event MUST include a "time" field to indicate the timestamp that
it occurred. It is a duration measured from some point in time; its
units depend on the type of clock chosen and system used. The time
field is a float64 and it is typically used to represent a duration
in milliseconds, with a fractional component to microsecond or
nanosecond resolution.

There are several options for generating and logging timestamps,
these are governed by the ReferenceTime type (optionally included in
the "reference_time" field contained in a trace’s "common_fields"
(Section 7.5)) and TimeFormat type (optionally included in the
"time_format" field contained in the event itself, or a trace’s
"common_fields").

There is no requirement that events in the same trace use the same
time format. However, using a single time format for related events

can make them easier to analyze.

The reference time governs from which point in time the "time" field
values are measured and is defined as:

Marx, et al. Expires 23 April 2026 [Page 17]

Internet-Draft glog October 2025

ReferenceTime = {
clock_type: "system" / "monotonic" / text .default "system"
epoch: RFC3339DateTime / "unknown" .default "1970-01-01T00:00:00.000zZ"

? wall_clock_time: RFC3339DateTime
}

RFC3339DateTime = text
Figure 16: ReferenceTime definition

The required "clock_type" field represents the type of clock used for
time measurements. The value "system" represents a clock that uses
system time, commonly measured against a chosen or well-known epoch.
However, depending on the system, System time can potentially Jjump
forward or back. In contrast, a clock using monotonic time is
generally guaranteed to never go backwards. The value "monotonic"
represents such a clock.

The required "epoch" field is the start of the ReferenceTime. When
using the "system" clock type, the epoch field SHOULD have a date/
time value using the format defined in [RFC3339]. However, the value
"unknown" MAY be used.

When using the "monotonic" clock type, the epoch field MUST have the
value "unknown".

The optional "wall_clock_time" field can be used to provide an
approximate date/time value that logging commenced at if the epoch
value is "unknown". It uses the format defined in [RFC3339]. Note
that conversion of timestamps to calendar time based on wall clock
times cannot be safely relied on.

The time format details how "time" values are encoded relative to the
reference time and is defined as:

TimeFormat = "relative_to_epoch" /
"relative_to_previous_event" .default "relative_to_epoch"

Figure 17: TimeFormat definition
relative_to_epoch: A duration relative to the ReferenceTime "epoch"
field. This approach uses the largest amount of characters. It
is good for stateless loggers. This is the default value of the

"time_format" field.

relative_to_previous_event: A delta-encoded value, based on the

Marx, et al. Expires 23 April 2026 [Page 18]

Internet-Draft glog October 2025

previously logged value. The first event in a trace is always
relative to the ReferenceTime. This approach uses the least
amount of characters. It is suitable for stateful loggers.

Events in each individual trace SHOULD be logged in strictly
ascending timestamp order (though not necessarily absolute wvalue, for
the "relative_to_previous_event" format). Tools MAY sort all events
on the timestamp before processing them, though are not required to
(as this could impose a significant processing overhead). This can
be a problem especially for multi-threaded and/or streaming loggers,
who could consider using a separate post-processor to order glog
events in time if a tool do not provide this feature.

Tools SHOULD NOT assume the ability to derive the absolute calendar

timestamp of an event from glog traces. Tools should not rely on
timestamps to be consistent across traces, even those generated by
the same logging endpoint. For reasons of privacy, the reference

time MAY have minimization or anonymization applied.

Example of a log using the relative_to_epoch format:

Marx, et al. Expires 23 April 2026 [Page 19]

Internet-Draft glog

"common_fields": {
"time_format": "relative_to_epoch",
"reference_time": {
"clock_type": "system",
"epoch": "1970-01-01T00:00:00.000z"
by
b
"events": [
{
"time": 1553986553572,
"name": "quic:packet_received",
"data": { ... },
b
{
"time": 1553986553577,
"name": "quic:packet_received",
"data": { ... },
by
{
"time": 1553986553587,
"name": "quic:packet_received",
"data": { ... },
b
{
"time": 1553986553597,
"name": "quic:packet_received",
"data": { ... },

1

Example of

Marx,

et al.

Figure 18: Relative to epoch timestamps

October 2025

a log using the relative_to_previous_event format:

Expires 23 April 2026

[Page 20]

Internet-Draft glog

"common_fields": {
"time_format": "relative_to_previous_event",
"reference_time": {
"clock_type": "system",
"epoch": "1970-01-01T00:00:00.000z"
by
b
"events": [
{
"time": 1553986553572,
"name": "quic:packet_received",
"data": { ... },
b
{
"time": 5,
"name": "quic:packet_received",
"data": { ... },
by
{
"time": 10,
"name": "quic:packet_received",
"data": { ... },
b
{
"time": 10,
"name": "quic:packet_received",
"data": { ... },

1

Example of

Marx,

et al.

Figure 19: Relative-to-previous—-event

October 2025

timestamps

a monotonic log using the relative_to_epoch format:

Expires 23 April 2026

[Page 21]

Internet-Draft glog October 2025

"common_fields": {
"time_format": "relative_to_epoch",
"reference_time": {
"clock_type": "monotonic",
"epoch": "unknown",
"wall_clock_time": "2024-10-10T10:10:10.000z"
b
b
"events": [
{
"time": O,
"name": "quic:packet_received",
"data": { ... },
b
{
"time": 5,
"name": "quic:packet_received",
"data": { ... },
b
{
"time": 15,
"name": "quic:packet_received",
"data": { ... },
by
{
"time": 25,
"name": "quic:packet_received",
"data": { ... },

by

Figure 20: Monotonic timestamps
7.2. Tuple
A glog event is typically associated with a single network "path",

which is usually aligned with a four-tuple of IP addresses and ports.
In many cases, this tuple will be the same for all events in a given

trace, and does not need to be logged explicitly with each event. 1In
this case, the "tuple" field can be omitted (in which case the
default value of "" is assumed) or reflected in "common_fields"

instead (see Section 7.5).
However, in some situations, such as during QUIC’s Connection
Migration or when using Multipath features, it is useful to be able

to split events across multiple (concurrent) tuples and/or paths.

Definition:

Marx, et al. Expires 23 April 2026 [Page 22]

Internet-Draft glog October 2025

TupleID = text .default ""
Figure 21: TuplelID definition

The "tuple" field is an identifier that is associated with a single
network four-tuple. This document intentionally does not define
further how to choose this identifier’s value per-tuple or how to
potentially log other parameters that can be associated with such a

tuple. This is left for other documents. Implementers are free to
encode tuple information directly into the TupleID or to log
associated info in a separate event. For example, QUIC has the

"tuple_assigned" event to couple the TupleID value to a specific
tuple configuration, see [QLOG-QUIC].

7.3. Grouping

As discussed in Section 4.2, a single glog file can contain several
traces taken from different vantage points. However, a single trace
from one endpoint can also contain events from a variety of sources.
For example, a server implementation might choose to log events for
all incoming connections in a single large (streamed) glog file. As
such, a method for splitting up events belonging to separate logical
entities is required.

The simplest way to perform this splitting is by associating a "group
id" to each event that indicates to which conceptual "group" each
event belongs. A post-processing step can then extract events per
group. However, this group identifier can be highly protocol and
context-specific. In the example above, the QUIC "Original
Destination Connection ID" could be used to uniquely identify a
connection. As such, they might add a "ODCID" field to each event.
Additionally, a service providing different levels of Quality of
Service (QoS) to their users might wish to group connections per QoS
level applied. They might instead prefer a "gos" field.

As such, to provide consistency and ease of tooling in cross-protocol
and cross-context setups, glog instead defines the common "group_id"
field, which contains a string value. Implementations are free to
use their preferred string serialization for this field, so long as
it contains a unique value per logical group. Some examples can be
seen in Figure 23.

GrouplID = text

Figure 22: GroupID definition

Marx, et al. Expires 23 April 2026 [Page 23]

Internet-Draft glog October 2025

JSON serialization example for events grouped either by QUIC
Connection IDs, or according to an endpoint-specific Quality of
Service (QoS) logic that includes the service level:

"events": [

{
"time": 1553986553579,

"group_id": "gos=premium",
"name": "quic:packet_received",
"data": { ... }

"time": 1553986553581,

"group_id": "127ecc830d98£9d54a42c4f0842aa87el181a",
"name": "quic:packet_sent",
"data": { ... }

Figure 23: GroupID example

Note that in some contexts (for example a Multipath transport
protocol) it might make sense to add additional contextual per-event
fields (for example TupleID, see Section 7.2), rather than use the
group_id field for that purpose.

Note also that, typically, a single trace only contains events
belonging to a single logical group (for example, an individual QUIC
connection). As such, instead of logging the "group_id" field with
an identical value for each event instance, this field is typically
logged once in "common_fields", see Section 7.5.

7.4. SystemInformation

The "system_info" field can be used to record system-specific details
related to an event. This is useful, for instance, where an
application splits work across CPUs, processes, or threads and events
for a single trace occur on potentially different combinations
thereof. Each field is optional to support deployment diversity.

SystemInformation = {
? processor_id: uint32
? process_id: uint32
? thread_id: uint32

Marx, et al. Expires 23 April 2026 [Page 24]

Internet-Draft glog October 2025

7.5. CommonFields

As discussed in the previous sections, information for a typical glog
event varies in three main fields: "time", "name" and associated
data. Additionally, there are also several more advanced fields that
allow mixing events from different protocols and contexts inside of
the same trace (for example "group_id"). In most "normal" use cases
however, the values of these advanced fields are consistent for each
event instance (for example, a single trace contains events for a
single QUIC connection).

To reduce file size and making logging easier, glog uses the
"common_fields" list to indicate those fields and their wvalues that
are shared by all events in this component trace. This prevents
these fields from being logged for each individual event. An example
of this is shown in Figure 24.

JSON serialization with repeated field values
per—event instance:

{

"events": [{
"group_id": "127ecc830d98f9d54a42c4£f0842aa87e181a",
"time_format": "relative_to_epoch",
"reference_time":
"clock_type": "system",
"epoch": "2019-03-29T:22:55:53.5722"
by
"time": 2,
"name": "quic:packet_received",
"data": { ... }
Fod
"group_id": "127ecc830d98£9d54a42c4£f0842aa87el181a",
"time_format": "relative_to_epoch",
"reference_time": {
"clock_type": "system",
"epoch": "2019-03-29T:22:55:53.5722"
b
"time": 7,
"name": "http:frame_parsed",
"data": { ... }

}

JSON serialization with repeated field values instead

Marx, et al. Expires 23 April 2026 [Page 25]

Internet-Draft glog October 2025

extracted to common_fields:

{

"common_fields": {
"group_id": "127ecc830d98f9d54a42c4£f0842aa87e181a",
"time_format": "relative_to_epoch",
"reference_time": {
"clock_type": "system",
"epoch": "2019-03-29T:22:55:53.5722"
I
b
"events": [
{
"time": 2,
"name": "quic:packet_received",
"data": { ... }
oA
"time": 7,
"name": "http:frame_parsed”,
"data": { ... }

Figure 24: CommonFields example

An event’s "common_fields" field is a generic dictionary of key-value
pairs, where the key is always a string and the value can be of any
type, but is typically also a string or number. As such, unknown
entries in this dictionary MUST be disregarded by the user and tools
(i.e., the presence of an unknown field is explicitly NOT an error).

The 1list of default glog fields that are typically logged in
common_fields (as opposed to as individual fields per event instance)
are shown in the listing below:

CommonFields = {

? tuple: TupleID
time_format: TimeFormat
reference_time: ReferenceTime
group_id: GroupID
text => any

L LV NIV IRV]

Figure 25: CommonFields definition

Marx, et al. Expires 23 April 2026 [Page 26]

Internet-Draft glog October 2025

Tools MUST be able to deal with these fields being defined either on
each event individually or combined in common_fields. ©Note that if
at least one event in a trace has a different value for a given
field, this field MUST NOT be added to common_fields but instead
defined on each event individually. Good example of such fields are
"time" and "data", who are divergent by nature.

8. Concrete Event Types and Event Schemas

Concrete event types, as well as related data types, are grouped in
event namespaces which in turn are defined in one or multiple event
schemas.

As an example, the QUICPacketSent and QUICPacketHeader event and data
types would be part of the gquic namespace, which is defined in an
event schema with URI urn:ietf:params:glog:events:quic. A later
extension that adds a new QUIC frame QUICNewFrame would also be part
of the quic namespace, but defined in a new event schema with URI
urn:ietf:params:glog:events:quic#new-frame-extension.

Concrete event types MUST belong to a single event namespace and MUST
have a registered non-empty identifier of type text.

New namespaces MUST have a registered non-empty globally-unique text
identifier using only characters in the URI unreserved range; see
Section 2.3 of [RFC3986]. Namespaces are mutable and MAY be extended
with new events.

The value of a glog event name field MUST be the concatenation of
namespace identifier, colon (’:’), and event type identifier (for
example: quic:packet_sent). The resulting concatenation MUST be
globally unique, so log files can contain events from multiple event
schemas without the risk of name collisions.

A single event schema can contain exactly one of the below:

* A definition for a new event namespace

* An extension of an existing namespace (adding new events/data
types and/or extending existing events/data types within the

namespace with new fields)

A single document can define multiple event schemas (for example see
Section 9).

An event schema MUST have a single URI [RFC3986] that MUST be

absolute. The URI MUST include the namespace identifier. Event
schemas that extend an existing namespace MUST furthermore include a

Marx, et al. Expires 23 April 2026 [Page 27]

Internet-Draft glog October 2025

non-empty globally-unique "extension" identifier using a URI fragment
(characters after a "#" in the URI) using only characters in the URI

unreserved range; see Section 2.3 of [RFC3986]. Registration
guidance and requirement for event schema URIs are provided in
Section 8.1. Event schemas by themselves are immutable and MUST NOT

be extended.

Implementations that record concrete event types SHOULD list all
event schemas in use. This is achieved by including the appropriate
URIs in the event_schemas field of the Trace (Section 4.2) and
TraceSeq (Section 5.1) classes. The event_schemas is a hint to tools
about the possible event namespaces, their extensions, and the event
types/data types contained therein, that a glog trace might contain.
The trace MAY still contain event types that do not belong to a
listed event schema. Inversely, not all event types associated with
an event schema listed in event_schemas are guaranteed to be logged
in a glog trace. Tools MUST NOT treat either of these as an error;
see Section 13.

In the following hypothetical example, a glog trace contains events
belonging to:

* The two event namespaces defined by event schemas in this document
(Section 9).

* Events in a namespace named rick specified in a hypothetical RFC

* Extentions to the rick namespace defined in two separate new event
schemas (with URI extension identifiers astley and moranis)

* Events from three private event schemas, detailing definitions for
and extensions to two namespaces (pickle and cucumber)

The standardized schema URIs use a URN format, the private schemas
use a URI with domain name.

"event_schemas": [
"urn:ietf:params:glog:events:loglevel",
"urn:ietf:params:glog:events:simulation”,
"urn:ietf:params:gqlog:events:rick",
"urn:ietf:params:glog:events:rick#astley",
"urn:ietf:params:gqlog:events:rick#moranis",
"https://example.com/032024/pickle.html",
"https://example.com/032024/pickle.html#lilly",
"https://example.com/032025/cucumber.html"

Figure 26: Example event_schemas serialization

Marx, et al. Expires 23 April 2026 [Page 28]

Internet-Draft glog October 2025

8.1. Event Schema URIs

Event schemas defined by RFCs MUST register all namespaces and
concrete event types they contain in the "glog event schema URIs"
registry.

Event schemas that define a new namespace SHOULD use a URN of the
form urn:ietf:params:glog:events:<namespace identifier>, where
<namespace identifier> is globally unique. For example, this
document defines two event schemas (Section 9) for two namespaces:
loglevel and sim. Other examples of event schema define the quic
[QLOG-QUIC] and http3 [QLOG-H3] namespaces.

Event schemas that extend an existing namespace SHOULD use a URN of
the form urn:ietf:params:glog:events:<namespace
identifier>#<extension identifier>, where the combination of
<namespace identifier> and <extension identifier> is globally unique.

Private or non-standard event schemas MAY be registered in the "glog
event schema URIs" registry but MUST NOT use a URN of the forms
outlined above. URIs that contain a domain name SHOULD also contain
a month-date in the form mmyyyy. For example,
"https://example.org/072024/customeventschemaf#customextension". The
definition of the event schema and assignment of the URI MUST have
been authorized by the owner of the domain name on or very close to
that date. This avoids problems when domain names change ownership.
The URI does not need to be dereferencable, allowing for confidential
use or to cover the case where the event schemas continue to be used
after the organization that defined them ceases to exist.

The "glog event schema URIs" registry operates under the Expert
Review policy, per Section 4.5 of [RFC8126]. When reviewing
requests, the expert MUST check that the URI is appropriate to the
event schema and satisfies the requirements in Section 8 and this
section. A request to register a private or non-standard schema URI
using a URN of the forms reserved for schemas defined by an RFC above
MUST be rejected.

Registration requests should use the template defined in Section 15.
8.2. Extending the Data Field

An event’s "data" field is a generic key-value map (e.g., JSON

object). It defines the per-event metadata that is to be logged.

Its specific subfields and their semantics are defined per concrete

event type. For example, data field definitions for QUIC and HTTP/3
can be found in [QLOG-QUIC] and [QLOG-H3].

Marx, et al. Expires 23 April 2026 [Page 29]

Internet-Draft glog October 2025

In order to keep glog fully extensible, two separate CDDL extension
points ("sockets"™ or "plugs") are used to fully define data fields.

Firstly, to allow existing data field definitions to be extended (for
example by adding an additional field needed for a new protocol
feature), a CDDL "group socket" is used. This takes the form of a
subfield with a name of * $$SNAMESPACE-EVENTTYPE-extension. This
field acts as a placeholder that can later be replaced with newly
defined fields by assigning them to the socket with the //= operator.
Multiple extensions can be assigned to the same group socket. An
example is shown in Figure 27.

; original definition in event schema A
MyNSEventX = {
field_a: uint8

* $Smyns—eventx—extension

; later extension of EventX in event schema B
$Smyns—eventx—extension //= (

? additional_field_b: bool
)

; another extension of EventX in event schema C
$$myns—eventx—-extension //= (

? additional_field_c: text
)

; if schemas A, B and C are then used in conjunction,
; the combined MyNSEventX CDDL is equivalent to this:
MyNSEventX = {

field_a: uint8

? additional_field b: bool
? additional_field_c: text

Figure 27: Example of using a generic CDDL group socket to extend
an existing event data definition

Secondly, to allow documents to define fully new event data field
definitions (as opposed to extend existing ones), a CDDL "type
socket" is used. For this purpose, the type of the "data" field in
the glog Event type (see Figure 14) is the extensible
SProtocolEventData type. This field acts as an open enum of possible
types that are allowed for the data field. As such, any new event
data field is defined as its own CDDL type and later merged with the

Marx, et al. Expires 23 April 2026 [Page 30]

Internet-Draft glog October 2025

existing $ProtocolEventData enum using the /= extension operator.

Any generic key-value map type can be assigned to $ProtocolEventData.
The example in Figure 28 demonstrates $ProtocolEventData being
extended with two types.

; We define two new concrete events in a new event schema
MyNSEventl /= {
field_1: uint8

* $Smyns—eventl-extension

}

MyNSEvent2 /= {
field 2: bool

* $Smyns—event2-extension

; the events are both merged with the existing
; SProtocolEventData type enum
SProtocolEventData /= MyNSEventl / MyNSEvent2

; the "data" field of a glog event can now also be of type
; MyNSEventl and MyNSEvent2

Figure 28: ProtocolEventData extension

Event schema defining new glog events MUST properly extend
SProtocolEventData when defining data fields to enable automated
validation of aggregated glog schemas. Furthermore, they SHOULD add
a * S$SNAMESPACE-EVENTTYPE-extension extension field to newly defined
event data to allow the new events to be properly extended by other
event schema.

A combined but purely illustrative example of the use of both

extension points for a conceptual QUIC "packet_sent" event is shown
in Figure 29:

Marx, et al. Expires 23 April 2026 [Page 31]

Internet-Draft glog October 2025

; defined in the main QUIC event schema
QUICPacketSent = {

? packet_size: uintlé

header: QUICPacketHeader

? frames: [* QUICFrame]

* $8quic-packetsent-extension

; Add the event to the global list of recognized glog events
$ProtocolEventData /= QUICPacketSent

; Defined in a separate event schema that describes a
; theoretical QUIC protocol extension
$Squic-packetsent-extension //= (

? additional_field: bool
)

; If both schemas are utilized at the same time,
; the following JSON serialization would pass an automated
; CDDL schema validation check:

"time": 123456,
"name": "quic:packet_sent",
"data": {
"packet_size": 1280,
"header": {
"packet_type": "1RTT",
"packet_number": 123
b
"frames": [
{
"frame_type": "stream",
"offset": 456
b
{
"frame_type": "padding"
}
1,

additional_field: true

Figure 29: Example of an extended ’"data’ field for a conceptual
QUIC packet_sent event

Marx, et al. Expires 23 April 2026 [Page 32]

Internet-Draft glog October 2025

8.2.1. Triggers

It can be useful to understand the cause or trigger of an event.
Sometimes, events are caused by a variety of other events and
additional information is needed to identify the exact details.
Commonly, the context of the surrounding log messages gives a hint
about the cause. However, in highly-parallel and optimized
implementations, corresponding log messages might be separated in
time, making it difficult to build an accurate context.

Including a "trigger" as part of the event itself is one method for
providing fine—-grained information without much additional overhead.
In circumstances where a trigger is useful, it is RECOMMENDED for the
purpose of consistency that the event data definition contains an
optional field named "trigger", holding a string value.

For example, the QUIC "packet_dropped" event (Section 5.7 of
[QLOG-QUIC]) includes a trigger field that identifies the precise
reason why a QUIC packet was dropped:

QUICPacketDropped = {

Primarily packet_type should be filled here,
as other fields might not be decrypteable or parseable
header: PacketHeader
raw: RawInfo
datagram_id: uint32
details: {* text => any}
trigger:
"internal_error" /
"rejected" /
"unsupported" /
"invalid" /
"duplicate" /
"connection_unknown" /
"decryption_failure" /
"key_unavailable" /
"general"

~.

o 0 0 0) Ne

* S$Squic-packetdropped-extension

Figure 30: Trigger example

Marx, et al. Expires 23 April 2026 [Page 33]

Internet-Draft glog October 2025

8.3. Event Importance Levels

Depending on how events are designed, it may be that several events
allow the logging of similar or overlapping data. For example the
separate QUIC connection_started event overlaps with the more generic
connection_state_updated. In these cases, it is not always clear
which event should be logged or used, and which event should take
precedence if e.g., both are present and provide conflicting
information.

To aid in this decision making, glog defines three event importance
levels, in decreasing order of importance and expected usage:

* Core

* Base

* Extra

Concrete event types SHOULD define an importance level.

Core—level events SHOULD be present in all glog files for a given
protocol. These are typically tied to basic packet and frame parsing
and creation, as well as listing basic internal metrics. Tool
implementers SHOULD expect and add support for these events, though
SHOULD NOT expect all Core events to be present in each glog trace.

Base-level events add additional debugging options and MAY be present
in glog files. Most of these can be implicitly inferred from data in
Core events (if those contain all their properties), but for many it
is better to log the events explicitly as well, making it clearer how
the implementation behaves. These events are for example tied to
passing data around in buffers, to how internal state machines
change, and used to help show when decisions are actually made based
on received data. Tool implementers SHOULD at least add support for
showing the contents of these events, if they do not handle them
explicitly.

Extra-level events are considered mostly useful for low-level
debugging of the implementation, rather than the protocol. They
allow more fine-grained tracking of internal behavior. As such, they
MAY be present in glog files and tool implementers MAY add support
for these, but they are not required to.

Note that in some cases, implementers might not want to log for
example data content details in Core-level events due to performance
or privacy considerations. In this case, they SHOULD use (a subset
of) relevant Base-level events instead to ensure usability of the

Marx, et al. Expires 23 April 2026 [Page 34]

Internet-Draft glog October 2025

glog output. As an example, implementations that do not log QUIC
packet_received events and thus also not which (if any) ACK frames
the packet contains, SHOULD log packets_acked events instead.

Finally, for event types whose data (partially) overlap with other
event types’ definitions, where necessary the event definition
document should include explicit guidance on which to use in specific
situations.

8.4. Tooling Expectations

glog is an extensible format and it is expected that new event schema
will emerge that define new namespaces, event types, event fields
(e.g., a field indicating an event’s privacy properties), as well as
values for the "trigger" property within the "data" field, or other
member fields of the "data" field, as they see fit.

It SHOULD NOT be expected that general-purpose tools will recognize
or visualize all forms of glog extension. Tools SHOULD allow for the
presence of unknown event fields and make an effort to visualize even
unknown data if possible, otherwise they MUST ignore it.

8.5. Further Design Guidance

There are several ways of defining concrete event types. In
practice, two main types of approach have been observed: a) those
that map directly to concepts seen in the protocols (e.g.,
packet_sent) and b) those that act as aggregating events that combine
data from several possible protocol behaviors or code paths into one
(e.g., parameters_set). The latter are typically used as a means to
reduce the amount of unique event definitions, as reflecting each
possible protocol event as a separate glog entity would cause an
explosion of event types.

Additionally, logging duplicate data is typically prevented as much
as possible. For example, packet header values that remain
consistent across many packets are split into separate events (for
example spin_bit_updated or connection_id updated for QUIC).

Finally, when logging additional state change events, those state
changes can often be directly inferred from data on the wire (for
example flow control limit changes). As such, if the implementation
is bug-free and spec-compliant, logging additional events is
typically avoided. Exceptions have been made for common events that
benefit from being easily identifiable or individually logged (for
example packets_acked).

Marx, et al. Expires 23 April 2026 [Page 35]

Internet-Draft glog October 2025

9. The Generic Event Schemas

The two following generic event schemas define two namespaces and
several concrete event types that are common across protocols,
applications, and use cases.

9.1. Loglevel events

In typical logging setups, users utilize a discrete number of well-
defined logging categories, levels or severities to log freeform
(string) data. The loglevel event namespace replicates this approach
to allow implementations to fully replace their existing text-based
logging by glog. This is done by providing events to log generic
strings for the typical well-known logging levels (error, warning,
info, debug, verbose). The namespace identifier is "loglevel". The
event schema URI is urn:ietf:params:glog:events:loglevel.

LogLevelEventData = LoglLevelError /
LogLevelWarning /
LogLevelInfo /
LogLevelDebug /
LogLevelVerbose

$ProtocolEventData /= LogLevelEventData

Figure 31: LogLevelEventData and ProtocolEventData extension

The event types are further defined below, their identifier is the
heading name.

9.1.1. error

Used to log details of an internal error that might not get reflected
on the wire. It has Core importance level.

LogLevelError = {
? code: uinto64

? message: text

* $$loglevel-error—-extension

Figure 32: LogLevelError definition
9.1.2. warning

Used to log details of an internal warning that might not get
reflected on the wire. It has Base importance level.

Marx, et al. Expires 23 April 2026 [Page 36]

Internet-Draft glog October 2025

LogLevelWarning = {
? code: uinté64
? message: text

* $$loglevel-warning—extension

Figure 33: LogLevelWarning definition
9.1.3. info
Used mainly for implementations that want to use glog as their one
and only logging format but still want to support unstructured string

messages. The event has Extra importance level.

LogLevelInfo = {
message: text

* $$loglevel-info-extension

Figure 34: LoglevellInfo definition
9.1.4. debug
Used mainly for implementations that want to use glog as their one
and only logging format but still want to support unstructured string

messages. The event has Extra importance level.

LogLevelDebug = {
message: text

* $S5loglevel-debug-extension

Figure 35: LogLevelDebug definition
9.1.5. verbose
Used mainly for implementations that want to use glog as their one
and only logging format but still want to support unstructured string

messages. The event has Extra importance level.

LogLevelVerbose = {
message: text

* $$loglevel-verbose—extension

Marx, et al. Expires 23 April 2026 [Page 37]

Internet-Draft glog October 2025

Figure 36: LogLevelVerbose definition
9.2. Simulation Events

When evaluating a protocol implementation, one typically sets up a
series of interoperability or benchmarking tests, in which the test
situations can change over time. For example, the network bandwidth
or latency can vary during the test, or the network can be fully
disable for a short time. In these setups, it is useful to know when
exactly these conditions are triggered, to allow for proper
correlation with other events. This namespace defines event types to
allow logging of such simulation metadata and its identifier is
"simulation". The event schema URI is
urn:ietf:params:glog:events:simulation.

SimulationEventData = SimulationScenario /
SimulationMarker

$ProtocolEventData /= SimulationEventData
Figure 37: SimulationEventData and ProtocolEventData extension

The event types are further defined below, their identifier is the
heading name.

9.2.1. scenario
Used to specify which specific scenario is being tested at this
particular instance. This supports, for example, aggregation of
several simulations into one trace (e.g., split by group_id). It has
Extra importance level; see Section 8.3.
SimulationScenario = {
? name: text

? details: {* text => any }

* $$simulation-scenario—extension

Figure 38: SimulationScenario definition
9.2.2. marker
Used to indicate when specific emulation conditions are triggered at

set times (e.g., at 3 seconds in 2% packet loss is introduced, at 10s
a NAT rebind is triggered). It has Extra importance level.

Marx, et al. Expires 23 April 2026 [Page 38]

Internet-Draft glog October 2025

10.

SimulationMarker = {
? type: text
? message: text

* $$simulation—-marker—extension

Figure 39: SimulationMarker definition
Raw packet and frame information

While glog is a high-level logging format, it also allows the
inclusion of most raw wire image information, such as byte lengths
and byte values. This is useful when for example investigating or
tuning packetization behavior or determining encoding/framing
overheads. However, these fields are not always necessary, can take
up considerable space, and can have a considerable privacy and
security impact (see Section 14). Where applicable, these fields are
grouped in a separate, optional, field named "raw" of type RawInfo.
The exact definition of entities, headers, trailers and payloads
depend on the protocol used.

RawInfo = {
; the full byte length of the entity (e.g., packet or frame),

including possible headers and trailers
? length: uinté4

~.

; the byte length of the entity’s payload,
; excluding possible headers or trailers
? payload_length: uint64

; the (potentially truncated) contents of the full entity,
; including headers and possibly trailers
? data: hexstring

Figure 40: RawInfo definition

All fields in RawInfo are defined as optional. It is acceptable to
log any field without the others. Logging length related fields and
omitting the data field permits protocol debugging without the risk
of logging potentially sensitive data. The data field, if logged, is
not required to contain the contents of a full entity and can be
truncated, see Section 11.4. The length fields, if logged, should
indicate the length of the the full entity, even if the data field is
omitted or truncated.

Marx, et al. Expires 23 April 2026 [Page 39]

Internet-Draft glog October 2025

Protocol entities containing an on-the-wire length field (for example
a packet header or QUIC’s stream frame) are strongly recommended to
re-use the raw.length field instead of defining a separate length
field, to maintain consistency and prevent data duplication.

This document does not specify explicit header_length or

trailer_ length fields. 1In protocols without trailers, header_length
can be calculated by subtracting the payload_length from the length.
In protocols with trailers (e.g., QUIC’s AEAD tag), event definition
documents SHOULD define how to support header_length calculation.

11. Serializing glog

glog schema definitions in this document are intentionally agnostic
to serialization formats. The choice of format is an implementation
decision.

Other documents related to glog (for example event definitions for
specific protocols), SHOULD be similarly agnostic to the employed
serialization format and SHOULD clearly indicate this. If not, they
MUST include an explanation on which serialization formats are
supported and on how to employ them correctly.

Serialization formats make certain tradeoffs between usability,
flexibility, interoperability, and efficiency. Implementations
should take these into consideration when choosing a format. Some
examples of possible formats are JSON, CBOR, CSV, protocol buffers,
flatbuffers, etc. which each have their own characteristics. For
instance, a textual format like JSON can be more flexible than a
binary format but more verbose, typically making it less efficient
than a binary format. A plaintext readable (yet relatively large)
format like JSON is potentially more usable for users operating on
the logs directly, while a more optimized yet restricted format can
better suit the constraints of a large scale operation. A custom or
restricted format could be more efficient for analysis with custom
tooling but might not be interoperable with general-purpose glog
tools.

Considering these tradeoffs, JSON-based serialization formats provide
features that make them a good starting point for glog flexibility
and interoperability. For these reasons, JSON is a recommended
default and expanded considerations are given to how to map glog to
JSON (Section 11.1, and its streaming counterpart JSON Text Sequences
(Section 11.2. Section 11.3 presents interoperability considerations
for both formats, and Section 11.5 presents potential optimizations.

Marx, et al. Expires 23 April 2026 [Page 40]

Internet-Draft glog October 2025

Serialization formats require appropriate deserializers/parsers. The
"serialization_format" field (Section 3) is used to indicate the
chosen serialization format.

11.1. glog to JSON mapping

As described in Section 4, JSON is the default glog serialization.
When mapping glog to normal JSON, QlogFile (Figure 3) is used. The
Media Type is "application/glog+json" per [RFC6839]. The file
extension/suffix SHOULD be ".glog".

In accordance with Section 8.1 of [RFC8259], JSON files are required
to use UTF-8 both for the file itself and the string values it
contains. In addition, all glog field names MUST be lowercase when
serialized to JSON.

In order to serialize CDDL-based glog event and data structure
definitions to JSON, the official CDDL-to-JSON mapping defined in
Appendix E of [CDDL] SHOULD be employed.

11.2. glog to JSON Text Sequences mapping

One of the downsides of using normal JSON is that it is inherently a
non-streamable format. A glog serializer could work around this by
opening a file, writing the required opening data, streaming glog
events by appending them, and then finalizing the log by appending
appropriate closing tags e.g., "]}1}1". However, failure to append
closing tags, could lead to problems because most JSON parsers will
fail if a document is malformed. Some streaming JSON parsers are
able to handle missing closing tags, however they are not widely
deployed in popular environments (e.g., Web browsers)

To overcome the issues related to JSON streaming, a glog mapping to a
streamable JSON format called JSON Text Sequences (JSON-SEQ)
([RFC7464]) is provided.

JSON Text Sequences are very similar to JSON, except that objects are
serialized as individual records, each prefixed by an ASCII Record
Separator (<RS>, 0x1E), and each ending with an ASCII Line Feed
character (\n, 0x0A). Note that each record can also contain any
amount of newlines in its body, as long as it ends with a newline
character before the next <RS> character.

Marx, et al. Expires 23 April 2026 [Page 41]

Internet-Draft glog October 2025

In order to leverage the streaming capability, each glog event is
serialized and interpreted as an individual JSON Text Sequence
record, that is appended as a new object to the back of an event
stream or log file. Put differently, unlike default JSON, it does
not require a document to be wrapped as a full object with "{ ... }"
or "[... 1".

This alternative record streaming approach cannot be accommodated by

QlogFile (Figure 3). Instead, QlogFileSeq is defined in Figure 9,
which notably includes only a single trace (TraceSeq) and omits an
explicit "events" array. An example is provided in Figure 10. The

"group_id" field can still be used on a per-event basis to include
events from conceptually different sources in a single JSON-SEQ glog
file.

When mapping glog to JSON-SEQ, the Media Type is "application/
glog+json—-seq" per [RFC8091]. The file extension/suffix SHOULD be
".sgqlog" (for "streaming" glog).

While not specifically required by the JSON-SEQ specification, all
glog field names MUST be lowercase when serialized to JSON-SEQ.

In order to serialize all other CDDL-based glog event and data
structure definitions to JSON-SEQ, the official CDDL-to-JSON mapping
defined in Appendix E of [CDDL] SHOULD be employed.

11.2.1. Supporting JSON Text Sequences in tooling

Note that JSON Text Sequences are not supported in most default
programming environments (unlike normal JSON). However, several
custom JSON-SEQ parsing libraries exist in most programming languages
that can be used and the format is easy enough to parse with existing
implementations (i.e., by splitting the file into its component
records and feeding them to a normal JSON parser individually, as
each record by itself is a valid JSON object).

11.3. JSON Interoperability

Some JSON implementations have issues with the full JSON format,
especially those integrated within a JavaScript environment (e.g.,
Web browsers, NodedS). I-JSON (Internet—-JSON) is a subset of JSON
for such environments; see [I-JSON]. One of the key limitations of
JavaScript, and thus I-JSON, is that it cannot represent full 64-bit
integers in standard operating mode (i.e., without using BigInt
extensions), instead being limited to the range -(2753)+1 to (2753)-
1.

Marx, et al. Expires 23 April 2026 [Page 42]

Internet-Draft glog October 2025

To accommodate such constraints in CDDL, Appendix E of [CDDL]
recommends defining new CDDL types for int64 and uint64 that limit
their values to the restricted 64-bit integer range. However, some
of the protocols that glog is intended to support (e.g., QUIC,
HTTP/3), can use the full range of uint64 values.

As such, to support situations where I-JSON is in use, seralizers MAY
encode uint64 values using JSON strings. glog parsers, therefore,
SHOULD support parsing of uint64 values from JSON strings or JSON
numbers unless there is out-of-band information indicating that
neither the serializer nor parser are constrained by I-JSON.

11.4. Truncated values

For some use cases (e.g., limiting file size, privacy), it can be
necessary not to log a full raw blob (using the hexstring type) but
instead a truncated value. For example, one might only store the
first 100 bytes of an HTTP response body to be able to discern which
file it actually contained. 1In these cases, the original byte-size
length cannot be obtained from the serialized value directly.

As such, all glog schema definitions SHOULD include a separate,
length-indicating field for all fields of type hexstring they
specify, see for example Section 10. This not only ensures the
original length can always be retrieved, but also allows the omission
of any raw value bytes of the field completely (e.g., out of privacy
or security considerations).

To reduce overhead however and in the case the full raw value 1is
logged, the extra length-indicating field can be left out. As such,
tools SHOULD be able to deal with this situation and derive the
length of the field from the raw value if no separate length-
indicating field is present. The main possible permutations are
shown by example in Figure 41.

Marx, et al. Expires 23 April 2026 [Page 43]

Internet-Draft glog October 2025

11

// both the content’s value and its length are present
// (length is redundant)
{

"content_length": 5,

"content": "051428abff"

// only the content value is present, indicating it
// represents the content’s full value. The byte
// length is obtained by calculating content.length / 2
"content": "051428abff"
// only the length is present, meaning the value
// was omitted
"content_length": 5,
// both value and length are present, but the lengths
// do not match: the value was truncated to
// the first three bytes.
"content_length": 5,

"content": "051428"

Figure 41: Example for serializing truncated hexstrings

.5. Optimization of serialized data

Both the JSON and JSON-SEQ formatting options described above are
serviceable in general small to medium scale (debugging) setups.
However, these approaches tend to be relatively verbose, leading to
larger file sizes. Additionally, generalized JSON (-SEQ)
(de)serialization performance is typically (slightly) lower than that
of more optimized and predictable formats. Both aspects present
challenges to large scale setups, though they may still be practical
to deploy; see [ANRW-2020]. JSON and JSON-SEQ compress very well
using commonly-available algorithms such as GZIP or Brotli.

During the development of glog, a multitude of alternative formatting
and optimization options were assessed and the results are summarized
on the glog github repository (https://github.com/quiclog/internet-
drafts/issues/30#issuecomment-617675097) .

Marx, et al. Expires 23 April 2026 [Page 44]

Internet-Draft glog October 2025

Formal definition of additional glog formats or encodings that use
the optimization techniques described here, or any other optimization
technique is left to future activity that can apply the following
guidelines.

In order to help tools correctly parse and process serialized glog,
it is RECOMMENDED that new formats also define suitable file
extensions and media types. This provides a clear signal and avoids
the need to provide out-of-band information or to rely on heuristic
fallbacks; see Section 13.

12. Methods of access and generation

Different implementations will have different ways of generating and

storing glogs. However, there is still value in defining a few
default ways in which to steer this generation and access of the
results.

12.1. Set file output destination via an environment variable

To provide users control over where and how glog files are created,
two environment variables are defined. The first, QLOGFILE,
indicates a full path to where an individual glog file should be
stored. This path MUST include the full file extension. The second,
QLOGDIR, sets a general directory path in which glog files should be
placed. This path MUST include the directory separator character at
the end.

In general, QLOGDIR should be preferred over QLOGFILE if an endpoint
is prone to generate multiple glog files. This can for example be
the case for a QUIC server implementation that logs each QUIC
connection in a separate glog file. An alternative that uses
QLOGFILE would be a QUIC server that logs all connections in a single
file and uses the "group_id" field (Section 7.3) to allow post-hoc
separation of events.

Implementations SHOULD provide support for QLOGDIR and MAY provide
support for QLOGFILE.

When using QLOGDIR, it is up to the implementation to choose an
appropriate naming scheme for the glog files themselves. The chosen
scheme will typically depend on the context or protocols used. For
example, for QUIC, it is recommended to use the Original Destination
Connection ID (ODCID), followed by the vantage point type of the
logging endpoint. Examples of all options for QUIC are shown in
Figure 42.

Marx, et al. Expires 23 April 2026 [Page 45]

Internet-Draft glog October 2025

Command: QLOGFILE=/srv/glogs/client.qglog quicclientbinary

Should result in the the quicclientbinary executable logging a
single glog file named client.glog in the /srv/glogs directory.
This is for example useful in tests when the client sets up
just a single connection and then exits.

Command: QLOGDIR=/srv/qglogs/ quicserverbinary

Should result in the quicserverbinary executable generating
several logs files, one for each QUIC connection.

Given two QUIC connections, with ODCID values "abcde" and
"12345" respectively, this would result in two files:
/srv/qlogs/abcde_server.qglog

/srv/gqlogs/12345_server.qlog

Command: QLOGFILE=/srv/qglogs/server.glog quicserverbinary

Should result in the the quicserverbinary executable logging

a single glog file named server.glog in the /srv/qlogs directory.
Given that the server handled two QUIC connections before it was
shut down, with ODCID values "abcde" and "12345" respectively,
this would result in event instances in the glog file being
tagged with the "group_id" field with values "abcde" and "12345".

Figure 42: Environment variable examples for a QUIC implementation
13. Tooling requirements

Tools ingestion glog MUST indicate which glog version(s), glog
format (s), glog file and event schema(s), compression methods and
potentially other input file formats (for example .pcap) they
support. Tools SHOULD at least support .glog files in the default
JSON format (Section 11.1). Additionally, they SHOULD indicate
exactly which values for and properties of the name
(namespace:event_type) and data fields they look for to execute their
logic. Tools SHOULD perform a (high-level) check if an input glog
file adheres to the expected glog file and event schemas. If a tool
determines a glog file does not contain enough supported information
to correctly execute the tool’s logic, it SHOULD generate a clear
error message to this effect.

Tools MUST NOT produce breaking errors for any field names and/or
values in the glog format that they do not recognize. Tools SHOULD
indicate even unknown event occurrences within their context (e.g.,
marking unknown events on a timeline for manual interpretation by the
user) .

Marx, et al. Expires 23 April 2026 [Page 46]

Internet-Draft glog October 2025

Tool authors should be aware that, depending on the logging
implementation, some events will not always be present in all traces.
For example, using a circular logging buffer of a fixed size, it
could be that the earliest events (e.g., connection setup events) are
later overwritten by "newer" events. Alternatively, some events can
be intentionally omitted out of privacy or file size considerations.
Tool authors are encouraged to make their tools robust enough to
still provide adequate output for incomplete logs.

14. Security and privacy considerations

Protocols such as TLS [RFC8446] and QUIC [RFC9000] offer secure
protection for the wire image [RFC8546]. Logging can reveal aspects
of the wire image that would ordinarily be protected, creating
tension between observability, security and privacy, especially if
data can be correlated across data sources.

glog permits logging of a broad and detailed range of data.
Operators and implementers are responsible for deciding what data is
logged to address their requirements and constraints. As per
[RFC6973], operators must be aware that data could be compromised,
risking the privacy of all participants. Where entities expect
protocol features to ensure data privacy, logging might unknowingly
be subject to broader privacy risks, undermining their ability to
assess or respond effectively.

14.1. Data at risk

glog operators and implementers need to consider security and privacy
risks when handling glog data, including logging, storage, usage, and
more. The considerations presented in this section may pose varying

risks depending on the the data itself or its handling.

The following is a non-exhaustive list of example data types that
could contain sensitive information that might allow identification
or correlation of individual connections, endpoints, users or
sessions across glog or other data sources (e.g., captures of
encrypted packets):

* IP addresses and transport protocol port numbers.

* Session, Connection, or User identifiers e.g., QUIC Connection IDs
Section 9.5 of [RFC9000]).

* System—-level information e.g., CPU, process, or thread
identifiers.

Marx, et al. Expires 23 April 2026 [Page 47]

Internet-Draft glog October 2025

* Stored State e.g., QUIC address validation and retry tokens, TLS
session tickets, and HTTP cookies.

* TLS decryption keys, passwords, and HTTP-level API access or
authorization tokens.

* High-resolution event timestamps or inter-event timings, event
counts, packet sizes, and frame sizes.

* Full or partial raw packet and frame payloads that are encrypted.

* Full or partial raw packet and frame payloads that are plaintext
e.g., HTTP Field values, HTTP response data, or TLS SNI field
values.

14.2. Operational implications and recommendations

Operational considerations should focus on authorizing capture and
access to logs. Logging of Internet protocols using glog can be
equivalent to the ability to store or read plaintext communications.
Without a more detailed analysis, all of the security considerations
of plaintext access apply.

It is recommended that glog capture is subject to access control and
auditing. These controls should support granular levels of
information capture based on role and permissions (e.g., capture of
more-sensitive data requires higher privileges).

It is recommended that access to stored glogs is subject to access
control and auditing.

End users might not understand the implications of glog to security
or privacy, and their environments might limit access control
techniques. Implementations should make enabling glog conspicuous
(e.g., requiring clear and explicit actions to start a capture) and
resistant to social engineering, automation, or drive-by attacks; for
example, isolation or sandboxing of capture from other activities in
the same process or component.

It is recommended that data retention policies are defined for the
storage of glog files.

It is recommended that glog files are encrypted in transit and at
rest.

Marx, et al. Expires 23 April 2026 [Page 48]

Internet-Draft glog October 2025

14.3. Data minimization or anonymization

Applying data minimization or anonymization techniques to glog might
help address some security and privacy risks. However, removing or
anonymizing data without sufficient care might not enhance privacy or
security and could diminish the utility of glog data.

Operators and implementers should balance the value of logged data
with the potential risks of voluntary or involuntary disclosure to
trusted or untrusted entities. Importantly, both the breadth and
depth of the data needed to make it useful, as well as the definition
of entities depend greatly on the intended use cases. For example, a
research project might be tightly scoped, time bound, and require
participants to explicitly opt in to having their data collected with
the intention for this to be shared in a publication. Conversely, a
server administrator might desire to collect telemetry, from users
whom they have no relationship with, for continuing operational
needs.

The most extreme form of minimization or anonymization is deleting a
field, equivalent to not logging it. glog implementations should
offer fine—-grained control for this on a per-use-case or per-—
connection basis.

Data can undergo anonymization, pseudonymization, permutation,
truncation, re-encryption, or aggregation; see Appendix B of
[DNS-PRIVACY] for techniques, especially regarding IP addresses.
However, operators should be cautious because many anonymization
methods have been shown to be insufficient to safeguard user privacy
or identity, particularly with large or easily correlated data sets.

Operators should consider end user rights and preferences. Active
user participation (as indicated by [RFC6973]) on a per—-glog basis is
challenging but aligning glog capture, storage, and removal with
existing user preference and privacy controls is crucial. Operators
should consider agressive approaches to deletion or aggregation.

The most sensitive data in glog is typically contained in RawInfo
type fields (see Section 10). Therefore, glog users should exercise
caution and limit the inclusion of such fields for all but the most
stringent use cases.

15. TIANA Considerations
IANA is requested to register a new entry in the "IETF URN Sub-

namespace for Registered Protocol Parameter Identifiers" registry
([RFC3553])":

Marx, et al. Expires 23 April 2026 [Page 49]

Internet-Draft

Registered Parameter Identifier:
Reference:

IANA Registry Reference:

glog

This Document

glog

October 2025

<https://www.lana.org/assignments/qglog>

IANA is requested to create the "glog log file schema URIs" registry
at https://www.iana.org/assignments/qglog for the purpose of

registering log file schema.
Log File Schema URI:
Description:

Reference:

[the log file schema identifier]

[a description of the log file schema]

It has the following format/template:

[to a specification defining the log file schemal]

This document furthermore adds the following two new entries to the
"glog log file schema URIs" registry:

+

+

+

Log File Schema URI

Description

Reference |

femmmmmmm e e e fe========————=== t=========== +

urn:ietf:params:glog:file:contained

urn:ietf:params:glog:file:sequential

Concrete log
file schema
that can
contain
several
traces from
multiple
vantage
points.

Concrete log
file schema

containing a
single trace,

optimized for

segential
read and
write access.

Section 4

Section 5

e o o +

IANA is requested to create the

Table 1

"glog event schema URIs"

registry at

https://www.iana.org/assignments/qlog for the purpose of registering

event schema.

Marx,

et al.

It has the following format/template:

Expires 23 April 2026

[Page 50]

Internet-Draft glog October 2025

l6.

16.

Event schema URI: [the event schema identifier]

Namespace: [the identifier of the namespace that this event schema
either defines or extends]

Event Types: [a comma-separated list of concrete event types defined
in the event schema]

Description: [a description of the event schemal]
Reference: [to a specification defining the event schema definition]

This document furthermore adds the following two new entries to the
"glog event schema URIs" registry:

Event schema URI: urn:ietf:params:glog:events:loglevel
Namespace loglevel

Event Types error,warning,info,debug, verbose

Description: Well-known logging levels for free-form text.
Reference: Section 9.1
Event schema URI: wurn:ietf:params:qglog:events:simulation

Namespace simulation

Event Types scenario,marker

Description: Events for simulation testing.

Reference: Section 9.2

References

1. Normative References

[CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
Definition Language (CDDL): A Notational Convention to
Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Marx, et al. Expires 23 April 2026 [Page 51]

Internet-Draft

glog October 2025

[DNS-PRIVACY]

[I-JSON]

[JSON]

Dickinson, S., Overeinder, B., van Rijswijk-Deij, R., and
A. Mankin, "Recommendations for DNS Privacy Service
Operators", BCP 232, RFC 8932, DOI 10.17487/RFC8932,
October 2020, <https://www.rfc-editor.org/rfc/rfc8932>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
DOI 10.17487/RFC7493, March 2015,
<https://www.rfc-editor.org/rfc/rfc7493>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,

DOI 10.17487/RFC8259, December 2017,
<https://www.rfc—editor.org/rfc/rfc8259>.

[JSON-Text—-Sequences]

[RFC2046]

[RFC2119]

[RFC3339]

[RFC3553]

[RFC3986]

[RFC6839]

Marx,

et al.

Williams, N., "JavaScript Object Notation (JSON) Text
Sequences", RFC 7464, DOI 10.17487/RFC7464, February 2015,
<https://www.rfc-editor.org/rfc/rfc7464>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,

DOI 10.17487/RFC2046, November 1996,
<https://www.rfc-editor.org/rfc/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
<https://www.rfc-editor.org/rfc/rfc3339>.

Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
IETF URN Sub-namespace for Registered Protocol
Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
2003, <https://www.rfc-editor.org/rfc/rfc3553>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/rfc/rfc3986>.

Hansen, T. and A. Melnikov, "Additional Media Type
Structured Syntax Suffixes", RFC 6839,

DOI 10.17487/RFC6839, January 2013,
<https://www.rfc-editor.org/rfc/rfc6839>.

Expires 23 April 2026 [Page 52]

Internet-Draft glog October 2025

[REC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
Morris, J., Hansen, M., and R. Smith, "Privacy
Considerations for Internet Protocols", RFC 6973,
DOI 10.17487/RFC6973, July 2013,
<https://www.rfc-editor.org/rfc/rfc6973>.

[REC7464] Williams, N., "JavaScript Object Notation (JSON) Text
Sequences", RFC 7464, DOI 10.17487/RFC7464, February 2015,
<https://www.rfc-editor.org/rfc/rfc7464>.

[RFC8091] WwWilde, E., "A Media Type Structured Syntax Suffix for JSON
Text Sequences", RFC 8091, DOI 10.17487/RFC8091, February
2017, <https://www.rfc-editor.org/rfc/rfc8091>.

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/rfc/rfc8126>.

[REFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,
<https://www.rfc-editor.org/rfc/rfc8259>.

[RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc—editor.org/rfc/rfc9000>.

16.2. Informative References

[ANRW-2020]
Marx, R., Piraux, M., Quax, P., and W. Lamotte, "Debugging
QUIC and HTTP/3 with glog and gvis", September 2020,
<https://glog.edm.uhasselt .be/anrw/>.

[QLOG-H3] Marx, R., Niccolini, L., Seemann, M., and L. Pardue,
"HTTP/3 glog event definitions", Work in Progress,
Internet-Draft, draft-ietf-quic-glog-h3-events-11, 7 July
2025, <https://datatracker.ietf.org/doc/html/draft-ietf-
quic—glog-h3-events-11>.

Marx, et al. Expires 23 April 2026 [Page 53]

Internet-Draft glog October 2025

[QLOG-QUIC]

Marx, R., Niccolini, L., Seemann, M., and L. Pardue, "QUIC
event definitions for glog", Work in Progress, Internet-—
Draft, draft-ietf-quic—-glog-quic-events-11, 7 July 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-quic-
glog—quic—-events—-11>.

[REFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/rfc/rfc8446>.

[RFC85406] Trammell, B. and M. Kuehlewind, "The Wire Image of a
Network Protocol", RFC 8546, DOI 10.17487/RFC8546, April
2019, <https://www.rfc-editor.org/rfc/rfc8546>.

Acknowledgements

Much of the initial work by Robin Marx was done at the Hasselt and KU
Leuven Universities.

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja
Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian Huitema, Hugo
Landau, Will Hawkins, Mathis Engelbart, Kazuho Oku, and Jonathan
Lennox for their feedback and suggestions.

Change Log
This section is to be removed before publishing as an RFC.

Since draft-ietf-quic-glog-main-schema-12:
* Changed Path and related fields to Tuple (#491)
* Replaced all lenght fields with raw.length (#495)

Since draft-ietf-quic-glog-main-schema-10:

* Multiple editorial changes

* Remove protocol_types and move event_schemas to Trace and TraceSeq
(#449)

Since draft-ietf-quic-glog-main-schema-09:
* Renamed protocol_type to protocol_types (#427)

* Moved Trigger section. Purely editorial (#430)

Marx, et al. Expires 23 April 2026 [Page 54]

Internet-Draft glog October 2025
* Removed the concept of categories and updated extension and event
schema logic to match. Major change (#439)

* Reworked completely how we handle timestamps and clocks. Major
change (#433)

Since draft-ietf-quic-glog-main-schema-08:
* TODO (we forgot...)
Since draft-ietf-quic-glog-main-schema-07:
* Added path and PathID (#336)
* Removed custom definition of uint64 type (#360, #388)
* ProtocolEventBody is now called ProtocolEventData (#352)
* Editorial changes (#364, #289, #353, #361, #362)
Since draft-ietf-quic—-glog-main-schema-06:
* Editorial reworking of the document (#331, #332)
* Updated IANA considerations section (#333)
Since draft-ietf-quic—-glog-main-schema-05:
* Updated glog_version to 0.4 (due to breaking changes) (#314)
* Renamed ’'transport’ category to ‘quic’ (#302)
* Added ’system_info’ field (#305)
* Removed ’summary’ and ‘configuration’ fields (#308)

* Editorial and formatting changes (#298, #303, #304, #316, #320,
#321, #322, #326, #328)

Since draft-ietf-quic—-glog-main-schema-04:
* Updated RawInfo definition and guidance (#243)
Since draft-ietf-quic-glog-main-schema-03:

* Added security and privacy considerations discussion (#252)

Marx, et al. Expires 23 April 2026 [Page 55]

Internet-Draft glog October 2025

Since draft-ietf-quic-glog-main-schema-02:

* No changes - new draft to prevent expiration
Since draft-ietf-quic-glog-main-schema-01:

* Change the data definition language from TypeScript to CDDL (#143)
Since draft-ietf-quic—-glog-main-schema-00:

* Changed the streaming serialization format from NDJSON to JSON
Text Sequences (#172)

* Added Media Type definitions for various glog formats (#158)
* Changed to semantic versioning
Since draft-marx-glog-main-schema-draft-02:

* These changes were done in preparation of the adoption of the
drafts by the QUIC working group (#137)

* Moved RawInfo, Importance, Generic events and Simulation events to
this document.

* Added basic event definition guidelines
* Made protocol_type an array instead of a string (#146)
Since draft-marx-glog-main-schema-01:

* Decoupled glog from the JSON format and described a mapping
instead (#89)

— Data types are now specified in this document and proper
definitions for fields were added in this format

- 64-bit numbers can now be either strings or numbers, with a
preference for numbers (#10)

— Dbinary blobs are now logged as lowercase hex strings (#39, #36)
— added guidance to add length-specifiers for binary blobs (#102)

* Removed "time_units" from Configuration. All times are now in ms
instead (#95)

Marx, et al. Expires 23 April 2026 [Page 56]

Internet-Draft glog October 2025
* Removed the "event_fields" setup for a more straightforward JSON
format (#101,#89)
* Added a streaming option using the NDJSON format (#109,#2,#106)
* Described optional optimization options for implementers (#30)

* Added QLOGDIR and QLOGFILE environment variables, clarified the
.well-known URL usage (#26,#33,#51)

* Overall tightened up the text and added more examples
Since draft-marx—-glog-main-schema-00:

* All field names are now lowercase (e.g., category instead of
CATEGORY)

* Triggers are now properties on the "data" field value, instead of
separate field types (#23)

* group_ids in common_fields is now just also group_id
Authors’ Addresses
Robin Marx (editor)

Akamai
Email: rmarx@akamai.com

Luca Niccolini (editor)
Meta
Email: lniccolini@meta.com

Marten Seemann (editor)
Email: martenseemann@gmail.com

Lucas Pardue (editor)
Cloudflare
Email: lucas@lucaspardue.com

Marx, et al. Expires 23 April 2026 [Page 57]

QUIC R. Marx, Ed.

Internet-Draft Akamai
Intended status: Standards Track L. Niccolini, Ed.
Expires: 23 April 2026 Meta

M. Seemann, Ed.
L. Pardue, Ed.

Cloudflare
20 October 2025

QUIC event definitions for glog
draft-ietf-quic—-glog-quic-events-12
Abstract
This document describes a glog event schema containing concrete glog
event definitions and their metadata for the core QUIC protocol and
selected extensions.
Note to Readers

Note to RFC editor: Please remove this section before publication.

Feedback and discussion are welcome at https://github.com/quicwg/glog

(https://github.com/quicwg/glog). Readers are advised to refer to
the "editor’s draft" at that URL for an up-to-date version of this
document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). ©Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 April 2026.

Marx, et al. Expires 23 April 2026 [Page 1]

Internet-Draft

Copyright Notice

QUIC event definitions for glog

October 2025

Copyright (c) 2025 IETF Trust and the persons identified as the
document authors. All

rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal

Provisions Relating to IETF Documents
license-info)
Please review these documents carefully,
and restrictions with respect to this document.

(https://trustee.ietf.org/

in effect on the date of publication of this document.
as they describe your rights
Code Components

extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

Marx,

B R

N

(G I NG, BN, B NG, G B INC, I G I G IS I C)

[S T S T ST AN

Intr
1.
2.
.3.
.4.

1.

QUIC Event Overview
Connectivity events

ran

OO JoUd WNEFEHOWJOULDd WDN -

e
S W o

oduction

Use of group IDs

Raw packet and

Events not belonging to a single connectlon

frame 1nformatlon

Notational Conventions
Event Schema Definition
Draft Event Schema Identlflcatlon

server_listening
connection_started
connection_closed
connection_id_updated
spin_bit_updated .
connection_state updated

tuple_assigned
mtu_updated
sport events

version_information
alpn_information

parameters_set

parameters_restored

packet_sent

packet_received

packet_dropped

packet_buffered

packets_acked

udp_datagrams_sent
udp_datagrams_received
udp_datagram_dropped
stream_state_updated
frames_processed

et al.

Expires 23 April 2026

oY oY O U1 U1 U1 W

10
10
11
12
13
13
15
16
16
16
17
18
21
21
22
23
25
25
26
27
27
28
30

[Page 2]

Internet-Dr

.15.
.16.
17,
.18.
.19.
.20.
.21.

[C2NC I NG, NG, I G INC,

o

1.
2.

o

BN EEN BN RN

kO(D\]O’\(J'I»bw[\.)l—‘IOO‘\U‘Inb(U[\)I—‘

00 00 O O 00 O O CO GO O O O
e
WN RO

Q0 00 0O OO 0O CO OO OO 0O OO 0O CO OO OO 0O O

.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.
.13.

aft

QUIC event definitions for glog

stream_data_moved
datagram_data_moved

connection_data_blocked updated
stream_data_blocked_updated
datagram_data_blocked_updated

migration_state_updated
timer_updated

6. Security Events

key_updated
key_discarded

7. Recovery events .o
recovery_parameters_ set
recovery_metrics_updated
congestion_state_updated
packet_lost

marked_for__ retransmlt
ecn_state_updated

QuicVersion
ConnectionID
Initiator
IPAddress
TupleEndp01ntInfo
PacketType
PacketNumberSpace
PacketHeader
Token
Stateless Reset Token
KeyType
ECN
QUIC Frames
1. PaddlngFrame
2. PingFrame
3. AckFrame
4. ResetStreamFrame
5. StopSendingFrame
6. CryptoFrame
7. NewTokenFrame
8. StreamFrame
9. MaxDataFrame
10. MaxStreamDataFrame
11. MaxStreamsFrame
12. DataBlockedFrame
13. StreamDataBlockedFrame
14. StreamsBlockedFrame
15. NewConnectionIDFrame
16. RetireConnectionIDFrame
17. PathChallengeFrame

Marx, et al.

UIC data type definitions

Expires 23 April 2026

October 2025

31
33
33
34
34
35
36
38
38
38
39
39
40
42
42
43
44
44
44
44
45
45
45
46
46
46
47
48
48
49
49
50
50
50
51
52
52
53
53
53
53
54
54
54
54
54
55
55

[Page 3]

Internet-Draft QUIC event definitions for glog October 2025

8.13.18. PathResponseFrame « « « « « « « « « . 55
8.13.19. ConnectionCloseFrame « « « « « . « . . 56
8.13.20. HandshakeDoneFrame 56
8.13.21. UnknownFrame ¢ v « « « « « « « « < < 57
8.13.22. DatagramFrame « +« « « « & o « « « « o« « < 57
8.13.23. TransportError « ¢ « « o « « « « « « « 57
8.13.24. ApplicationError « « b8
8.13.25. CryptoError . . S

9. Security and Privacy Con31deratlons D)
10. IANA Considerations« + ¢ ¢« « v « « « <« « < . < 59
11. References« « « ¢ v v ¢ v v v v v e e e e e e e e e w060
11.1. Normative References ¢« « ¢« « « « « . . 60
11.2. Informative References « ¢« ¢« « « « . . 61
Acknowledgements v 4 4 i e e e e e e e e e e e ..ol
Change Log . . o
Since draft- 1etf qlog quic-— events 11: . o
Since draft-ietf-glog-quic-events-09: 62
Since draft-ietf-glog-quic-events-08: 62
Since draft-ietf-glog-quic-events-07: 62
Since draft-ietf-glog-quic-events-06: 62
Since draft-ietf-glog-quic-events-05: 63
Since draft-ietf-glog-quic-events-04: 63
Since draft-ietf-glog-quic-events-03: 63
Since draft-ietf-glog-quic-events-02: 63
Since draft-ietf-glog-quic-events-01: 64
Since draft-ietf-glog-quic-events-00: c + « +« . . . 04
Since draft-marx—-glog—-event-— deflnltlons quic-— h3 02: C e e e e 64
Since draft-marx—-glog-event-definitions-quic-h3-01: 64
Since draft-marx—-glog-event-definitions-quic-h3-00: 66
Authors’ Addresses« + « « + + ¢ v i e e e e e e e . . . b6

1. Introduction

This document defines a glog event schema (Section 8 of [QLOG-MAIN])
containing concrete events for the core QUIC protocol (see
[QUIC-TRANSPORT], [QUIC-RECOVERY], and [QUIC-TLS]) and some of its
extensions (see [QUIC-DATAGRAM] and [GREASEBIT]).

The event namespace with identifier quic is defined; see Section 2.
In this namespace multiple events derive from the glog abstract Event
class (Section 7 of [QLOG-MAIN]), each extending the "data" field and
defining their "name" field values and semantics. Some event data
fields use complex data types. These are represented as enums or re-—
usable definitions, which are grouped together on the bottom of this
document for clarity.

Marx, et al. Expires 23 April 2026 [Page 4]

Internet-Draft QUIC event definitions for glog October 2025

1.1. Use of group IDs

When the glog group_id field is used, it is recommended to use QUIC’s
Original Destination Connection ID (ODCID, the CID chosen by the
client when first contacting the server), as this is the only value
that does not change over the course of the connection and can be
used to link more advanced QUIC packets (e.g., Retry, Version
Negotiation) to a given connection. Similarly, the ODCID should be
used as the glog filename or file identifier, potentially suffixed by
the vantagepoint type (For example, abcdl234_server.glog would
contain the server—-side trace of the connection with ODCID abcdl234).

1.2. Raw packet and frame information

QUIC packets always include an AEAD authentication tag at the end.

In general, the length of the AEAD tag depends on the TLS cipher
suite, although all cipher suites used in QUIC vl use a 16 byte tag.
For the purposes of calculating the lengths in fields of type RawInfo
(as defined in [QLOG-MAIN]) related to QUIC packets, the AEAD tag is
regarded as a trailer with a fixed size of 16 bytes.

1.3. Events not belonging to a single connection

A single glog event trace is typically associated with a single QUIC
connection. However, for several types of events (for example, a
Section 5.7 event with trigger wvalue of connection_unknown), it can
be impossible to tie them to a specific QUIC connection, especially
on the server.

There are various ways to handle these events, each making certain
tradeoffs between file size overhead, flexibility, ease of use, or

ease of implementation. Some options include:

* Log them in a separate endpoint-wide trace (or use a special
group_id value) not associated with a single connection.

* Log them in the most recently used trace.

* TUse additional heuristics for connection identification (for
example use the four-tuple in addition to the Connection ID).

Buffer events until they can be assigned to a connection (for
example for version negotiation and retry events).

Marx, et al. Expires 23 April 2026 [Page 5]

Internet-Draft QUIC event definitions for glog October 2025

1.4. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

The event and data structure definitions in ths document are
expressed in the Concise Data Definition Language [CDDL] and its
extensions described in [QLOG-MAIN].

The following fields from [QLOG-MAIN] are imported and used: name,
namespace, type, data, tuple, group_id, RawInfo, and time-related
fields.

Events are defined with an importance level as described in
Section 8.3 of [QLOG-MAIN].

As is the case for [QLOG-MAIN], the glog schema definitions in this
document are intentionally agnostic to serialization formats. The
choice of format is an implementation decision.

2. Event Schema Definition

This document describes how the core QUIC protocol and selected
extensions can be expressed in glog using a newly defined event
schema. Per the requirements in Section 8 of [QLOG-MAIN], this
document registers the quic namespace. The event schema URI is
urn:ietf:params:glog:events:quic.

2.1. Draft Event Schema Identification
This section is to be removed before publishing as an RFC.
Only implementations of the final, published RFC can use the events
belonging to the event schema with the URI
urn:ietf:params:glog:events:quic. Until such an RFC exists,
implementations MUST NOT identify themselves using this URI.
Implementations of draft versions of the event schema MUST append the
string "-" and the corresponding draft number to the URI. For
example, draft 07 of this document is identified using the URI

urn:ietf:params:glog:events:quic-07.

The namespace identifier itself is not affected by this requirement.

Marx, et al. Expires 23 April 2026 [Page 6]

Internet-Draft QUIC event definitions for glog October 2025

3. QUIC Event Overview

Table 1 summarizes the name value of each event type that is defined
in this specification.

+ + + +
| Name value | Importance | Definition |
+ + + +
| quic:server_listening | Extra | Section 4.1 |
———————————————— t—————— t———————— +
| quic:connection_started | Base | section 4.2
——————————————— o o —————— +
| quic:connection_closed | Base | Section 4.3
- F————— F—————— +
| qguic:connection_id_updated | Base | Section 4.4
———————————————— o t———————— +
| quic:spin_bit_updated | Base | Section 4.5
——————————————— o o —————— +
| quic:connection_state_updated | Base | Section 4.6
- F————— F—————— +
| quic:tuple_assigned | Base | section 4.7
———————————————— o t————————— +
| quic:mtu_updated | Extra | Section 4.8 |
——————————————— o o —————— +
| quic:version_information | Core | section 5.1
- F————— F—————— +
| quic:alpn_information | Core | Section 5.2
———————————————— o t———————— +
| quic:parameters_set | Core | Section 5.3
——————————————— o o —————— +
| quic:parameters_restored | Base | Section 5.4
- F————— F—————— +
| quic:packet_sent | Core | Section 5.5
———————————————— o t———————— +
| quic:packet_received | core | Section 5.6
——————————————— o o —————— +
| quic:packet_dropped | Base | Section 5.7
- F————— F—————— +
| quic:packet_buffered | Base | Section 5.8
———————————————— o t———————— +
| quic:packets_acked | Extra | section 5.9 |
——————————————— o o —————— +
| quic:udp_datagrams_sent | Extra | Section 5.10 |
- F————— F—————— +
| quic:udp_datagrams_received | Extra | Section 5.11 |
———————————————— o t———————— +
| quic:udp_datagram_dropped | Extra | Section 5.12 |
——————————————— o o —————— +

Marx, et al. Expires 23 April 2026 [Page 7]

Internet-Draft QUIC event definitions for glog October 2025

| quic:stream state_updated | Base | section 5.13 |
Fmm Fm— Fmm +
| quic:frames_processed | Extra | Section 5.14 |
Fmm Fmm Fmm +
| quic:stream data_moved | Base | section 5.15 |
e Fom Fm +
| quic:datagram_data_moved | Base | Section 5.16 |
Fmm Fm— Fmm +
| quic:connection_data_blocked_updated | Extra | Ssection 5.17 |
Fmm Fmm Fmm +
| quic:stream data_blocked updated | Extra | section 5.18 |
e Fom Fm +
| quic:datagram_data_blocked_updated | Extra | Section 5.19 |
Fmm Fm— Fmm +
| quic:migration_state_updated | Extra | Section 5.20 |
Fmm Fmm Fmm +
| quic:timer_updated | Extra | section 5.21 |
e Fom Fm +
| quic:key_updated | Base | section 6.1 |
Fmm Fm— Fmm +
| quic:key_discarded | Base | Section 6.2 |
Fmm Fmm Fmm +
| quic:recovery_parameters_set | Base | section 7.1

e Fom Fm +
| quic:recovery_metrics_updated | Core | Section 7.2

Fmm Fm— Fmm +
| quic:congestion_state_updated | Base | section 7.3

Fmm Fmm Fmm +
| quic:packet_lost | core | section 7.4 |
e Fom Fm +
| quic:marked_for_retransmit | Extra | Section 7.5

Fmm Fm— Fmm +
| quic:ecn_state_updated | Extra | Section 7.6

e Fmm Fmm +

Table 1: QUIC Events

QUIC events extend the $ProtocolEventData extension point defined in
[QLOG-MAIN]. Additionally, they allow for direct extensibility by
their use of per-event extension points via the $$ CDDL "group
socket" syntax, as also described in [QLOG-MAIN].

Marx, et al. Expires 23 April 2026 [Page 8]

Internet-Draft QUIC event definitions for glog October 2025

QuicEventData = QUICServerListening /
QUICConnectionStarted /
QUICConnectionClosed /
QUICConnectionIDUpdated /
QUICSpinBitUpdated /
QUICConnectionStateUpdated /
QUICTupleAssigned /
QUICMTUUpdated /
QUICVersionInformation /
QUICALPNInformation /
QUICParametersSet /
QUICParametersRestored /
QUICPacketSent /
QUICPacketReceived /
QUICPacketDropped /
QUICPacketBuffered /
QUICPacketsAcked /
QUICUDPDatagramsSent /
QUICUDPDatagramsReceived /
QUICUDPDatagramDropped /
QUICStreamStateUpdated /
QUICFramesProcessed /
QUICStreamDataMoved /
QUICDatagramDataMoved /
QUICConnectionDataBlockedUpdated /
QUICStreamDataBlockedUpdated /
QUICDatagramDataBlockedUpdated /
QUICMigrationStateUpdated /
QUICTimerUpdated /
QUICKeyUpdated /
QUICKeyDiscarded /
QUICRecoveryParametersSet /
QUICRecoveryMetricsUpdated /
QUICCongestionStateUpdated /
QUICPacketLost /
QUICMarkedForRetransmit /
QUICECNStateUpdated

$ProtocolEventData /= QuicEventData
Figure 1: QuicEventData definition and ProtocolEventData extension

The concrete QUIC event types are further defined below, their type

identifier is the heading name. The subdivisions in sections on
Connectivity, Security, Transport and Recovery are purely for
readability.

Marx, et al. Expires 23 April 2026 [Page 9]

Internet-Draft QUIC event definitions for glog October 2025

4. Connectivity events
4.1. server_listening
Emitted when the server starts accepting connections. It has Extra

importance level.

QUICServerListening = ({
? ip_v4: IPAddress
? port_v4: uintle
? ip_v6: IPAddress
? port_v6: uintlé6

; the server will always answer client initials with a retry
(no 1-RTT connection setups by choice)
? retry_required: bool

~.

* $$quic-serverlistening-extension

Figure 2: QUICServerListening definition

Some QUIC stacks do not handle sockets directly and are thus unable
to log IP and/or port information.

4.2. connection_started
The connection_started event is used for both attempting (client-
perspective) and accepting (server—-perspective) new connections.
Note that while there is overlap with the connection_state_updated
event, this event is separate event in order to capture additional
data that can be useful to log. It has Base importance level.
QUICConnectionStarted = {

local: TupleEndpointInfo

remote: TupleEndpointInfo

* $8quic-connectionstarted-extension

Figure 3: QUICConnectionStarted definition

Some QUIC stacks do not handle sockets directly and are thus unable
to log IP and/or port information.

Marx, et al. Expires 23 April 2026 [Page 10]

Internet-Draft QUIC event definitions for glog October 2025

4.3. connection_closed

The connection_closed event is used for logging when a connection was
closed, typically when an error or timeout occurred. It has Base
importance level.

Note that this event has overlap with the connection_state_updated
event, as well as the CONNECTION_CLOSE frame. However, in practice,
when analyzing large deployments, it can be useful to have a single
event representing a connection_closed event, which also includes an
additional reason field to provide more information. Furthermore, it
is useful to log closures due to timeouts or explicit application
actions (such as racing multiple connections and aborting the
slowest), which are difficult to reflect using the other options.

The connection_closed event is intended to be logged either when the
local endpoint silently discards the connection due to an idle
timeout, when a CONNECTION_CLOSE frame is sent (the connection enters
the ’closing’ state on the sender side), when a CONNECTION_CLOSE
frame is received (the connection enters the ’'draining’ state on the
receiver side) or when a Stateless Reset packet is received (the
connection is discarded at the receiver side). Connectivity-related
updates after this point (e.g., exiting a ’'closing’ or ’'draining’
state), should be logged using the connection_state_updated event
instead.

In QUIC there are two main connection-closing error categories:
connection and application errors. They have well-defined error
codes and semantics. Next to these however, there can be internal
errors that occur that may or may not get mapped to the official
error codes in implementation-specific ways. As such, multiple error
codes can be set on the same event to reflect this, and more fine-
grained internal error codes can be reflected in the internal_code
field.

If the error code does not map to a known error string, the
connection_error or application_error value of "unknown" type can be
used and the raw value captured in the error_code field; a numerical
value without variable-length integer encoding.

Marx, et al. Expires 23 April 2026 [Page 11]

Internet-Draft QUIC event definitions for glog October 2025

QUICConnectionClosed = {

which side closed the connection

? initiator: Initiator

? connection_error: S$TransportError /
CryptoError

? application_error: $ApplicationError

~.

if connection_error or application_error === "unknown"
? error_code: uinto4

~.

internal_code: uint64
reason: text
trigger:
"idle_timeout" /
"application" /
"error" /
"version_mismatch" /
; when received from peer
"stateless_reset" /
"aborted" /
; when it is unclear what triggered the CONNECTION_CLOSE
"unspecified"

* $8quic—-connectionclosed-extension

Figure 4: QUICConnectionClosed definition

Loggers SHOULD use the most descriptive trigger for a
connection_closed event that they are able to deduce. This is often
clear at the peer closing the connection (and sending the
CONNECTION_CLOSE), but can sometimes be more opaque at the receiving
end.

4.4, connection_id_updated

The connection_id updated event is emitted when either party updates
their current Connection ID. As this typically happens only
sparingly over the course of a connection, using this event is more
efficient than logging the observed CID with each and every
packet_sent or packet_received events. It has Base importance level.

The connection_id updated event is viewed from the perspective of the
endpoint applying the new ID. As such, when the endpoint receives a
new connection ID from the peer, the initiator field will be
"remote". When the endpoint updates its own connection ID, the
initiator field will be "local".

Marx, et al. Expires 23 April 2026 [Page 12]

Internet-Draft QUIC event definitions for glog October 2025

QUICConnectionIDUpdated = {
initiator: Initiator
? old: ConnectionID
? new: ConnectionID

* $8quic—-connectionidupdated-extension

Figure 5: QUICConnectionIDUpdated definition
4.5. spin_bit_updated

The spin_bit_updated event conveys information about the QUIC latency
spin bit; see Section 17.4 of [QUIC-TRANSPORT]. The event is emitted
when the spin bit changes value, it SHOULD NOT be emitted if the spin
bit is set without changing its wvalue. It has Base importance level.

QUICSpinBitUpdated = {
state: bool

* Squic-spinbitupdated-extension

Figure 6: QUICSpinBitUpdated definition
4.6. connection_state_updated

The connection_state_updated event is used to track progress through
QUIC’s complex handshake and connection close procedures. It has
Base importance level.

[QUIC-TRANSPORT] does not contain an exhaustive flow diagram with
possible connection states nor their transitions (though some are
explicitly mentioned, like the ’closing’ and ’'draining’ states). As
such, this document *non-exhaustively* defines those states that are
most likely to be useful for debugging QUIC connections.

QUIC implementations SHOULD mainly log the simplified
BaseConnectionStates, adding the more fine-grained
GranularConnectionStates when more in-depth debugging is required.
Tools SHOULD be able to deal with both types equally.

QUICConnectionStateUpdated = {
? old: $ConnectionState

new: S$ConnectionState

* $Squic—connectionstateupdated—-extension

Marx, et al. Expires 23 April 2026 [Page 13]

Internet-Draft QUIC event definitions for glog October 2025

BaseConnectionStates =
; Initial packet sent/received
"attempted" /

; Handshake packet sent/received
"handshake_started" /

; Both sent a TLS Finished message

; and verified the peer’s TLS Finished message
; 1-RTT packets can be sent

; RFC 9001 Section 4.1.1

"handshake_complete" /

; CONNECTION_CLOSE sent/received,
; stateless reset received or idle timeout
"closed"

GranularConnectionStates =
; RFC 9000 Section 8.1
; client sent Handshake packet OR
; client used connection ID chosen by the server OR
; client used valid address validation token
"peer_validated" /

; 1-RTT data can be sent by the server,

; but handshake is not done yet

; (server has sent TLS Finished; sometimes called 0.5 RTT data)
"early_write" /

; HANDSHAKE_DONE sent/received.

; RFC 9001 Section 4.1.2

"handshake_confirmed" /

; CONNECTION_CLOSE sent
"closing" /

; CONNECTION_CLOSE received
"draining" /

; draining or closing period done, connection state discarded
"closed"

$ConnectionState /= BaseConnectionStates / GranularConnectionStates

Figure 7: QUICConnectionStateUpdated definition

Marx, et al. Expires 23 April 2026 [Page 14]

Internet-Draft QUIC event definitions for glog October 2025

The connection_state_changed event has some overlap with the
connection_closed and connection_started events, and the handling of
various frames (for example in a packet_received event). Still, it
can be useful to log these logical state transitions separately,
especially if they map to an internal implementation state machine,
to explicitly track progress. As such, implementations are allowed
to use other ConnectionState values that adhere more closely to their
internal logic. Tools SHOULD be able to deal with these custom
states in a similar way to the pre-defined states in this document.

4.7. tuple_assigned
Importance: Base

This event is used to associate a single TuplelID’s value with other
parameters that describe a unique network tuple.

As described in [QLOG-MAIN], each glog event can be linked to a
single network tuple by means of the top-level "tuple" field, whose
value is a TupleID. However, since it can be cumbersome to encode
additional tuple metadata (such as IP addresses or Connection IDs)
directly into the TupleID, this event allows such an association to
happen separately. As such, TupleIDs can be short and unique, and
can even be updated to be associated with new metadata as the
connection’s state evolves.

Definition:

QUICTupleAssigned = {
tuple_id: TuplelID

the information for traffic going towards the remote receiver
? tuple_remote: TupleEndpointInfo

~.

the information for traffic coming in at the local endpoint
? tuple_local: TupleEndpointInfo

~.

* $8quic-tupleassigned-extension

Figure 8: QUICTupleAssigned definition

Choosing the different tuple_id values is left up to the
implementation. Some options include using a uniquely incrementing
integer, using the (first) Destination Connection ID associated with
a tuple (or its sequence number), or using (a hash of) the two
endpoint IP addresses.

Marx, et al. Expires 23 April 2026 [Page 15]

Internet-Draft QUIC event definitions for glog October 2025

It is important to note that the empty string ("") is a valid TupleID
and that it is the default assigned to events that do not explicitly
set a "tuple" field. Put differently, the initial tuple of a QUIC
connection on which the handshake occurs (see also Section 4.2) is
implicitly associated with the TupleID with value "". Associating
metadata with this default tuple is possible by logging the
QUICTupleAssigned event with a value of "" for the tuple_id field.

As the usage of TuplelIDs and their metadata can evolve over time,
multiple QUICTupleAssigned events can be emitted for each unique
TupleID. The latest event contains the most up-to-date information
for that TupleID. As such, the first time a TupleID is seen in a
QUICTupleAssigned event, it is an indication that the TuplelID is
created. Subsequent occurrences indicate the TupleID is updated,
while a final occurrence with both tuple_local and tuple_remote
fields omitted implicitly indicates the TupleID has been abandoned.

4.8. mtu_updated

The mtu_updated event indicates that the estimated Path MTU was
updated. This happens as part of the Path MTU discovery process. It
has Extra importance level.

QUICMTUUpdated = {
? old: uint32
new: uint32

; at some point, MTU discovery stops, as a "good enough”
; packet size has been found
done: bool .default false

(R}

* $Squic-mtuupdated-extension

Figure 9: QUICMTUUpdated definition
5. Transport events
5.1. version_information

The version_information event supports QUIC version negotiation; see
Section 6 of [QUIC-TRANSPORT]. It has Core importance level.

QUIC endpoints each have their own list of QUIC versions they

support. The client uses the most likely version in their first
initial. 1If the server does not support that version, it replies
with a Version Negotiation packet, which contains its supported
versions. From this, the client selects a version. The

Marx, et al. Expires 23 April 2026 [Page 16]

Internet-Draft QUIC event definitions for glog October 2025

version_information event aggregates all this information in a single
event type. It also allows logging of supported versions at an
endpoint without actual version negotiation needing to happen.

QUICVersionInformation = {
? server_versions: [+ QuicVersion]
? client_versions: [+ QuicVersion]
? chosen_version: QuicVersion

* $$quic-versioninformation-extension

Figure 10: QUICVersionInformation definition
Intended use:

* When sending an initial, the client logs this event with
client_versions and chosen_version set

* Upon receiving a client initial with a supported version, the
server logs this event with server_versions and chosen_version set

* Upon receiving a client initial with an unsupported version, the
server logs this event with server_versions set and
client_versions to the single-element array containing the
client’s attempted version. The absence of chosen_version implies
no overlap was found

* Upon receiving a version negotiation packet from the server, the
client logs this event with client_versions set and
server_versions to the versions in the version negotiation packet
and chosen_version to the version it will use for the next initial
packet. If the client receives a set of server_versions with no
viable overlap with its own supported versions, this event should
be logged without the chosen_version set

5.2. alpn_information
The alpn_information event supports Application-Layer Protocol
Negotiation (ALPN) over the QUIC transport; see [RFC7301] and
Section 7.4 of [QUIC-TRANSPORT]. It has Core importance level.

QUIC endpoints are configured with a list of supported ALPN

identifiers. Clients send the list in a TLS ClientHello, and servers
match against their list. On success, a single ALPN identifier is
chosen and sent back in a TLS ServerHello. If no match is found, the

connection is closed.

Marx, et al. Expires 23 April 2026 [Page 17]

Internet-Draft QUIC event definitions for glog October 2025

ALPN identifiers are byte sequences, that may be possible to present
as UTF-8. The ALPNIdentifier' type supports either format.
Implementations SHOULD log at least one format, but MAY log both or
none.

QUICALPNInformation = {
? server_alpns: [* ALPNIdentifier]
? client_alpns: [* ALPNIdentifier]
? chosen_alpn: ALPNIdentifier

* $Squic—alpninformation—-extension

}

ALPNIdentifier = {
? byte_value: hexstring
? string_value: text

Figure 11: QUICALPNInformation definition
Intended use:

* When sending an initial, the client logs this event with
client_alpns set

* When receiving an initial with a supported alpn, the server logs
this event with server_alpns set, client_alpns equalling the
client-provided list, and chosen_alpn to the value it will send
back to the client.

* When receiving an initial with an alpn, the client logs this event
with chosen_alpn to the received value.

* Alternatively, a client can choose to not log the first event, but
wait for the receipt of the server initial to log this event with
both client_alpns and chosen_alpn set.

5.3. parameters_set

The parameters_set event groups settings from several different
sources (transport parameters, TLS ciphers, etc.) into a single
event. This is done to minimize the amount of events and to decouple
conceptual setting impacts from their underlying mechanism for easier
high-level reasoning. The event has Core importance level.

Marx, et al. Expires 23 April 2026 [Page 18]

Internet-Draft QUIC event definitions for glog October 2025

Most of these settings are typically set once and never change.
However, they are usually set at different times during the
connection, so there will regularly be several instances of this
event with different fields set.

Note that some settings have two variations (one set locally, one
requested by the remote peer). This is reflected in the initiator
field. As such, this field MUST be correct for all settings included
a single event instance. If the settings from two sides are
required, they MUST be logged as two separate event instances. If
the local peer decides to change its behavior based on remote peer’s
settings, a new event type can be used to reflect the outcome.

By default, each setting is assumed to either be absent (has an
undefined value) or have its default value (if it exists) at the
start of the connection. Subsequently, each setting’s value in a
parameters_set event supersedes the previous value of that parameter
if present. If a setting does not appear in a given parameters_set
event, its value is unchanged.

Implementations are not required to recognize, process or support
every setting/parameter received in all situations. For example,
QUIC implementations MUST discard transport parameters that they do
not understand Section 7.4.2 of [QUIC-TRANSPORT]. The
unknown_parameters field can be used to log the raw values of any
unknown parameters (e.g., GREASE, private extensions, peer-side
experimentation) .

In the case of connection resumption and O0-RTT, some of the server’s
parameters are stored up—-front at the client and used for the initial
connection startup. They are later updated with the server’s reply.
In these cases, utilize the separate parameters_restored event to
indicate the initial wvalues, and this event to indicate the updated
values, as normal.

QUICParametersSet = {
? initiator: Initiator

true if valid session ticket was received
? resumption_allowed: bool

~.

true if early data extension was enabled on the TLS layer
? early_data_enabled: bool

~.

e.g., "AES_128_GCM_SHA256"
? tls_cipher: text

~.

; RFC9000

Marx, et al. Expires 23 April 2026 [Page 19]

Internet-Draft QUIC event definitions for glog

LR B B N B N N B A AV IV B N e N N Y

~.

original_ destination_connection_id: ConnectionID
initial_source_connection_id: ConnectionID
retry_source_connection_id: ConnectionID
stateless_reset_token: StatelessResetToken
disable_active_migration: bool
max_idle_timeout: uinté4
max_udp_payload_size: uint64
ack_delay_exponent: uint64

max_ack_delay: uint64
active_connection_id_limit: uinté64

initial max_data: uinté64

initial_max_stream data_bidi_local: uinté4
initial_max_stream data_bidi_remote: uint64
initial_max_stream data_uni: uinto64
initial max_ streams_bidi: uint64
initial_max_streams_uni: uintoc4
preferred_address: PreferredAddress
unknown_parameters: [* UnknownParameter]

RFC9221
max_datagram_frame_size: uinté64

RFC9287

October 2025

true if present, absent or false if extension not negotiated

grease_quic_bit: bool

$Squic-parametersset—-extension

PreferredAddress = {

?
?
?
?

ip_v4: IPAddress
port_v4: uintlé
ip_v6: IPAddress
port_v6: uintlé6

connection_id: ConnectionID
stateless_reset_token: StatelessResetToken

UnknownParameter = {
id: uint64

Marx,

?

value: hexstring

Figure 12: QUICParametersSet definition

et al. Expires 23 April 2026

[Page 20]

Internet-Draft QUIC event definitions for glog October 2025

5.4. parameters_restored

When using QUIC O0-RTT, clients are expected to remember and restore

the server’s transport parameters from the previous connection. The
parameters_restored event is used to indicate which parameters were
restored and to which values when utilizing O-RTT. It has Base

importance level.

Note that not all transport parameters should be restored (many are
even prohibited from being re-utilized). The ones listed here are
the ones expected to be useful for correct O0-RTT usage.

QUICParametersRestored = {

REFC9000

disable_active_migration: bool
max_idle_timeout: uinté64
max_udp_payload_size: uint64
active_connection_id_limit: uinte4
initial_max_data: uint64
initial_max_stream data_bidi_local: uinté64
initial max_ stream_data_bidi_remote: uinté4,
initial max_ stream_data_uni: uinté64
initial_max_streams_bidi: uint64
initial _max_ streams_uni: uinté4

WD D 0 0 D 0 D 0)) e

RFC9221
? max_datagram_frame_size: uinto64

~.

; RFC9287

; can only be restored at the client.

; servers MUST NOT restore this parameter!
? grease_quic_bit: bool

* $Squic—parametersrestored—-extension

Figure 13: QUICParametersRestored definition
5.5. packet_sent

The packet_sent event indicates a QUIC-level packet was sent. It has
Core importance level.

Marx, et al. Expires 23 April 2026 [Page 21]

Internet-Draft QUIC event definitions for glog October

QUICPacketSent = {
header: PacketHeader

?

O e

WD 0 0) N

frames: [* $QuicFrame]

only i1if header.packet_type === "stateless_reset"
is always 128 bits in length.
stateless_reset_token: StatelessResetToken

only if header.packet_type === "version_negotiation"
supported_versions: [+ QuicVersion]

raw: RawInfo

datagram_id: uint32

is_mtu_probe_packet: bool .default false

trigger:

; RFC 9002 Section 6.1.1
"retransmit_reordered" /

; RFC 9002 Section 6.1.2
"retransmit_timeout" /

; RFC 9002 Section 6.2.4
"pto_probe" /

; RFC 9002 6.2.3
"retransmit_crypto" /

; needed for some CCs to figure out bandwidth allocations
; when there are no normal sends
"cc_bandwidth_probe"

$Squic—-packetsent-extension

Figure 14: QUICPacketSent definition

The encryption_level and packet_number_space are not logged
explicitly: the header.packet_type specifies this by inference
(assuming correct implementation)

The datagram_id field is used to track packet coalescing, see
Section 5.10.

5.6.

packet_received

2025

The packet_received event indicates a QUIC-level packet was received.
It has Core importance level.

Marx,

et al. Expires 23 April 2026 [Page 22]

Internet-Draft QUIC event definitions for glog October

QUICPacketReceived = {
header: PacketHeader

?

O e

) 0 D Ne

frames: [* $QuicFrame]

only i1if header.packet_type === "stateless_reset"
Is always 128 bits in length.
stateless_reset_token: StatelessResetToken

only if header.packet_type === "version_negotiation"
supported_versions: [+ QuicVersion]

raw: RawInfo

datagram_id: uint32

trigger:
; 1f packet was buffered because it couldn’t be
; decrypted before
"keys_available"

$Squic—-packetreceived-extension

Figure 15: QUICPacketReceived definition

The encryption_level and packet_number_space are not logged
explicitly: the header.packet_type specifies this by inference
(assuming correct implementation).

The datagram_id field is used to track packet coalescing, see
Section 5.10.

5.7.

packet_dropped

2025

The packet_dropped event indicates a QUIC-level packet was dropped.
It has Base importance level.

The trigger field indicates a general reason category for dropping
the packet, while the details field can contain additional
implementation-specific information.

Marx,

et al. Expires 23 April 2026 [Page 23]

Internet-Draft QUIC event definitions for glog October 2025

QUICPacketDropped = {

Primarily packet_type should be filled here,
as other fields might not be decrypteable or parseable
header: PacketHeader
raw: RawInfo
datagram_id: uint32
details: {* text => any}
trigger:
"internal_error" /
"rejected" /
"unsupported" /
"invalid" /
"duplicate" /
"connection_unknown" /
"decryption_failure" /
"key_unavailable" /
"general"

~.

)))) 0 Ne

* $Squic-packetdropped-extension

Figure 16: QUICPacketDropped definition

Some example situations for each of the trigger categories include:

*

Marx,

internal_error: not initialized, out of memory

rejected: limits reached, DDoS protection, unwilling to track more
paths, duplicate packet

unsupported: unknown or unsupported version. See also
Section 1.3.

invalid: packet parsing or wvalidation error
duplicate: duplicate packet

connection_unknown: packet does not relate to a known connection
or Connection ID

decryption_failure: decryption failed
key_unavailable: decryption key was unavailable

general: situations not clearly covered in the other categories

et al. Expires 23 April 2026 [Page 24]

Internet-Draft QUIC event definitions for glog October 2025

The datagram_id field is used to track packet coalescing, see
Section 5.10.

5.8. packet_buffered

The packet_buffered event is emitted when a packet is buffered
because it cannot be processed yet. Typically, this is because the
packet cannot be parsed yet, and thus only the full packet contents
can be logged when it was parsed in a packet_received event. The
event has Base importance level.

QUICPacketBuffered = {

primarily packet_type should be filled here as other elements
might not be available yet
header: PacketHeader
raw: RawInfo
datagram_id: uint32
trigger:
; indicates the parser cannot keep up, temporarily buffers
; packet for later processing
"backpressure" /
; 1f packet cannot be decrypted because the proper keys were
; not yet available
"keys_unavailable"

~.

WD 0 0) e

* SSquic-packetbuffered-extension

Figure 17: QUICPacketBuffered definition

The datagram_id field is used to track packet coalescing, see
Section 5.10.

5.9. packets_acked

The packets_acked event is emitted when a (group of) sent packet (s)
is acknowledged by the remote peer _for the first time_. It has Extra
importance level.

This information could also be deduced from the contents of received
ACK frames. However, ACK frames require additional processing logic
to determine when a given packet is acknowledged for the first time,
as QUIC uses ACK ranges which can include repeated ACKs.
Additionally, this event can be used by implementations that do not
log frame contents.

Marx, et al. Expires 23 April 2026 [Page 25]

Internet-Draft QUIC event definitions for glog October 2025

QUICPacketsAcked = {
? packet_number_space: $PacketNumberSpace
? packet_numbers: [+ uint64]

* $Squic—packetsacked-extension

Figure 18: QUICPacketsAcked definition

If packet_number_space is omitted, it assumes the default value of
application_data, as this is by far the most prevalent packet number
space a typical QUIC connection will use.

5.10. udp_datagrams_sent
The datagrams_sent event indicates when one or more UDP-level
datagrams are passed to the underlying network socket. This is
useful for determining how QUIC packet buffers are drained to the 0S.
The event has Extra importance level.

QUICUDPDatagramsSent = {

to support passing multiple at once
count: uintlé6

) Ne

; The RawInfo fields do not include the UDP headers,
only the UDP payload
? raw: [+ RawInfo]

~.

; ECN bits in the IP header

; 1f not set, defaults to the value used on the last
; QUICDatagramsSent event

? ecn: [+ ECN]

? datagram_ids: [+ uint32]

* $8quic-udpdatagramssent-extension

Figure 19: QUICUDPDatagramsSent definition

Since QUIC implementations rarely control UDP logic directly, the raw
data excludes UDP-level headers in all RawInfo fields.

Multiple QUIC packets can be coalesced in a single UDP datagram,
especially during the handshake (see Section 12.2 of
[QUIC-TRANSPORT]). However, neither QUIC nor UDP themselves provide
an explicit mechanism to track this behaviour. To make it possible

Marx, et al. Expires 23 April 2026 [Page 26]

Internet-Draft QUIC event definitions for glog October 2025

for implementations to track coalescing across packet-level and
datagram-level glog events, this document defines a glog-specific
mechanism for tracking coalescing across packet-level and datagram-
level glog events: a "datagram identifier"™ carried in datagram_id
fields. glog implementations that want to track coalescing can use
this mechanism, where multiple events sharing the same datagram_id
indicate they were coalesced in the same UDP datagram. The selection
of specific and locally-unique datagram_id wvalues is an
implementation choice.

5.11. udp_datagrams_received
When one or more UDP-level datagrams are received from the socket.
This is useful for determining how datagrams are passed to the user
space stack from the 0S. The event has Extra importance level.

QUICUDPDatagramsReceived = {

to support passing multiple at once
count: uintlé6

) Ne

; The RawInfo fields do not include the UDP headers,
only the UDP payload
? raw: [+ RawInfo]

~.

; ECN bits in the IP header

; 1f not set, defaults to the value on the last
; QUICDatagramsReceived event

? ecn: [+ ECN]

? datagram_ids: [+ uint32]

* $Squic—udpdatagramsreceived-extension

Figure 20: QUICUDPDatagramsReceived definition

The datagram_ids field is used to track packet coalescing, see
Section 5.10.

5.12. udp_datagram_dropped

When a UDP-level datagram is dropped. This is typically done if it
does not contain a valid QUIC packet. If it does, but the QUIC
packet is dropped for other reasons, the packet_dropped event
(Section 5.7) should be used instead. The event has Extra importance
level.

Marx, et al. Expires 23 April 2026 [Page 27]

Internet-Draft QUIC event definitions for glog October 2025

QUICUDPDatagramDropped = {

; The RawInfo fields do not include the UDP headers,
only the UDP payload
? raw: RawInfo

~.

* $Squic-udpdatagramdropped-extension

Figure 21: QUICUDPDatagramDropped definition
5.13. stream_state_updated

The stream_state_updated event is emitted whenever the internal state
of a QUIC stream is updated; see Section 3 of [QUIC-TRANSPORT]. Most
of this can be inferred from several types of frames going over the
wire, but it’s often easier to have explicit signals for these state
changes. The event has Base importance level.

While QUIC stream IDs encode the type of stream, (see Section 2.1 of
[QUIC-TRANSPORT]), the optional stream_type field can be used to
provide a more-—accessible form of the information.

Section 3 of [QUIC-TRANSPORT] describes streams in terms of their
send and receive components, with a state machine for each. The
stream _side field is used to indicate which side’s state is updated
in the logged event. 1In case both sides of the stream change state
at the same time (for example both become closed), two separate
events with different stream_side fields SHOULD be logged.

In cases where it is useful to know which side of the connection
initiated a state change (for example, closed due to either
RESET_STREAM or STOP_SENDING), this can be reflected using the
trigger field.

Marx, et al. Expires 23 April 2026 [Page 28]

Internet-Draft QUIC event definitions for glog October 2025

StreamType = "unidirectional" /
"bidirectional”

QUICStreamStateUpdated = {

stream_id: uint64

? stream_type: StreamType

? old: $StreamState

new: S$StreamState

stream_side: "sending" /

"receiving"

? trigger:
; stream state change was initiated by a local action
"local" /
; stream state change was initiated by a remote action
"remote"

* $Squic—streamstateupdated—-extension

BaseStreamStates = "idle" /
"Open" /
"closed"

GranularStreamStates =
; bidirectional stream states, RFC 9000 Section 3.4.
"half_closed_local" /
"half_closed_remote" /
; sending-side stream states, RFC 9000 Section 3.1.
"ready" /
"send" /
"data_sent" /
"reset_sent" /
"reset_received" /
; receive-side stream states, RFC 9000 Section 3.2.
"receive" /
"size_known" /
"data_read" /
"reset_read" /
; both-side states
"data_received" /
; glog-defined: memory actually freed
"destroyed"

$StreamState /= BaseStreamStates / GranularStreamStates

Figure 22: QUICStreamStateUpdated definition

Marx, et al. Expires 23 April 2026 [Page 29]

Internet-Draft QUIC event definitions for glog October 2025

QUIC implementations SHOULD mainly log the simplified
BaseStreamStates instead of the more fine-grained
GranularStreamStates. These latter ones are mainly for more in-depth
debugging. Tools SHOULD be able to deal with both types equally.

5.14. frames_processed

The frame_processed event is intended to prevent a large
proliferation of specific purpose events (e.g., packets_acknowledged,
flow_control_updated, stream_data_received). It has Extra importance
level.

Implementations have the opportunity to (selectively) log this type
of signal without having to log packet-level details (e.g., in
packet_received). Since for almost all cases, the effects of
applying a frame to the internal state of an implementation can be
inferred from that frame’s contents, these events are aggregated into
this single frames_processed event.

The frame_processed event can be used to signal internal state change
not resulting directly from the actual "parsing" of a frame (e.g.,
the frame could have been parsed, data put into a buffer, then later
processed, then logged with this event).

The packet_received event can convey all constituent frames. It is
not expected that the frames_processed event will also be used for a
redundant purpose. Rather, implementations can use this event to
avoid having to log full packets or to convey extra information about
when frames are processed (for example, if frame processing is
deferred for any reason).

Note that for some events, this approach will lose some information
(e.g., for which encryption level are packets being acknowledged?).
If this information is important, the packet_received event can be

used instead.

In some implementations, it can be difficult to log frames directly,
even when using packet_sent and packet_received events. For these
cases, the frames_processed event also contains the packet_numbers
field, which can be used to more explicitly link this event to the
packet_sent/received events. The field is an array, which supports
using a single frames_processed event for multiple frames received
over multiple packets. To map between frames and packets, the
position and order of entries in the frames and packet_numbers is
used. If the optional packet_numbers field is used, each frame MUST
have a corresponding packet number at the same index.

Marx, et al. Expires 23 April 2026 [Page 30]

Internet-Draft QUIC event definitions for glog October 2025

QUICFramesProcessed = {
frames: [* $QuicFrame]
? packet_numbers: [* uint64]

* $Squic—framesprocessed—-extension

Figure 23: QUICFramesProcessed definition

For example, an instance of the frames_processed event that
represents four STREAM frames received over two packets would have
the fields serialized as:

"frames": [
{"frame_type":"stream", "stream_id":0, "offset":0, "raw":{"length":500}},
{"frame_type":"stream", "stream_id":0,"offset":500, "raw":{"length":200}},
{"frame_type":"stream", "stream_id":1,"offset":0,"raw":{"length":300}},
{"frame_type":"stream", "stream_id":1,"offset":300, "raw":{"length":50}}

1,
"packet_numbers": [
1,
1,
2,
2
]

5.15. stream_data_moved

The stream_data_moved event is used to indicate when QUIC stream data
moves between the different layers. This helps make clear the flow
of data, how long data remains in various buffers, and the overheads
introduced by individual layers. The event has Base importance
level.

The raw.length field is used to reflect how many bytes were moved.
As this event relates to stream data only, there are no packet or
frame headers and the raw.length field MUST reflect that.

For example, it can be useful to understand when data moves from an

application protocol (e.g., HTTP) to QUIC stream buffers and vice
versa.

Marx, et al. Expires 23 April 2026 [Page 31]

Internet-Draft QUIC event definitions for glog October 2025

The stream _data_moved event can provide insight into whether received
data on a QUIC stream is moved to the application protocol
immediately (for example per received packet) or in larger batches
(for example, all QUIC packets are processed first and afterwards the
application layer reads from the streams with newly available data).
This can help identify bottlenecks, flow control issues, or
scheduling problems.

The additional_info field supports optional logging of information
related to the stream state. For example, an application layer that
moves data into transport and simultaneously ends the stream, can log
fin_set. As another example, a transport layer that has received an
instruction to reset a stream can indicate this to the application
layer using reset_stream. In both cases, the raw.length field can be
omitted or have a zero value.

This event is only for data in QUIC streams. For data in QUIC
Datagram Frames, see the datagram_data_moved event defined in
Section 5.16.
QUICStreambDataMoved = {

? stream_id: uinto4

? offset: uinto64

? from: $DatalLocation
? to: $Datalocation

? additional_info: $DataMovedAdditionalInfo
? raw: RawInfo

* $8quic-streamdatamoved-extension

}
$DataLocation /= T"application" /
"transport" /

"network"

$DataMovedAdditionalInfo /= "fin_set" /
"stream_reset"

Figure 24: QUICStreamDataMoved definition

Marx, et al. Expires 23 April 2026 [Page 32]

Internet-Draft QUIC event definitions for glog October 2025

5.16. datagram_data_moved

The datagram_data_moved event is used to indicate when QUIC Datagram
Frame data (see [RFC9221]) moves between the different layers. This
helps make clear the flow of data, how long data remains in wvarious
buffers, and the overheads introduced by individual layers. The
event has Base importance level.

The raw.length field is used to reflect how many bytes were moved.
As this event relates to datagram data only, there are no packet or
frame headers and the raw.length field MUST reflect that.

For example, passing from the application protocol (e.g.,
WebTransport) to QUIC Datagram Frame buffers and vice versa.

The datagram_data_moved event can provide insight into whether
received data in a QUIC Datagram Frame is moved to the application
protocol immediately (for example per received packet) or in larger
batches (for example, all QUIC packets are processed first and

afterwards the application layer reads all Datagrams at once). This
can help identify bottlenecks, flow control issues, or scheduling
problems.

This event is only for data in QUIC Datagram Frames. For data in

QUIC streams, see the stream _data_moved event defined in
Section 5.15.

QUICDatagrambDataMoved = ({
? from: $DatalLocation
? to: $Datalocation
? raw: RawInfo

* $$quic-datagramdatamoved-extension

Figure 25: QUICDatagramDataMoved definition
5.17. connection_data_blocked_updated

The connection_blocked_updated event is used to indicate when the
QUIC connection becomes blocked or unblocked for sending data. When
a connection is "blocked", data can’t be sent in streams and/or
datagrams until the blocking reason has been resolved. The event has
Extra importance level.

Use the stream_blocked_updated or datagram_blocked_updated event to
provide more fine-grained information for individual data types.

Marx, et al. Expires 23 April 2026 [Page 33]

Internet-Draft QUIC event definitions for glog October 2025

QUICConnectionDataBlockedUpdated = {
? old: $BlockedState
new: S$BlockedState

? reason: $BlockedReason

}

$BlockedState /= "blocked" /
"unblocked"

$BlockedReason /= "scheduling" /
"pacing" /
"amplification_protection" /
"congestion_control" /
"connection_flow_control" /
"stream_ flow_control" /
"stream_id" /
"application"

Figure 26: QUICConnectionDataBlockedUpdated definition
5.18. stream_data_blocked_updated

The stream_data_blocked_updated event is used to indicate when a QUIC
stream becomes blocked or unblocked for sending. The event has Extra
importance level.
QUICStreamDataBlockedUpdated = {

? old: $BlockedState

new: $BlockedState

stream_id: uinto64

? reason: S$BlockedReason

Figure 27: QUICStreamDataBlockedUpdated definition
5.19. datagram_data_blocked_updated
The datagram_data_blocked_updated event is used to indicate when QUIC

datagrames becomes blocked or unblocked for sending. The event has
Extra importance level.

Marx, et al. Expires 23 April 2026 [Page 34]

Internet-Draft QUIC event definitions for glog October 2025

QUICDatagramDataBlockedUpdated = {
? old: $BlockedState
new: $BlockedState

? reason: $BlockedReason

Figure 28: QUICDatagramDataBlockedUpdated definition
5.20. migration_state_updated

Use to provide additional information when attempting (client-side)
connection migration. While most details of the QUIC connection
migration process can be inferred by observing the PATH_CHALLENGE and
PATH_RESPONSE frames, in combination with the QUICTupleAssigned
event, it can be useful to explicitly log the progression of the
migration and potentially made decisions in a single location/event.
The event has Extra importance level.

Generally speaking, connection migration goes through two phases: a
probing phase (which is not always needed/present), and a migration
phase (which can be abandoned upon error).

Implementations that log per-path information in a
QUICMigrationStateUpdated, SHOULD also emit QUICTupleAssigned events,

to serve as a ground-truth source of information.

Definition:

Marx, et al. Expires 23 April 2026 [Page 35]

Internet-Draft QUIC event definitions for glog October 2025

QUICMigrationStateUpdated = {

? old: MigrationState
new: MigrationState

? tuple_id: TuplelID

the information for traffic going towards the remote receiver
? tuple_remote: TupleEndpointInfo

~.

the information for traffic coming in at the local endpoint
? tuple_local: TupleEndpointInfo

~.

* $8quic-migrationstateupdated-extension

; Note that MigrationState does not describe a full state machine
; These entries are not necessarily chronological,
; nor will they always all appear during

;i a
Mig

5.21.

The
has

The

*

Marx,

connection migration attempt.
rationState =
; probing packets are sent, migration not initiated yet
"probing_started" /
; did not get reply to probing packets,
; discarding path as an option
"probing_abandoned" /
; received reply to probing packets, path is migration candidate
"probing_successful" /
; non-probing packets are sent, attempting migration
"migration_started" /
; something went wrong during the migration, abandoning attempt
"migration_abandoned" /
; new path is now fully used, old path is discarded
"migration_complete"

Figure 29: QUICMigrationStateUpdated definition
timer_updated

timer_updated event is emitted when a timer changes state. It
Extra importance level.

three main event types are:

set: the timer is set with a delta timeout for when it will
trigger next

expired: when the timer effectively expires after the delta
timeout

et al. Expires 23 April 2026 [Page 36]

Internet-Draft QUIC event definitions for glog October 2025

* cancelled: when a timer is cancelled

In order to indicate an active timer’s timeout update, a new set
event is used.

QUICTimerUpdated events with the timer_type set to ackor pto indicate
changes to the individual timeouts defined by RFC 9002: the threshold
loss detection timeout (see Section 6.1.2 of [QUIC-RECOVERY]) and the
probe timeout (see Section 6.2 of [QUIC-RECOVERY]). Those set to
loss_timeout represent changes to the multi-modal loss detection
timer (see Section 3 of [QUIC-RECOVERY]).

The QUIC protocol conceptually employs a variety of timers, but their
usage can be implementation-dependent. Implementers can add
additional fields to this event if needed via $$quic-timerupdated-
extension or specify other/additional timer types via $TimerType.

; a non-exhaustive list of typically employed timers
$TimerType /= "ack" /
"ptO" /
"loss_timeout" /
"path_validation" /
"handshake_timeout" /
"idle_timeout"

QUICTimerUpdated = {
? timer_type: $TimerType

; to disambiguate in case there are multiple timers
of the same type
? timer_id: uint64

~.

; 1f used for recovery timers, this can be useful information
? packet_number_space: $PacketNumberSpace
event_type: "set" /

"expired" /

"cancelled"

; 1f event_type === "set": delta time is in ms from
this event’s timestamp until when the timer should trigger
? delta: float32

~.

* $Squic-timerupdated-extension

Figure 30: QUICTimerUpdated definition

Marx, et al. Expires 23 April 2026 [Page 37]

Internet-Draft QUIC event definitions for glog October 2025

6. Security Events
6.1. key_updated
The key_updated event has Base importance level.

QUICKeyUpdated = {
key_type: S$KeyType
? old: hexstring
? new: hexstring

needed for 1RTT key updates

key_phase: uinto64

? trigger:

; (e.g., initial, handshake and O-RTT keys
; are generated by TLS)

"tlg" /

"remote_update" /

"local_update"

O e

* $$quic-keyupdated-extension

Figure 31: QUICKeyUpdated definition
Note that the key_phase is the full value of the key phase (as
indicated by @M and @N in Figure 9 of [QUIC-TLS]). The key phase bit
used on the packet header is the least significant bit of the key
phase.
6.2. key_discarded

The key_discarded event has Base importance level.

Marx, et al. Expires 23 April 2026 [Page 38]

Internet-Draft QUIC event definitions for glog October 2025

7.

QUICKeyDiscarded = {
key_type: S$KeyType
? key: hexstring

; needed for 1RTT key updates
key_phase: uinto64
trigger:
; (e.g., initial, handshake and O0-RTT keys
; are generated by TLS)
"rlg" /
"remote_update" /
"local_update"

(VNIV}

*

$Squic-keydiscarded-extension

Figure 32: QUICKeyDiscarded definition
Recovery events

Most of the events in this category are kept generic to support
different recovery approaches and various congestion control
algorithms. Tool creators SHOULD make an effort to support and
visualize even unknown data in these events (e.g., plot unknown
congestion states by name on a timeline visualization).

.1. recovery_parameters_set

The recovery_parameters_set event groups initial parameters from both
loss detection and congestion control into a single event. It has
Base importance level.

All these settings are typically set once and never change.
Implementation that do, for some reason, change these parameters
during execution, MAY emit the recovery_parameters_set event more
than once.

Marx, et al. Expires 23 April 2026 [Page 39]

Internet-Draft QUIC event definitions for glog October 2025

QUICRecoveryParametersSet = {

; Loss detection, see RFC 9002 Appendix A.2
in amount of packets
? reordering_threshold: uintlé6

~.

; as RTT multiplier
? time_threshold: float32

; in ms
timer_granularity: uintlé

; in ms

? initial_ rtt:float32

; congestion control, see RFC 9002 Appendix B.2

; 1in bytes. Note that this could be updated after pmtud

? max_datagram_size: uint32

; in bytes

? initial_congestion_window: uinté64

; Note that this could change when max_datagram_size changes
; in bytes

? minimum_congestion_window: uint64

? loss_reduction_factor: float32

; as PTO multiplier
? persistent_congestion_threshold: uintlé

* $8quic-recoveryparametersset—-extension

Figure 33: QUICRecoveryParametersSet definition

Additionally, this event can contain any number of unspecified fields
to support different recovery approaches.

7.2. recovery_metrics_updated
The recovery_metrics_updated event is emitted when one or more of the

observable recovery metrics changes value. It has Core importance
level.

Marx, et al. Expires 23 April 2026 [Page 40]

Internet-Draft QUIC event definitions for glog October 2025

This event SHOULD group all possible metric updates that happen at or
around the same time in a single event (e.g., if min_rtt and
smoothed_rtt change at the same time, they should be bundled in a
single recovery_metrics_updated entry, rather than split out into
two) . Consequently, a recovery_metrics_updated event is only
guaranteed to contain at least one of the listed metrics.

QUICRecoveryMetricsUpdated = {

Loss detection, see RFC 9002 Appendix A.3
all following rtt fields are expressed in ms
min_rtt: float32

smoothed_rtt: float32

latest_rtt: float32

rtt_variance: float32

pto_count: uintlé

~.

J 0 0 D) Ne

; Congestion control, see RFC 9002 Appendix B.2.
in bytes

congestion_window: uint64

? bytes_in_flight: uint64

O e

in bytes
? ssthresh: uinto64

~.

; glog defined
sum of all packet number spaces
? packets_in_flight: uinte64

~.

in bits per second
? pacing_rate: uinté64

~.

* $Squic-recoverymetricsupdated—-extension

Figure 34: QUICRecoveryMetricsUpdated definition

In order to make logging easier, implementations MAY log values even
if they are the same as previously reported values (e.g., two
subsequent QUICRecoveryMetricsUpdated entries can both report the
exact same value for min_rtt). However, applications SHOULD try to
log only actual updates to wvalues.

Additionally, the recovery_metrics_updated event can contain any

number of unspecified fields to support different recovery
approaches.

Marx, et al. Expires 23 April 2026 [Page 41]

Internet-Draft QUIC event definitions for glog October 2025

7.3. congestion_state_updated

The congestion_state_updated event indicates when the congestion
controller enters a significant new state and changes its behaviour.
It has Base importance level.

The values of the event’s fields are intentionally unspecified here
in order to support different Congestion Control algorithms, as these
typically have different states and even different implementations of
these states across stacks. For example, for the algorithm defined
in the QUIC Recovery RFC ("enhanced" New Reno), the following states
are used: Slow Start, Congestion Avoidance, Application Limited and
Recovery. Similarly, states can be triggered by a variety of events,
including detection of Persistent Congestion or receipt of ECN
markings.

QUICCongestionStateUpdated = {
? old: text
new: text
? trigger: text

* $$quic-congestionstateupdated-extension

Figure 35: QUICCongestionStateUpdated definition

The trigger field SHOULD be logged if there are multiple ways in
which a state change can occur but MAY be omitted if a given state
can only be due to a single event occurring (for example Slow Start
is often exited only when ssthresh is exceeded).

7.4. packet_lost

The packet_lost event is emitted when a packet is deemed lost by loss
detection. It has Core importance level.

It is RECOMMENDED to populate the optional trigger field in order to

help disambiguate among the various possible causes of a loss
declaration.

Marx, et al. Expires 23 April 2026 [Page 42]

Internet-Draft QUIC event definitions for glog October 2025

QUICPacketLost = {

; should include at least the packet_type and packet_number
? header: PacketHeader

not all implementations will keep track of full
packets, so these are optional

~.

7

? frames: [* $QuicFrame]

? is_mtu_probe_packet: bool .default false
? trigger:

"reordering_threshold" /

"time_threshold" /

; RFC 9002 Section 6.2.4 paragraph 6, MAY
"pto_expired"”

* S$$quic-packetlost—-extension

Figure 36: QUICPacketLost definition
.5. marked_for_retransmit

The marked_for_retransmit event indicates which data was marked for
retransmission upon detection of packet loss (see packet_lost). It
has Extra importance level.

Similar to the reasoning for the frames_processed event, in order to
keep the amount of different events low, this signal is grouped into
in a single event based on existing QUIC frame definitions for all
types of retransmittable data.

Implementations retransmitting full packets or frames directly can
just log the constituent frames of the lost packet here (or do away
with this event and use the contents of the packet_lost event
instead). Conversely, implementations that have more complex logic
(e.g., marking ranges in a stream’s data buffer as in-flight), or
that do not track sent frames in full (e.g., only stream offset +
length), can translate their internal behaviour into the appropriate
frame instance here even if that frame was never or will never be put
on the wire.

Much of this data can be inferred if implementations log packet_sent
events (e.g., looking at overlapping stream data offsets and length,
one can determine when data was retransmitted).

Marx, et al. Expires 23 April 2026 [Page 43]

Internet-Draft QUIC event definitions for glog October 2025
QUICMarkedForRetransmit = {
frames: [+ S$QuicFrame]

* $$quic-markedforretransmit-extension

Figure 37: QUICMarkedForRetransmit definition
7.6. ecn_state_updated

The ecn_state_updated event indicates a progression in the ECN state
machine as described in section A.4 of [QUIC-TRANSPORT]. It has
Extra importance level.
QUICECNStateUpdated = {

? old: ECNState

new: ECNState

* $8quic—-ecnstateupdated-extension
ECNState =
; ECN testing in progress
"testing" /
; ECN state unknown, waiting for acknowledgements
; for testing packets
"unknown" /
; ECN testing failed
"failed" /
; testing was successful
"capable"
Figure 38: QUICECNStateUpdated definition
8. QUIC data type definitions
8.1. QuicVersion
QuicVersion = hexstring
Figure 39: QuicVersion definition
8.2. ConnectionID

ConnectionID = hexstring

Figure 40: ConnectionID definition

Marx, et al. Expires 23 April 2026 [Page 44]

Inter
8.3.

In

8.4.

4
IP

8.5.

net-Draft QUIC event definitions for glog October

Initiator
itiator = "local" /
"remote"
Figure 41: Initiator definition
IPAddress

an IPAddress can either be a "human readable" form
(e.g., "127.0.0.1" for v4 or
"2001:0db8:85a3:0000:0000:8a2e:0370:7334" for v6) or
use a raw byte-form (as the string forms can be ambiguous).
Additionally, a hash-based or redacted representation
can be used if needed for privacy or security reasons.
Address = text /

hexstring

Figure 42: IPAddress definition

TupleEndpointInfo

2025

TupleEndpointInfo indicates a single half/direction of a four-tuple.
full tuple is comprised of two halves. Firstly: the server sends

A
to
Co

po
As
di
tu

Tu

Marx,

the remote client IP + port using a specific destination

nnection ID. Secondly: the client sends to the remote server IP +

rt using a different destination Connection ID.

such, structures logging tuple information SHOULD include two
fferent TupleEndpointInfo instances, one for each half of the
ple.

pleEndpointInfo = {
? ip_v4: IPAddress
? port_v4: uintlé6
? ip_v6: IPAddress
? port_v6: uintlé6

; Even though usually only a single ConnectionID

; 1s associated with a given tuple/path at a time,

; there are situations where there can be an overlap
; or a need to keep track of previous ConnectionIDs
? connection_ids: [+ ConnectionID]

* $Squic—-tupleendpointinfo-extension

Figure 43: TupleEndpointInfo definition

et al. Expires 23 April 2026 [Page 45]

Internet-Draft QUIC event definitions for glog October 2025

8.

8.

8.

6.

7.

8.

PacketType

SPacketType /= "initial" /
"handshake" /
"ORTT" /
"{RTT" /
"retry" /
"version_negotiation" /
"stateless_reset" /
"unknown"

Figure 44: PacketType definition
PacketNumberSpace

SPacketNumberSpace /= "initial" /
"handshake" /
"application_data"

Figure 45: PacketNumberSpace definition
PacketHeader

If the packet_type numerical value does not map to a known
$SPacketType string, the packet_type value of "unknown" can be used
and the raw value captured in the packet_type_bytes field; a
numerical value without wvariable-length integer encoding.

The fixed and reserved bits are omitted here because they must be 0;
see [QUIC-TRANSPORT]. If these bits have an invalid wvalue, the raw
values can be captured in the raw.data field of the event logging the
PacketHeader.

QUIC extensions that do utilize these bits are expected to create new
events (analogous to spin_bit_updated) or use glog extension
mechanisms to reflect that usage.

For long header packets of type initial, handshake, and ORTT, the
length field of the packet header is logged in the glog raw.length
field, and the value signifies the length of the packet number plus
the payload.

Marx, et al. Expires 23 April 2026 [Page 46]

Internet-Draft QUIC event definitions for glog October 2025
PacketHeader = {
packet_type: S$PacketType

only if packet_type === "unknown"
? packet_type_bytes: uint64

~.

only if packet_type === "1RTT"
? spin_bit: bool

~.

; only if packet_type === "1RTT", and if the key phase was
; determined from the key_phase_bit
? key_phase: uint64

; only if packet_type === "1RTT", and if key_phase is not set
? key_phase_bit: bool

; only if packet_type === "initial" || "handshake" || "ORTT" ||
; "1RTT"
? packet_number_length: uint8

; only if packet_type === "initial" || "handshake" || "ORTT" ||
; "1RTT"
? packet_number: uinté4

; only if packet_type === "initial" || "retry"
? token: Token

; only if packet_type === "initial" || "handshake" || "ORTT"
; Signifies length of the packet_number plus the payload
? length: uintlé6

; only if present in the header.

if correctly using transport:connection_id_updated events,
dcid can be skipped for 1RTT packets

version: QuicVersion

scil: uint8

dcil: uint8

scid: ConnectionID

dcid: ConnectionID

~.

)) 0) 0 Ne

* $Squic—packetheader—-extension

Figure 46: PacketHeader definition

8.9. Token

Marx, et al. Expires 23 April 2026 [Page 47]

Internet-Draft QUIC event definitions for glog October 2025

8.

8.

Token = {
? type: $TokenType

; decoded fields included in the token
; (typically: peer’s IP address, creation time)
? details: {

* text => any

? raw: RawInfo

*

$Squic-token—extension

}

$TokenType /= "retry" /
"resumption"

Figure 47: Token definition

The token carried in an Initial packet can either be a retry token
from a Retry packet, or one originally provided by the server in a
NEW_TOKEN frame used when resuming a connection (e.g., for address
validation purposes). Retry and resumption tokens typically contain
encoded metadata to check the token’s validity when it is used, but
this metadata and its format is implementation specific. For that,
Token includes a general-purpose details field.

10. Stateless Reset Token

StatelessResetToken = hexstring .size 16
Figure 48: Stateless Reset Token definition

The stateless reset token is carried in stateless reset packets, in
transport parameters and in NEW_CONNECTION_ID frames.

11. KeyType

SKeyType /= "server_initial_secret" /
"client_initial_secret" /
"server_ handshake_secret" /
"client_handshake_secret" /
"server_Ortt_secret" /
"client_Ortt_secret" /
"server_lrtt_secret" /
"client_lrtt_secret"

Figure 49: KeyType definition

Marx, et al. Expires 23 April 2026 [Page 48]

Internet-Draft QUIC event definitions for glog October 2025

8.12. ECN
ECN = "Not-ECT" / "ECT(1)" / "ECT(0)" / "CE"
Figure 50: ECN definition
The ECN bits carried in the IP header.
8.13. QUIC Frames

The generic $QuicFrame is defined here as a CDDL "type socket"
extension point. It can be extended to support additional QUIC frame
types.

; The QuicFrame is any key-value map (e.g., JSON object)
SQuicFrame /= {
* text => any

}
Figure 51: QuicFrame type socket definition
The QUIC frame types defined in this document are as follows:

QuicBaseFrames = PaddingFrame /
PingFrame /
AckFrame /
ResetStreamFrame /
StopSendingFrame /
CryptoFrame /
NewTokenFrame /
StreamFrame /
MaxDataFrame /
MaxStreamDataFrame /
MaxStreamsFrame /
DataBlockedFrame /
StreamDataBlockedFrame /
StreamsBlockedFrame /
NewConnectionIDFrame /
RetireConnectionIDFrame /
PathChallengeFrame /
PathResponseFrame /
ConnectionCloseFrame /
HandshakeDoneFrame /
UnknownFrame /
DatagramFrame

SQuicFrame /= QuicBaseFrames

Marx, et al. Expires 23 April 2026 [Page 49]

Internet-Draft QUIC event definitions for glog October 2025

Figure 52: QuicBaseFrames definition

8.13.1. PaddingFrame
In QUIC, PADDING frames are simply identified as a single byte of
value 0. As such, each padding byte could be theoretically
interpreted and logged as an individual PaddingFrame.
However, as this leads to heavy logging overhead, implementations
SHOULD instead emit just a single PaddingFrame and set the

raw.payload_length property to the amount of PADDING bytes/frames
included in the packet.

PaddingFrame = {

frame_type: "padding"
? raw: RawInfo

Figure 53: PaddingFrame definition
8.13.2. PingFrame
PingFrame = {

frame_type: "ping"
? raw: RawInfo

Figure 54: PingFrame definition

8.13.3. AckFrame

Marx, et al. Expires 23 April 2026 [Page 50]

Internet-Draft QUIC event definitions for glog October 2025

; either a single number (e.g., [1l]) or two numbers (e.g., [1,2]).
; For two numbers:

; the first number is "from": lowest packet number in interval

; the second number is "to": up to and including the highest

; packet number in the interval

AckRange = [1*2 uint64]

AckFrame {
frame_type: "ack"

; in ms
? ack_delay: float32

e.g., looks like [[1,21,14,51, [7], [10,22]] serialized
? acked_ranges: [+ AckRange]

~.

ECN (explicit congestion notification) related fields
(not always present)

ectl: uintoe4

ect0: uintoe4

ce: uint64

raw: RawInfo

~.

D 0 D 0 N

Figure 55: AckFrame definition

Note that the packet ranges in AckFrame.acked_ranges do not
necessarily have to be ordered (e.g., [[5,9],[1,4]] is a wvalid
value) .

Note that the two numbers in the packet range can be the same (e.qg.,
[120,120] means that packet with number 120 was ACKed). However, in
that case, implementers SHOULD log [120] instead and tools MUST be
able to deal with both notations.

8.13.4. ResetStreamFrame
If the error numerical value does not map to a known ApplicationError
string, the error value of "unknown" can be used and the raw value

captured in the error_code field; a numerical value without variable-
length integer encoding.

Marx, et al. Expires 23 April 2026 [Page 51]

Internet-Draft QUIC event definitions for glog October 2025

ResetStreamFrame = ({
frame_type: "reset_stream"
stream_id: uint64
error: S$ApplicationError

; 1f error_code === "unknown"
? error_code: uint64

; in bytes
final_size: uinté64
? raw: RawInfo

Figure 56: ResetStreamFrame definition
8.13.5. StopSendingFrame

If the error numerical value does not map to a known ApplicationError
string, the error value of "unknown" can be used and the raw value
captured in the error_code field; a numerical value without variable-
length integer encoding.
StopSendingFrame = {

frame_type: "stop_sending"

stream_id: uint64

error: S$ApplicationError

; 1f error_code === "unknown"
? error_code: uinto64

? raw: RawInfo

Figure 57: StopSendingFrame definition
8.13.6. CryptoFrame
The length field of the Crypto frame MUST be logged in the glog
raw.length field. The other sub-fields of the raw field are
optional.
CryptoFrame = {
frame_type: "crypto"

offset: uint64
raw: RawInfo

Figure 58: CryptoFrame definition

Marx, et al. Expires 23 April 2026 [Page 52]

Internet-Draft QUIC event definitions for glog

8.13.7. NewTokenFrame

NewTokenFrame = {
frame_type: "new_token"
token: Token
? raw: RawInfo

Figure 59:

8.13.8. StreamFrame

If the stream frame contains a length field,
glog raw.length field. If it does not,

NewTokenFrame definition

October 2025

it MUST be logged in the
the implementation MAY

calculate the actual frame byte length itself and log that in

raw.length if necessary.

StreamFrame =
frame_type: "stream"
stream_id: uinte4

? offset: uint64 .default O
? fin: bool .default false

? raw: RawInfo

Figure 60:

8.13.9. MaxDataFrame

MaxDataFrame = {
frame_type: "max_data"
maximum: uinto64
? raw: RawInfo

Figure 61:

8.13.10. MaxStreamDataFrame

MaxStreamDataFrame = {

frame_type: "max_stream_data"

stream_id: uinto64
maximum: uinto64
? raw: RawInfo

Figure 62:

Marx, et al. Expires 23 April 2026

StreamFrame definition

MaxDataFrame definition

MaxStreamDataFrame definition

[Page 53]

Internet-Draft QUIC event definitions for glog October 2025

8.13.11. MaxStreamsFrame

MaxStreamsFrame = {
frame_type: "max_streams"
stream_type: StreamType
maximum: uint64
? raw: RawInfo

Figure 63: MaxStreamsFrame definition
8.13.12. DataBlockedFrame
DataBlockedFrame = ({
frame_type: "data_blocked"
limit: uinte64
? raw: RawInfo
Figure 64: DataBlockedFrame definition

8.13.13. StreamDataBlockedFrame

StreamDataBlockedFrame = {
frame_type: "stream data_blocked"
stream_id: uinte4
limit: uinté64
? raw: RawInfo

Figure 65: StreamDataBlockedFrame definition
8.13.14. StreamsBlockedFrame
StreamsBlockedFrame = {
frame_type: "streams_blocked"
stream_type: StreamType
limit: uint64
? raw: RawInfo

Figure 66: StreamsBlockedFrame definition

8.13.15. NewConnectionIDFrame

Marx, et al. Expires 23 April 2026 [Page 54]

Internet-Draft QUIC event definitions for glog October 2025

NewConnectionIDFrame = {
frame_type: "new_connection_id"
sequence_number: uinto64
retire_prior_to: uinté4

; mainly used if e.g., for privacy reasons the full
; connection_id cannot be logged

? connection_id_length: uint8

connection_id: ConnectionID

? stateless_reset_token: StatelessResetToken

? raw: RawInfo

Figure 67: NewConnectionIDFrame definition
8.13.16. RetireConnectionIDFrame
RetireConnectionIDFrame = ({
frame_type: "retire_connection_id"
sequence_number: uint64
? raw: RawInfo
Figure 68: RetireConnectionIDFrame definition

8.13.17. PathChallengeFrame

PathChallengeFrame = {
frame_type: "path_challenge"

; always 64 bits
? data: hexstring
? raw: RawInfo
Figure 69: PathChallengeFrame definition

8.13.18. PathResponseFrame

PathResponseFrame = {
frame_type: "path_response”

; always 64 bits
? data: hexstring
? raw: RawInfo

Figure 70: PathResponseFrame definition

Marx, et al. Expires 23 April 2026 [Page 55]

Internet-Draft QUIC event definitions for glog October 2025

8.13.19. ConnectionCloseFrame

An endpoint that receives unknown error codes can record it in the
error_code field using the numerical value without variable-length
integer encoding.

When the connection is closed due a connection-level error, the
trigger_ frame_type field can be used to log the frame that triggered
the error. For known frame types, the appropriate string value is
used in the error field. For unknown frame types, the error field
has the value "unknown" and the numerical value without variable-
length integer encoding can be logged in error_code.

The CONNECTION_CLOSE reason phrase is a byte sequences. It is likely
that this sequence is presentable as UTF-8, in which case it can be
logged in the reason field. The reason_bytes field supports logging
the raw bytes, which can be useful when the value is not UTF-8 or
when an endpoint does not want to decode it. Implementations SHOULD
log at least one format, but MAY log both or none.

ErrorSpace = "transport" /
"application"

ConnectionCloseFrame = {
frame_type: "connection_close"
? error_space: ErrorSpace
? error: $TransportError / CryptoError /
SApplicationError

only if error_code === "unknown"
? error_code: uint64

~.

reason: text
reason_bytes: hexstring

; when error_space === "transport"
? trigger_frame_type: uinté64d /
text

? raw: RawInfo

Figure 71: ConnectionCloseFrame definition

8.13.20. HandshakeDoneFrame

Marx, et al. Expires 23 April 2026 [Page 56]

Internet-Draft QUIC event definitions for glog October 2025

HandshakeDoneFrame = {
frame_type: "handshake_done"
? raw: RawInfo

Figure 72: HandshakeDoneFrame definition

8.13.21. UnknownFrame

The frame_type_bytes field is the numerical value without wvariable-
length integer encoding.

UnknownFrame = {
frame_type: "unknown"
frame_type_bytes: uinté4
? raw: RawInfo
Figure 73: UnknownFrame definition
8.13.22. DatagramFrame
The QUIC DATAGRAM frame is defined in Section 4 of [RFC9221].
If the datagram frame contains a length field, it MUST be logged in
the glog raw.length field. If it does not, the implementation MAY
calculate the actual datagram byte length itself and log that in
raw.length if necessary.
DatagramFrame = {
frame_type: "datagram"
? raw: RawInfo
Figure 74: DatagramFrame definition
8.13.23. TransportError
The generic $TransportError is defined here as a CDDL "type socket"

extension point. It can be extended to support additional Transport
errors.

Marx, et al. Expires 23 April 2026 [Page 57]

Internet-Draft QUIC event definitions for glog October 2025

$TransportError /= "no_error" /
"internal_error" /
"connection_refused"
"flow_control_error"
"stream_limit_error"
"stream_state_error"
"final_size_error" /
"frame_encoding_error" /
"transport_parameter_error" /
"connection_id_limit_error" /
"protocol_violation" /
"invalid_token" /
"application_error" /
"crypto_buffer_ exceeded" /
"key_update_error" /
"aead_limit_reached" /
"no_viable_path" /
"unknown"
; there is no value to reflect CRYPTO_ERROR
; use the CryptoError type instead

NN NN

Figure 75: TransportError definition
8.13.24. ApplicationError

By definition, an application error is defined by the application-
level protocol running on top of QUIC (e.g., HTTP/3).

As such, it cannot be defined here completely. It is instead defined
as a CDDL "type socket" extension point, with a single "unknown"
value.

$ApplicationError /= "unknown"

Figure 76: ApplicationError definition
Application—-level glog definitions that wish to define new
ApplicationError strings MUST do so by extending the

SApplicationError socket as such:

$ApplicationError /= "new_error_name" /
"another_new_error_name"

Marx, et al. Expires 23 April 2026 [Page 58]

Internet-Draft QUIC event definitions for glog October 2025

8.13.25. CryptoError

These errors are defined in the TLS document as "A TLS alert is
turned into a QUIC connection error by converting the one-byte alert
description into a QUIC error code. The alert description is added
to 0x100 to produce a QUIC error code from the range reserved for
CRYPTO_ERROR."

This approach maps badly to a pre-defined enum. As such, the
crypto_error string is defined as having a dynamic component here,
which should include the hex—-encoded and zero-padded value of the TLS
alert description.

; all strings from "crypto_error_0x100" to "crypto_error Ox1ff"
CryptoError = text .regexp "crypto_error_0x1[0-9a-f][0-9a-f]"

Figure 77: CryptoError definition
9. Security and Privacy Considerations

The security and privacy considerations discussed in [QLOG-MAIN]
apply to this document as well.

10. TIANA Considerations

This document registers a new entry in the "glog event schema URIs"
registry (created in Section 15 of [QLOG-MAIN]) :

Event schema URI: urn:ietf:params:glog:events:quic
Namespace quic

Event Types server_listening, connection_started, connection_closed,
connection_id_updated, spin_bit_updated, connection_state_updated,
tuple_assigned, mtu_updated, version_information,
alpn_information, parameters_set, parameters_restored,
packet_sent, packet_received, packet_dropped, packet_buffered,
packets_acked, udp_datagrams_sent, udp_datagrams_received,
udp_datagram_dropped, stream_state_updated, frames_processed,
stream_data_moved, datagram_data_moved, migration_state_updated,
key_updated, key_discarded, recovery_parameters_set,
recovery_metrics_updated, congestion_state_updated, timer_updated,
packet_lost, marked_ for_retransmit, ecn_state_updated

Description: Event definitions related to the QUIC transport
protocol.

Reference: This Document

Marx, et al. Expires 23 April 2026 [Page 59]

Internet-Draft QUIC event definitions for glog October 2025

11. References
11.1. Normative References

[CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
Definition Language (CDDL): A Notational Convention to
Express Concise Binary Object Representation (CBOR) and
JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

[GREASEBIT]
Thomson, M., "Greasing the QUIC Bit", RFC 9287,
DOI 10.17487/RFC9287, August 2022,
<https://www.rfc—editor.org/rfc/rfc9287>.

[QLOG-MAIN]
Marx, R., Niccolini, L., Seemann, M., and L. Pardue,
"glog: Structured Logging for Network Protocols", Work in
Progress, Internet-Draft, draft-ietf-quic-glog-main-
schema-12, 7 July 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-quic-—
glog-main-schema-12>.

[QUIC-DATAGRAM]
Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
Datagram Extension to QUIC", RFC 9221,
DOI 10.17487/RFC9221, March 2022,
<https://www.rfc-editor.org/rfc/rfc9221>.

[QUIC-RECOVERY]
Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
May 2021, <https://www.rfc-editor.org/rfc/rfc9002>.

[QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
<https://www.rfc-editor.org/rfc/rfc9001>.

[QUIC-TRANSPORT]
Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/rfc/rfc9000>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

Marx, et al. Expires 23 April 2026 [Page 60]

Internet-Draft QUIC event definitions for glog October 2025

[REC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

[RFC9221] Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
Datagram Extension to QUIC", RFC 9221,
DOI 10.17487/RFC9221, March 2022,
<https://www.rfc-editor.org/rfc/rfc9221>.

11.2. Informative References

[RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
"Transport Layer Security (TLS) Application-Layer Protocol
Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
July 2014, <https://www.rfc-editor.org/rfc/rfc7301>.

Acknowledgements

Much of the initial work by Robin Marx was done at the Hasselt and KU
Leuven Universities.

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja
Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian Huitema, Hugo
Landau, Will Hawkins, Mathis Engelbart, Kazuho Oku, and Jonathan
Lennox for their feedback and suggestions.

Change Log
This section is to be removed before publishing as an RFC.

Since draft-ietf-glog-quic-events-11:
* Updated several fields to be uint64 per QUIC spec
* Renamed error and error_code fields and logic (#473)
* Clarified parameters_set usage (#493)
* Replaced all length fields with raw.length (#495)
* Change loss_timer_updated to timer_updated (#496)
* Renamed path_assigned to tuple_assigned (#491)

* Reworked stream_state_updated (#497)

* Renamed owner to initiator (#498)

Marx, et al. Expires 23 April 2026 [Page 61]

Internet-Draft QUIC event definitions for glog October 2025

Since

Since

Since

Since

Marx,

Split up flags in PacketHeader (#478)
draft-ietf-gqlog-quic-events-09:

Several editorial changes

Reworked QUICConnectionStarted to use PathEndpointInfo (#453)
Consistent use of RawInfo and _bytes fields to log raw data (#450)
draft-ietf-glog-quic—-events-08:

Removed individual categories and put every event in the single
quic event schema namespace. Major change (#439)

Renamed recovery:metrics_updated to quic:recovery_metrics_updated
and recovery:parameters_set to quic:recovery_parameters_set (#439)

Added unknown_parameters field to parameters_set (#438)
Added extra parameters to parameters_restored (#441)
draft-ietf-glog-quic-events-07:

TODO (we forgot...)

draft-ietf-gqlog-quic-events-06:

Added PathAssigned and MigrationStateUpdated events (#336)

Added extension points to parameters_set and parameters_restored
(#400)

Removed error_code_value from connection_closed (#386, #392)

Renamed generation to key_phase for key_updated and key_discarded
(#390)

Removed retry_token from packet_sent and packet_received (#389)
Updated ALPN handling (#385)

Added key_unavailable trigger to packet_dropped (#381)

Updated several uint32 to uinté64

ProtocolEventBody is now called ProtocolEventData (#352)

et al. Expires 23 April 2026 [Page 62]

Internet-Draft QUIC event definitions for glog October 2025

* Editorial changes (#402, #404, #394, #393)
Since draft-ietf-glog-quic-events-05:

* SecurityKeyUpdated: the new key is no longer mandatory to log
(#294)

* Added ECN related events and metadata (#263)

Since draft-ietf-glog—gquic—-events-04:
* Updated guidance on logging events across connections (#279)
* Renamed ’'transport’ category to ’‘quic’ (#302)

* Added support for multiple packet numbers in
"quic:frames_processed’ (#307)

* Added definitions for RFC9287 (QUIC GREASE Bit extension) (#311)

* Added definitions for RFC9221 (QUIC Datagram Frame extension)
(#310)

* (Temporarily) removed definitions for connection migration events
(#317)

* Editorial and formatting changes (#298, #299, #304, #306, #327)
Since draft-ietf-glog—-gquic—-events-03:

* Ensured consistent use of RawInfo to indicate raw wire bytes
(#243)

* Renamed UnknownFrame:raw_frame_type to :frame_type_value (#54)

* Renamed ConnectionCloseFrame:raw_error_code to :error_code_value

(#54)
* Changed triggers for packet_dropped (#278)
* Added entries to TransportError enum (#285)
* Changed minimum congestion_window to uinté64 (#288)
Since draft-ietf-glog—-quic-events-02:

* Renamed key_retired to key_discarded (#185)

Marx, et al. Expires 23 April 2026 [Page 63]

Internet-Draft QUIC event definitions for glog October 2025

Since

Since

Since

Since

Added fields and events for DPLPMTUD (#135)

Made packet_number optional in PacketHeader (#244)

Removed connection_retried event placeholder (#255)

Changed QuicFrame to a CDDL plug type (#257)

Moved data definitions out of the appendix into separate sections
Added overview Table of Contents

draft-ietf-glog-quic-events-01:

Added Stateless Reset Token type (#122)
draft-ietf-glog-quic—-events-00:

Change the data definition language from TypeScript to CDDL (#143)
draft-marx—-glog-event-definitions—-quic-h3-02:

These changes were done in preparation of the adoption of the
drafts by the QUIC working group (#137)

Split QUIC and HTTP/3 events into two separate documents

Moved RawInfo, Importance, Generic events and Simulation events to
the main schema document.

Changed to/from value options of the data_moved event

draft-marx—-glog-event-definitions—-quic-h3-01:

Major changes:

*

Marx,

Moved data_moved from http to transport. Also made the "from" and
"to" fields flexible strings instead of an enum (#111, #65)

Moved packet_type fields to PacketHeader. Moved packet_size field
out of PacketHeader to RawInfo:length (#40)

Made events that need to log packet_type and packet_number use a
header field instead of logging these fields individually

Added support for logging retry, stateless reset and initial
tokens (#94,#86,#117)

et al. Expires 23 April 2026 [Page 64]

Internet-Draft QUIC event definitions for glog October 2025

Moved separate general event categories into a single category
"generic" (#47)

Added "transport:connection_closed" event (#43,#85,#78,#49)

Added version_information and alpn_information events
(#85, #75, #28)

Added parameters_restored events to help clarify O0-RTT behaviour
(#88)

Smaller changes:

*

Marx,

Merged loss_timer events into one loss_timer_updated event
Field data types are now strongly defined (#10,#39,#36,#115)

Renamed gpack instruction_received and instruction_sent to
instruction_created and instruction_parsed (#114)

Updated gpack:dynamic_table_updated.update_type. It now has the
value "inserted" instead of "added" (#113)

Updated gpack:dynamic_table_updated. It now has an "owner" field
to differentiate encoder vs decoder state (#112)

Removed push_allowed from http:parameters_set (#110)

Removed explicit trigger field indications from events, since this
was moved to be a generic property of the "data" field (#80)

Updated transport:connection_id_updated to be more in line with
other similar events. Also dropped importance from Core to Base
(#45)

Added length property to PaddingFrame (#34)

Added packet_number field to transport:frames_processed (#74)

Added a way to generically log packet header flags (first 8 bits)
to PacketHeader

Added additional guidance on which events to log in which
situations (#53)

Added "simulation:scenario" event to help indicate simulation
details

et al. Expires 23 April 2026 [Page 65]

Internet-Draft QUIC event definitions for glog October 2025

* Added "packets_acked" event (#107)

* Added "datagram_ids" to the datagram_X and packet_X events to
allow tracking of coalesced QUIC packets (#91)

* Extended connection_state_updated with more fine-grained states
(#49)

Since draft-marx—-glog-event-definitions—-quic-h3-00:
* Event and category names are now all lowercase

* Added many new events and their definitions

* "type" fields have been made more specific (especially important
for PacketType fields, which are now called packet_type instead of
type)

* Events are given an importance indicator (issue #22)
* Event names are more consistent and use past tense (issue #21)

* Triggers have been redefined as properties of the "data" field and
updated for most events (issue #23)

Authors’ Addresses

Robin Marx (editor)
Akamai
Email: rmarx@akamai.com

Luca Niccolini (editor)
Meta
Email: lniccolini@meta.com

Marten Seemann (editor)
Email: martenseemann@gmail.com

Lucas Pardue (editor)
Cloudflare
Email: lucas@lucaspardue.com

Marx, et al. Expires 23 April 2026 [Page 66]

QUIC D. Schinazi

Internet-Draft Google LLC
Updates: 8999 (if approved) E. Rescorla
Intended status: Standards Track Mozilla
Expires: 22 June 2023 19 December 2022

Compatible Version Negotiation for QUIC
draft-ietf-quic-version-negotiation-14

Abstract

QUIC does not provide a complete version negotiation mechanism but
instead only provides a way for the server to indicate that the
version the client chose is unacceptable. This document describes a
version negotiation mechanism that allows a client and server to
select a mutually supported version. Optionally, if the client’s
chosen version and the negotiated version share a compatible first
flight format, the negotiation can take place without incurring an
extra round trip. This document updates RFC 8999.

About This Document
This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at
https://quicwg.github.io/version-negotiation/draft-ietf-quic-version-

negotiation.html. Status information for this document may be found
at https://datatracker.ietf.org/doc/draft-ietf-quic-version-—
negotiation/.

Discussion of this document takes place on the QUIC Working Group
mailing list (mailto:quic@ietf.org), which is archived at
https://mailarchive.ietf.org/arch/browse/quic/. Subscribe at
https://www.ietf.org/mailman/listinfo/quic/.

Source for this draft and an issue tracker can be found at
https://github.com/quicwg/version—-negotiation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Schinazi & Rescorla Expires 22 June 2023 [Page 1]

Internet-Draft QUIC Compatible

VN

December 2022

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It i1s inappropriate to use Internet-Drafts as reference

"work in progress."

material or to cite them other than as

This Internet-Draft will expire on 22 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
, as they describe your rights

Please review these documents carefully

and restrictions with respect to this document.

Code Components

extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Conventions
1.2. Definitions

2. Version Negotiation Mechanlsm

Compatible Versions .
Compatible Version Negotlatlon

NDNDDNDDNDDN
ad w R

Version Information .o
Version Downgrade Prevention
Server Deployments of QUIC

~N o Ok W

Considerations for Future Versions
7.1. Interaction with Retry
.2. Interaction with TLS resumptlon
7.3. Interaction with O-RTT
8. Special Handling for QUIC Version 1
9. Security Considerations
10. IANA Considerations .
10.1. QUIC Transport Parameter
10.2. QUIC Transport Error Code
11. References
11.1. Normative References
11.2. Informative References

~J

Schinazi & Rescorla Expires 22 June

Incompatible Version Negotiation

Connections and Version Negotiation
Client Choice of Original Version

Application Layer Protocol Consrderatlons

2023

O oy Ul Ul W WW

PR R RRPRRRRRPRRRRRP R
dUdNdo oo UlUu e s N O

[Page 2]

Internet-Draft QUIC Compatible VN December 2022

Acknowledgments+« + ¢ 4« e« 4 e e e 4« e e e W« . . . 18
Authors’ Addresses . . . « v v v 4 v 4w e e e e e e e e e < <« . . 18
1. Introduction

The version-invariant properties of QUIC [QUIC-INVARIANTS] define a
Version Negotiation packet but do not specify how an endpoint reacts
when it receives one. QUIC version 1 [QUIC] allows the server to use
a Version Negotiation packet to indicate that the version the client
chose is unacceptable, but doesn’t allow the client to safely make
use of that information to create a new connection with a mutually
supported version. This document updates [QUIC-INVARIANTS] by
defining version negotiation mechanisms that leverage the Version
Negotiation packet.

With proper safety mechanisms in place, the Version Negotiation
packet can be part of a mechanism to allow two QUIC implementations
to negotiate between two totally disjoint versions of QUIC. This
document specifies version negotiation using Version Negotiation
packets, which adds an extra round trip to connection establishment
if needed.

It is beneficial to avoid additional round trips whenever possible,
especially given that most incremental versions are broadly similar
to the previous version. This specification also defines a simple
version negotiation mechanism which leverages similarities between
versions and can negotiate between "compatible" versions without
additional round trips.

1.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

1.2. Definitions
The document uses the following terms:
* In the context of a given QUIC connection, the "first flight" of
packets refers to the set of packets the client creates and sends
to initiate the connection before it has heard back from the

server.

* In the context of a given QUIC connection, the "client’s chosen
version" is the QUIC version of the connection’s first flight.

Schinazi & Rescorla Expires 22 June 2023 [Page 3]

Internet-Draft QUIC Compatible VN December 2022

2.

* The "original version" is the QUIC version of the very first
packet the client sends to the server. If version negotiation
spans multiple connections (see Section 2.4), the original version
is equal to the client’s chosen version of the first QUIC
connection.

* The "negotiated version” is the QUIC version in use on the
connection once the version negotiation process completes.

* The "Maximum Segment Lifetime" (MSL) represents the time a QUIC
packet can exist in the network. Implementations can make this
configurable, and a RECOMMENDED value is one minute. Note that
the term "segment" here originated in Section 3.4.1 of [TCP].

Version Negotiation Mechanism

This document specifies two means of performing version negotiation:
one "incompatible" which requires a round trip and is applicable to
all versions, and one "compatible" that allows saving the round trip
but only applies when the versions are compatible (see Section 2.2).

The client initiates a QUIC connection by choosing an original
version and sending a first flight of QUIC packets with a long header
to the server [QUIC-INVARIANTS]. The client’s first flight includes
Version Information (see Section 3) which will be used to optionally
enable compatible version negotiation (see Section 2.3), and to
prevent version downgrade attacks (see Section 4).

Upon receiving this first flight, the server verifies whether it
knows how to parse first flights from the original version. If it
does not, then it starts incompatible version negotiation, see
Section 2.1, which causes the client to initiate a new connection
with a different version. For instance, if the client initiates a
connection with version A and the server starts incompatible version
negotiation and the client then initiates a new connection with
version B, we say that the first connection’s client chosen version
is A, the second connection’s client chosen version is B, and the
original version for the entire sequence is A.

If the server can parse the first flight, it can either establish the
connection using the client’s chosen version, or it MAY select any
other compatible version, as described in Section 2.3.

Note that it is possible for a server to have the ability to parse
the first flight of a given version without fully supporting it, in
the sense that it implements enough of the version’s specification to
parse first flight packets but not enough to fully establish a
connection using that version.

Schinazi & Rescorla Expires 22 June 2023 [Page 4]

Internet-Draft QUIC Compatible VN December 2022

2.1. Incompatible Version Negotiation

The server starts incompatible version negotiation by sending a
Version Negotiation packet. This packet SHALL include each entry
from the server’s set of Offered Versions (see Section 5) in a
Supported Version field. The server MAY add reserved versions (as
defined in Section 6.3 of [QUIC]) in Supported Version fields.

Clients will ignore a Version Negotiation packet if it contains the
original version attempted by the client; see Section 4. The client
also ignores a Version Negotiation packet that contains incorrect
connection ID fields; see Section 6 of [QUIC-INVARIANTS].

Upon receiving the Version Negotiation packet, the client SHALL
search for a version it supports in the list provided by the server.
If it doesn’t find one, it SHALL abort the connection attempt.
Otherwise, it SHALL select a mutually supported version and send a
new first flight with that version - this version is now the
negotiated version.

The new first flight will allow the endpoints to establish a
connection using the negotiated version. The handshake of the
negotiated version will exchange version information (see Section 3)
required to ensure that version negotiation was genuine, i.e. that no
attacker injected packets in order to influence the wversion
negotiation process, see Section 4.

Only servers can start incompatible version negotiation: clients MUST
NOT send Version Negotiation packets and servers MUST ignore all
received Version Negotiation packets.

2.2. Compatible Versions

If A and B are two distinct versions of QUIC, A is said to be
"compatible" with B if it is possible to take a first flight of
packets from version A and convert it into a first flight of packets
from version B. As an example, if versions A and B are absolutely
equal in their wire image and behavior during the handshake but
differ after the handshake, then A is compatible with B and B is
compatible with A. Note that the conversion of the first flight can
be lossy: some data such as QUIC version 1 O-RTT packets could be
ignored during conversion and retransmitted later.

Schinazi & Rescorla Expires 22 June 2023 [Page 5]

Internet-Draft QUIC Compatible VN December 2022

Version compatibility is not symmetric: it is possible for version A
to be compatible with version B and for B not to be compatible with
A. This could happen for example if version B is a strict superset
of version A: if version A includes the concept of streams and STREAM
frames, and version B includes the concept of streams and the
hypothetical concept of tubes along with STREAM and TUBE frames, then
A would be compatible with B but B would not be compatible with A.

Note that version compatibility does not mean that every single
possible instance of a first flight will succeed in conversion to the
other version. A first flight using version A is said to be
"compatible" with version B if two conditions are met: first that
version A is compatible with version B, and second that the
conversion of this first flight to version B is well-defined. For
example, if version B is equal to A in all aspects except it
introduced a new frame in its first flight that version A cannot
parse or even ignore, then B could still be compatible with A as
conversions would succeed for connections where that frame is not
used. In this example, first flights using version B that carry this
new frame would not be compatible with version A.

When a new version of QUIC is defined, it is assumed to not be
compatible with any other version unless otherwise specified.
Similarly, no other version is compatible with the new version unless
otherwise specified. Implementations MUST NOT assume compatibility
between versions unless explicitly specified.

Note that both endpoints might disagree on whether two versions are
compatible or not. For example, two versions could have been defined
concurrently and then specified as compatible in a third document
much later - in that scenario one endpoint might be aware of the
compatibility document while the other may not.

2.3. Compatible Version Negotiation

When the server can parse the client’s first flight using the
client’s chosen version, it can extract the client’s Version
Information structure (see Section 3). This contains the list of
versions that the client knows its first flight is compatible with.

In order to perform compatible version negotiation, the server MUST
select one of these versions that (1) it supports and (2) it knows
the client’s chosen version to be compatible with. This selected
version is now the negotiated version. After selecting it, the
server attempts to convert the client’s first flight into that
version, and replies to the client as if it had received the
converted first flight.

Schinazi & Rescorla Expires 22 June 2023 [Page 6]

Internet-Draft QUIC Compatible VN December 2022

If those formats are identical, as in cases where the negotiated
version is the same as the client’s chosen version, then this will be
the identity transform. If the first flight is correctly formatted,
then this conversion process cannot fail by definition of the first
flight being compatible; if the server is unable to convert the first
flight, it MUST abort the handshake.

If a document specifies that a QUIC version is compatible with
another, that document MUST specify the mechanism by which clients
are made aware of the negotiated version. An example of such a
mechanism is to have the client determine the server’s negotiated
version by examining the QUIC long header Version field. Note that,
in this example mechanism, it is possible for the server to initially
send packets with the client’s chosen version before switching to the
negotiated version (this can happen when the client’s Version
Information structure spans multiple packets; in that case the server
might acknowledge the first packet in the client’s chosen version and
later switch to a different negotiated version). Mutually compatible
versions SHOULD use the same mechanism.

Note that, after the first flight is converted to the negotiated
version, the handshake completes in the negotiated wversion. If the
negotiated version has requirements that apply during the handshake,
those requirements apply to the entire handshake, including the
converted first flight. In particular, if the negotiated version
mandates that endpoints perform validations on handshake packets,
endpoints MUST also perform such validations on the converted first
flight. For instance, if the negotiated version requires that the
5-tuple remain stable for the entire handshake (as QUIC version 1
does), then both endpoints need to validate the 5-tuple of all
handshake packets, including the converted first flight.

Note also that the client can disable compatible version negotiation
by only including the Chosen Version in the Available Versions field
of the Version Information; see Section 3.

If the server does not find a compatible version (including the
client’s chosen version), it will perform incompatible version
negotiation instead, see Section 2.1.

Note that it is possible to have incompatible version negotiation
followed by compatible version negotiation. For instance, if version
A is compatible with B and C is compatible with D, the following
scenario could occur:

Schinazi & Rescorla Expires 22 June 2023 [Page 7]

Internet-Draft QUIC Compatible VN December 2022

Client Server
Chosen = A, Available Versions = (A, B) ————————————-— >
<———m— Version Negotiation = (D, C)
Chosen = C, Available Versions = (C, D) ———————————-— >
<————— Chosen = D, Available Versions = (D, C)

Figure 1: Combined Negotiation Example

In this example, the client selected C from the server’s Version
Negotiation packet, but the server preferred D and then selected it
from the client’s offer.

2.4. Connections and Version Negotiation

QUIC connections are shared state between a client and a server
[QUIC-INVARIANTS]. The compatible version negotiation mechanism
defined in this document (see Section 2.3) is performed as part of a
single QUIC connection; that is, the packets with the client’s chosen
version are part of the same connection as the packets with the
negotiated version.

In comparison, the incompatible version negotiation mechanism, which
leverages QUIC Version Negotiation packets (see Section 2.1)
conceptually operates across two QUIC connections: the connection
attempt prior to receiving the Version Negotiation packet is distinct
from the connection with the incompatible version that follows.

Note that this separation across two connections is conceptual: it
applies to normative requirements on QUIC connections, but does not
require implementations to internally use two distinct connection
objects.

2.5. Client Choice of Original Version
When the client picks its original version, it will try to avoid
incompatible version negotiation to save a round trip. Therefore,
the client SHOULD pick an original version to maximize the combined

probability that both:

* The server knows how to parse first flights from the original
version.

* The original version is compatible with the client’s preferred
version.

Schinazi & Rescorla Expires 22 June 2023 [Page 8]

Internet-Draft QUIC Compatible VN December 2022

Without additional information, this could mean selecting the oldest
version that the client supports, while advertising newer compatible
versions in the client’s first flight.

3. Version Information

During the handshake, endpoints will exchange Version Information,
which consists of a chosen version and a list of available versions.
Any version of QUIC that supports this mechanism MUST provide a
mechanism to exchange Version Information in both directions during
the handshake, such that this data is authenticated.

In QUIC version 1, the Version Information is transmitted using a new
"version_information" transport parameter; see Section 7.4 of [QUIC].
The contents of Version Information are shown below (using the
notation from the "Notational Conventions" section of [QUIC]):

Version Information {
Chosen Version (32),
Available Versions (32) ...,

Figure 2: Version Information Format
The content of each field is described below:

Chosen Version: The version that the sender has chosen to use for
this connection. In most cases, this field will be equal to the
value of the Version field in the long header that carries this
data; however future versions or extensions can choose to set
different values in the long header Version field.

The contents of the Available Versions field depends on whether it is
sent by the client or by the server.

Client-Sent Available Versions: When sent by a client, the Available
Versions field lists all the versions that this first flight is
compatible with, ordered by descending preference. Note that the
version in the Chosen Version field MUST be included in this list
to allow the client to communicate the chosen version’s
preference. Note that this preference is only advisory, servers
MAY choose to use their own preference instead.

Server-Sent Available Versions: When sent by a server, the Available

Schinazi & Rescorla Expires 22 June 2023 [Page 9]

Internet-Draft QUIC Compatible VN December 2022

Versions field lists all the Fully-Deployed Versions of this
server deployment, see Section 5. The ordering of the versions in
this field does not carry any semantics. Note that the version in
the Chosen Version field is not necessarily included in this list,
because the server operator could be in the process of removing
support for this version. For the same reason, the Available
Versions field MAY be empty.

Clients and servers MAY both include versions following the pattern
Ox?a?a?a??a in their Available Versions list. Those versions are
reserved to exercise version negotiation (see the Versions section of
[QUIC]), and will never be selected when choosing a version to use.

4. Version Downgrade Prevention

A version downgrade is an attack where a malicious entity manages to
make the QUIC endpoints negotiate a QUIC version different from the
one they would have negotiated in the absence of the attack. The
mechanism described in this document is designed to prevent downgrade
attacks.

Clients MUST ignore any received Version Negotiation packets that
contain the original version. A client that makes a connection
attempt based on information received from a Version Negotiation
packet MUST ignore any Version Negotiation packets it receives in
response to that connection attempt.

Both endpoints MUST parse their peer’s Version Information during the
handshake. If that leads to a parsing failure (for example, if it is
too short or if its length is not divisible by four), then the
endpoint MUST close the connection; if the connection was using QUIC
version 1, that connection closure MUST use a transport error of type
TRANSPORT_PARAMETER_ERROR. If an endpoint receives a Chosen Version
equal to zero, or any Available Version equal to zero, it MUST treat
it as a parsing failure. 1If a server receives a Version Information
where the Chosen Version is not included in Available Versions, it
MUST treat it as a parsing failure.

Every QUIC version that supports version negotiation MUST define a

method for closing the connection with a version negotiation error.
For QUIC version 1, version negotiation errors are signaled using a
transport error of type VERSION_NEGOTIATION_ERROR; see Section 10.2.

When a server receives a client’s first flight, the server will first
establish which QUIC version is in use for this connection in order
to properly parse the first flight. For example, the server
determines that QUIC version 1 is in use by observing that the
Version field of the first Long Header packet it receives is set to

Schinazi & Rescorla Expires 22 June 2023 [Page 10]

Internet-Draft QUIC Compatible VN December 2022

0x00000001. When the server then processes the client’s Version
Information, the server MUST validate that the client’s Chosen
Version matches the version in use for the connection. If the two
differ, the server MUST close the connection with a version
negotiation error. For example, if a server receives the client’s
Version Information over QUIC version 1 (as indicated by the Version
field of the Long Header packets that carried the transport
parameters) and the client’s Chosen Version is not set to 0x00000001,
the server will close the connection with a version negotiation
error.

If a client receives a Version Information where the server’s Chosen
Version was not sent by the client as part of its Available Versions,
the client MUST close the connection with a version negotiation
error.

If the Version Information was missing, the endpoints MAY complete
the handshake. However, if a client has reacted to a Version
Negotiation packet and the Version Information was missing, the
client MUST close the connection with a version negotiation error.

If the client received and acted on a Version Negotiation packet, the
client MUST validate the server’s Available Versions field. The
Available Versions field is wvalidated by confirming that the client
would have attempted the same version with knowledge of the versions
the server supports. That is, the client would have selected the
same version if it received a Version Negotiation packet that listed
the versions in the server’s Available Versions field, plus the

negotiated version. If the client would have selected a different
version, the client MUST close the connection with a version
negotiation error. 1In particular, if the client reacted to a Version

Negotiation packet and the server’s Available Versions field is
empty, the client MUST close the connection with a version
negotiation error. These connection closures prevent an attacker
from being able to use forged Version Negotiation packets to force a
version downgrade.

As an example, let’s assume a client supports hypothetical QUIC
versions 10, 12, and 14 with a preference for higher versions. The
client initiates a connection attempt with version 12. Let’s explore
two independent example scenarios:

* In the first scenario, the server supports versions 10, 13, and 14
but only 13 and 14 are Fully-Deployed (see Section 5). The server
sends a Version Negotiation packet with versions 10, 13, and 14.
This triggers an incompatible version negotiation and the client
initiates a new connection with version 14. Then the server’s
Available Versions field contains 13 and 14. In that scenario,

Schinazi & Rescorla Expires 22 June 2023 [Page 11]

Internet-Draft QUIC Compatible VN December 2022

the client would have also picked 14 if it had received a Version
Negotiation packet with versions 13 and 14, therefore the
handshake succeeds using negotiated version 14.

* In the second scenario, the server supports versions 10, 13, and
14 and they are all Fully-Deployed. However, the attacker forges

a Version Negotiation packet with versions 10 and 13. This
triggers an incompatible version negotiation and the client
initiates a new connection with version 10. Then the server’s

Available Versions field contains 10, 13 and 14. 1In that
scenario, the client would have picked 14 instead of 10 if it had
received a Version Negotiation packet with versions 10, 13 and 14,
therefore the client aborts the handshake with a version
negotiation error.

This validation of Available Versions is not sufficient to prevent
downgrade. Downgrade prevention also depends on the client ignoring
Version Negotiation packets that contain the original version; see
Section 2.1.

After the process of version negotiation in this document completes,
the version in use for the connection is the version that the server
sent in the Chosen Version field of its Version Information. That
remains true even if other versions were used in the Version field of
long headers at any point in the lifetime of the connection. In
particular, since during compatible version negotiation the client is
made aware of the negotiated version by the QUIC long header version
(see Section 2.3), clients MUST validate that the server’s Chosen
Version is equal to the negotiated version; if they do not match, the
client MUST close the connection with a version negotiation error.
This prevents an attacker’s ability to influence version negotiation
by forging the Version long header field.

5. Server Deployments of QUIC

While this document mainly discusses a single QUIC server, it is
common for deployments of QUIC servers to include a fleet of multiple
server instances. We therefore define the following terms:

Acceptable Versions: This is the set of versions supported by a
given server instance. More specifically, these are the versions
that a given server instance will use if a client sends a first
flight using them.

Offered Versions: This is the set of versions that a given server
instance will send in a Version Negotiation packet if it receives
a first flight from an unknown version. This set will most often

be equal to the Acceptable Versions set, except during short
transitions while versions are added or removed (see below).

Schinazi & Rescorla Expires 22 June 2023 [Page 12]

Internet-Draft QUIC Compatible VN December 2022

Fully-Deployed Versions: This is the set of QUIC versions that is
supported and negotiated by every single QUIC server instance in
this deployment. If a deployment only contains a single server
instance, then this set is equal to the Offered Versions set,
except during short transitions while versions are added or
removed (see below).

If a deployment contains multiple server instances, software updates
may not happen at exactly the same time on all server instances.
Because of this, a client might receive a Version Negotiation packet
from a server instance that has already been updated and the client’s
resulting connection attempt might reach a different server instance
which hasn’t been updated yet.

However, even when there is only a single server instance, it is
still possible to receive a stale Version Negotiation packet if the
server performs its software update while the Version Negotiation
packet is in flight.

This could cause the version downgrade prevention mechanism described
in Section 4 to falsely detect a downgrade attack. To avoid that,
server operators SHOULD perform a three-step process when they wish
to add or remove support for a version:

When adding support for a new version:

* The first step is to progressively add support for the new version
to all server instances. This step updates the Acceptable
Versions but not the Offered Versions nor the Fully-Deployed
Versions. Once all server instances have been updated, operators
wait for at least one MSL to allow any in-flight Version
Negotiation packets to arrive.

* Then, the second step is to progressively add the new version to
Offered Versions on all server instances. Once complete,
operators wait for at least another MSL.

* Finally, the third step is to progressively add the new version to
Fully-Deployed Versions on all server instances.

When removing support for a version:
* The first step is to progressively remove the version from Fully-
Deployed Versions on all server instances. Once it has been

removed on all server instances, operators wait for at least one
MSL to allow any in-flight Version Negotiation packets to arrive.

Schinazi & Rescorla Expires 22 June 2023 [Page 13]

Internet-Draft QUIC Compatible VN December 2022

* Then, the second step is to progressively remove the version from
Offered Versions on all server instances. Once complete,
operators wait for at least another MSL.

* Finally, the third step is to progressively remove support for the
version from all server instances. That step updates the
Acceptable Versions.

Note that, during the update window, connections are wvulnerable to
downgrade attacks for partially-deployed versions. This is because a
client cannot distinguish such a downgrade attack from legitimate
exchanges with both updated and non-updated server instances.

6. Application Layer Protocol Considerations

When a client creates a QUIC connection, its goal is to use an
application layer protocol. Therefore, when considering which
versions are compatible, clients will only consider versions that
support one of the intended application layer protocols. If the
client’s first flight advertises multiple Application Layer Protocol
Negotiation (ALPN) [ALPN] tokens and multiple compatible versions, it
is possible for some application layer protocols to not be able to
run over some of the offered compatible versions. It is the server’s
responsibility to only select an ALPN token that can run over the
compatible QUIC version that it selects.

A given ALPN token MUST NOT be used with a new QUIC version different
from the version for which the ALPN token was originally defined,
unless all the following requirements are met:

* The new QUIC version supports the transport features required by
the application protocol.

* The new QUIC version supports ALPN.

* The version of QUIC for which the ALPN token was originally
defined is compatible with the new QUIC version.

When incompatible version negotiation is in use, the second
connection which is created in response to the received version
negotiation packet MUST restart its application layer protocol
negotiation process without taking into account the original version.

7. Considerations for Future Versions
In order to facilitate the deployment of future versions of QUIC,

designers of future versions SHOULD attempt to design their new
version such that commonly deployed versions are compatible with it.

Schinazi & Rescorla Expires 22 June 2023 [Page 14]

Internet-Draft QUIC Compatible VN December 2022

QUIC version 1 defines multiple features which are not documented in
the QUIC invariants. Since, at the time of writing, QUIC wversion 1
is widely deployed, this section discusses considerations for future
versions to help with compatibility with QUIC version 1.

7.1. Interaction with Retry

QUIC version 1 features Retry packets, which the server can send to
validate the client’s IP address before parsing the client’s first
flight. A server that sends a Retry packet can do so before parsing
the client’s first flight. A server that sends a Retry packet
therefore might not have processed the client’s Version Information
before doing so.

If a future document wishes to define compatibility between two
versions that support retry, that document MUST specify how version
negotiation (both compatible and incompatible) interacts with retry
during a handshake that requires both. For example, that could be
accomplished by having the server first send a Retry packet in the
original version thereby validating the client’s IP address before
attempting compatible version negotiation. If both versions support
authenticating Retry packets, the compatibility definition needs to
define how to authenticate the Retry in the negotiated version
handshake even though the Retry itself was sent using the client’s
chosen version.

7.2. Interaction with TLS resumption

QUIC version 1 uses TLS 1.3, which supports session resumption by
sending session tickets in one connection that can be used in a later
connection; see Section 2.2 of [TLS]. New versions that also use TLS
1.3 SHOULD mandate that their session tickets are tightly scoped to
one version of QUIC; i.e., require that clients not use them across
multiple version and that servers wvalidate this client requirement.
This helps mitigate cross—-protocol attacks.

7.3. Interaction with O-RTT

QUIC version 1 allows sending data from the client to the server
during the handshake, by using O0-RTT packets. If a future document
wishes to define compatibility between two versions that support
0-RTT, that document MUST address the scenario where there are 0-RTT
packets in the client’s first flight. For example, this could be
accomplished by defining which transformations are applied to O-RTT
packets. That document could specify that compatible version
negotiation causes O0-RTT data to be rejected by the server.

Schinazi & Rescorla Expires 22 June 2023 [Page 15]

Internet-Draft QUIC Compatible VN December 2022

10.

10.

10

Special Handling for QUIC Version 1

Because QUIC version 1 was the only IETF Standards Track version of
QUIC published before this document, it is handled specially as
follows: if a client is starting a QUIC version 1 connection in
response to a received Version Negotiation packet, and the
version_information transport parameter is missing from the server’s
transport parameters, then the client SHALL proceed as if the
server’s transport parameters contained a version_information
transport parameter with a Chosen Version set to 0x00000001 and an
Available Version list containing exactly one version set to
0x00000001. This allows version negotiation to work with servers
that only support QUIC version 1. Note that implementations which
wish to use version negotiation to negotiate versions other than QUIC
version 1 will need to implement the version negotiation mechanism
defined in this document.

Security Considerations

The security of this version negotiation mechanism relies on the
authenticity of the Version Information exchanged during the
handshake. In QUIC version 1, transport parameters are authenticated
ensuring the security of this mechanism. Negotiation between
compatible versions will have the security of the weakest common
version.

The requirement that versions not be assumed compatible mitigates the
possibility of cross—-protocol attacks, but more analysis is still
needed here. That analysis is out of scope for this document.

IANA Considerations
1. QUIC Transport Parameter

IANA has registered the following value in the "QUIC Transport
Parameters" registry maintained at <https://www.iana.org/assignments/
quic>.

Value: 0x11

Parameter Name: version_information
Status: permanent

Specification: This document

.2. QUIC Transport Error Code

IANA has registered the following value in the "QUIC Transport Error
Codes" registry maintained at <https://www.iana.org/assignments/
quic>.

Schinazi & Rescorla Expires 22 June 2023 [Page 16]

Internet-Draft QUIC Compatible VN December 2022

Value: 0x11

Code: VERSION_NEGOTIATION_ERROR
Description: Error negotiating version
Status: permanent

Specification: This document

11. References
11.1. Normative References

[ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
"Transport Layer Security (TLS) Application-Layer Protocol
Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
July 2014, <https://www.rfc-editor.org/rfc/rfc7301>.

[QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/rfc/rfc9000>.

[QUIC-INVARIANTS]
Thomson, M., "Version-Independent Properties of QUIC",
RFC 8999, DOI 10.17487/RFC8999, May 2021,
<https://www.rfc-editor.org/rfc/rfc8999>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

[REC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

[TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/rfc/rfc8446>.

11.2. Informative References
[TCP] Eddy, W., Ed., "Transmission Control Protocol (TCP)",

STD 7, RFC 9293, DOI 10.17487/RFC9293, August 2022,
<https://www.rfc-editor.org/rfc/rfc9293>.

Schinazi & Rescorla Expires 22 June 2023 [Page 17]

Internet-Draft QUIC Compatible VN December 2022

Acknowledgments

The authors would like to thank Nick Banks, Mike Bishop, Martin Duke,
Ryan Hamilton, Roberto Peon, Anthony Rossi, and Martin Thomson for
their input and contributions.

Authors’ Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway
Mountain View, CA 94043

United States of America

Email: dschinazi.ietf@gmail.com

Eric Rescorla
Mozilla
Email: ekr@rtfm.com

Schinazi & Rescorla Expires 22 June 2023 [Page 18]

Internet Engineering Task Force N. Kuhn

Internet-Draft CNES
Intended status: Informational E. Stephan
Expires: 26 April 2022 Orange
G. Fairhurst

T. Jones

University of Aberdeen
C. Huitema

Private Octopus Inc.
23 October 2021

Transport parameters for O0-RTT connections
draft-kuhn-quic-0rtt-bdp-11

Abstract

QUIC O-RTT transport features currently focuses on egress traffic
optimization. This draft describes a QUIC extension that can be used
to improve the performance of ingress traffic.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."”

This Internet-Draft will expire on 26 April 2022.
Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license—-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components

Kuhn, et al. Expires 26 April 2022 [Page 1]

Internet-Draft Transport for O-RTT October 2021

extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

kOOO\]O\

[y

NDNDDNDDN

9

9.

B DD

Introduction
.1. Notations and terms
.2. Requirements Language

Safe jump start .
.1. Rationale behind the safety guldellnes
Rationale #1: Variable network conditions
Rationale #2: Malicious clients
Trade-off between the different solutlons
.1. Security aspects coe .
.2. Interoperability and use-cases
.3. Summary
afety guidelines ..
Implementation consrderatlons .
Rationale behind the different 1mplementatlon optlons
Independent local storage of values
Using NEW_TOKEN frames
BDP Frame . .
4 1. BDP Frame Format
.4.2. Extension activation
scussion
BDP extensron protected as much as lnltlal _max__ data
Other use-cases .
1. Optimizing client’s requests
2. Sharing transport information across multlple
connections
Acknowledgments
IANA Considerations
Security Considerations

sb»bnb

2
3
4
2.
2.
2.
S

i

(J'I(J'INI—‘U»b»bwbwl\)l—‘

2.
2.

References coe ..
1. Normative References
2. Informative References

Authors’ Addresses

1. Introduction

0 00 00 J oy U1 OO x N

PR RRRRPRRRRPRR PR
U U WWWNNNO W

16
16
16
16
16
16
17
17

QUIC O-RTT transport features currently focus on egress traffic

optimization.

to improve the performance of ingress traffic.

Kuhn,

et al. Expires 26 April 2022

This draft describes a QUIC extension that can be used

[Page 2]

Internet-Draft Transport for O-RTT October 2021

[REC9000] mentions that "Generally, implementations are advised to be
cautious when using previous values on a new path." This draft
proposes a discussion on how using previous values can be achieved in
a interoperable manner and how it can be done safely.

When clients resume a session to download a large object, the
congestion control algorithms will require time to ramp-up the packet
rate as a sequence of Round-Trip Time (RTT)-based increases. This
document specifies a method that can improve traffic delivery by
allowing a QUIC connection to avoid a the slow process to discover
key path parameters including a way to more rapidly grow the
congestion window (cwnd) :

1. During a previous session, current RTT (current_rtt), bottleneck
bandwidth (current_bb) and current client IP (current_client_ip)
are stored as saved_rtt, saved_bb and saved_client_ip;

2. When resuming a session to the same IP address, the server can
then utilize the current_rtt and the current_bb to the saved_rtt
and saved_bb of a previous connection.

This method applies to any resumed QUIC session: both saved_session
and recon_session can be a 0-RTT QUIC connection or a 1-RTT QUIC
connection.

The current version of this draft considers several possible
solutions: (1) the saved parameters are stored at the server; they
are not sent to the client; (2) the saved parameters are sent to the
client as an encrypted opaque blob; although the client is unable to
read the parameters can include this opaque blob in a subsequent
request to the server; (3) the saved parameters are sent to the
client and the client is notified of their value, but the parameters
also include a cryptographic integrity check; the client can include
both the parameters and the integrity check in a subsequent request
to the server.

None of these possible solutions allow g client to modify the
parameters that will be used by the server.

There are several cases where the parameters of a previous session
are not appropriate. These include:

(1) the network conditions have changed and the current capacity

is less than the previously estimated bottleneck bandwidth. Using
the saved congestion control state would increase congestion;

Kuhn, et al. Expires 26 April 2022 [Page 3]

Internet-Draft Transport for O-RTT October 2021

(2) the network path has changed and the new path is different.
Using the saved congestion control state could increase
congestion. This case might be accompanied by a change in the RTT
or IP address.

(3) a client uses parameters that are no longer appropriate, e.g.,
to intentionally try to use a CWND larger than appropriate.

This document:

Kuhn,

proposes guidelines for how to safely apply the previously
computed parameters to new sessions;

describes different implementation considerations for the
proposed method using QUIC;

discusses the trade-offs associated with the different
implementation solutions.

Notations and terms

IW: Initial Window (e.g., from [RFC6928]);
current_iw: Current Initial Window
recom_iw: Recommended Initial Window

BDP: defined below

CWND: the congestion window used by server (maximum number of
bytes allowed in flight by the CC)

current_bb : Current estimated bottleneck bandwidth

saved_bb: Estimated bottleneck bandwidth preserved from a previous
connection

RTT: Round-Trip Time

current_rtt: Current RTT

saved_rtt: RTT preserved from a previous connection
client_ip : IP address of the client

current_client_ip : Current IP address of the client

et al. Expires 26 April 2022 [Page 4]

Internet-Draft Transport for O-RTT October 2021

1

2.

2.

* saved_client_ip : IP address of the client preserved from a
previous connection

* remembered BDP parameters: a combination of saved_rtt and saved_bb
* ITT : Interpacket Transmission Time

* MSS : Maximum Message Size

* AEAD : Authenticated Encryption with Associated Data

* LRU : Least Recently Used

[REC6349] defines the BDP as follows: "Derived from Round-Trip Time
(RTT) and network Bottleneck Bandwidth (BB), the Bandwidth-Delay
Product (BDP) determines the Send and Received Socket buffer sizes
required to achieve the maximum TCP Throughput." This draft
considers the BDP estimated by a server that includes all buffering
along the network path. In that sense, the BDP estimated is related
to the amount of bytes in flight.

A QUIC connection might not reproduce the procedure detailed in
[RFC6349] to measure the BDP. A server might be able to exploit an
internal evaluation of the Bottleneck Bandwidth to estimate the BDP.

This document refers to the saved_bb and current_bb for the
previously estimated bottleneck bandwidth. This value can be easilly
estimated when using a rate-based congestion controller, such as BBR.
Other congestion controllers, such as CUBIC or RENO, could estimate
the bottleneck bandwidth by utilizing a combinatioin of the cwnd and
the minimum RTT. This approach could result in over estimating the
bottleneck bandwidth and ought to be used with caution.

.2. Requirements Language
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Safe jump start
1. Rationale behind the safety guidelines

The previously measured saved_rtt and saved_bb SHOULD NOT be used as-—
is, to avoid potential congestion collapse:

Kuhn, et al. Expires 26 April 2022 [Page 5]

Internet-Draft Transport for O-RTT October 2021

* Rationale #1: Internet path capacity can change at any time. An
Internet method needs to be robust to network conditions that can
differ from one session to the next.

* Rationale #2: Information sent by a malicious client is not
relevant. A client could try to convince a server to use a CWND
higher than appropriate, to gain an unfair share of capacity for
itself or to induce congestion for other flows.

2.2. Rationale #1: Variable network conditions

The server MUST check the validity of the saved_rtt and saved_bb
parameters, whether these are sent by a client or are stored at the
server. The following events indicates cases where use of these
parameters is inappropriate:

* IP address changed: If the client changes its IP address (i.e.
the saved_client_ip is different from the current_client_ip), the
different address is to be takne as an indication of a different
network path. This new path does not necessarily exhibit the same
characteristics as the old one. If the server changes its IP
address after a migration, it would not be safe to exploit
previously estimated parameters.

* RTT changed: A significant change in RTT might be an indication
that the the network conditions changed. Since the CC information
is directly impacted by the RTT, a significant change in RTT is a
strong indication that the previously estimated BDP parameters are
likely to not be valid for the current path.

* Lifetime of the extension: The CC information is temporal.
Frequent connections to the same IP address are likely to track
changes, but long-term use of previous values are not appropriate.

* BB over estimation: There are cases where using the cwnd would
infralte the bottleneck bandwidth. However, at the end of a CC
slow start, the value of cwnd can be significantly larger than the
value, that the CC finally converges to (after a few more rounds).
Directly exploiting such value for the bottleneck bandwidth
estimation may be inappropriate. One mitigation could be to
restrict to only a fraction (e.g., 1/2) of the previously used
cwnd; another mitigation might be to calculate the bottleneck
bandwidth based on the flightsize.

There are different solutions for the variable network conditions:

Kuhn, et al. Expires 26 April 2022 [Page 6]

Internet-Draft Transport for O-RTT October 2021

* Rationale #1 - Solution #1 : When resuming a session, restore the
current_bb and current_rtt from the saved_bb and saved_rtt
parameters estimated from a previous connection.

* Rationale #1 - Solution #2 : When resuming a session, implement a
safety check to measure avoid using the saved_bb and saved_rtt
parameters to cause congestion over the path. In this case, the

current_bb and current_rtt might not be set directly to the
saved_bb and saved_rtt: the server might wait for the completion
of the safety check before doing so.

Section 3 describes various approaches for Rationale #1 - Solution
#2.

2.3. Rationale #2: Malicious clients

The server MUST check the integrity of the saved_rtt and saved_bb
parameters received from a client.

There are several solutions to avoid attacks by malicious clients:

* Rationale #2 - Solution #1 : The server stores a local estimate of
the bottleneck bandwidth and RTT parameters as the saved_bb and
saved_rtt.

* Rationale #2 - Solution #2 : The server sends the estimate of the
bottleneck bandwidth and RTT parameters to the client as the
saved_bb and saved_rtt. This information is encrypted by the
server. The client resends the same encrypted information when
resuming a connection. The client can neither read nor modify the
saved_rtt and saved_bb parameters.

* Rationale #2 - Solution #3 : The server sends an estimate of the
saved_rtt and saved_bb parameters to the client. The information
includes an integrity protection check. The client can resend the
information when resuming a connection. This allows a client to
read, but not modify, the saved_rtt and saved_bb parameters. This
might enable a client to decide whether the new parameters are
appropriate, based on client-side information about the network
conidtions or connectivity.

Section 4 describes various implementation approaches for each of
these solutions using local storage (Section 4.2 for Rationale #2 -
Solution #1), NEW_TOKEN Frame (Section 4.3 for Rationale #2 -
Solution #2), BDP extension Frame (Section 4.4 for Rationale #2 -
Solution #3).

Kuhn, et al. Expires 26 April 2022 [Page 7]

Internet-Draft Transport for O-RTT October 2021

2.4. Trade-off between the different solutions

This section provides a description of different implementation
options and discusses their respective advantages and drawbacks.
While there are some discussions for the solutions regarding
Rationale #2, the server MUST consider Rationale #1 - Solution #2 and
avoid Rationale #1 - Solution #1: the server MUST implement a safety
check to measure whether the saved BDP parameters (i.e. saved_rtt and
saved_bb) are relevant or check that their usage would not cause
excessive congestion over the path.

2.4.1. Security aspects

The client can send information related to the saved_rtt and saved_bb
to the server with the BDP Frame extension using either Rationale #2
— Solution #2 or Rationale #2 - Solution #3. However, the server
SHOULD NOT trust the client. Indeed, even if O0-RTT packets
containing the BDP Frame are encrypted, a client could modify the
values within the extension and encrypt the 0-RTT packet.
Authentication mechanisms might not guarantee that the values are

safe. It is not an easy operation for a client to modify
authenticated or encrypted data without this being detected by a
server. Modification could be realized by malicious clients. One

way to avoid this is for a server to also store the saved_rtt and
saved_bb parameters.

A malicious client might modify the saved_bb parameter to convince
the server to use a larger CWND than appropriate. Using the
algorithms proposed in Section 3, the server may reduce any intended
harm and can check that part of the information provided by the
client are valid.

Storing the BDP parameters locally at the server reduces the
associated risks by allowing the client to transmit information
related to the BDP of the path in the case of a malicious client
trying to break the encryption mechanism that it had received.

2.4.2. Interoperability and use-cases

If the server stores a resumption ticket for each client to protect
against replay on a third party IP, it could also store the IP
address (i.e. saved_client_ip) and BDP parameters (i.e. saved_rtt
and saved_bb) of the previous session of the client.

In cases where the BDP Frame extension is exploited, the approach of
storing the BDP parameters locally at the server can provide a cross-—
check of the BDP parameters sent by a client. The server can anyway
enable a safe jumpstart, but without the BDP Frame extension.

Kuhn, et al. Expires 26 April 2022 [Page 8]

Internet-Draft Transport for O-RTT October 2021

However, the client does not have the choice of accepting to use this
or not, and is unable to utilize local knowledge of the network
conditions or conenctivity.

Storing local values related to the BDP would help in improving the
ingress for O-RTIT connections, however, not using a BDP Frame
extension could reduce the interest of the approach where (1) the
client knows the BDP estimations done at the server, (2) the client
decides to accept or reject ingress optimization, (3) the client
tunes application level requests.

2.4.3. Summary

As a summary, the approach of local storage of values can be secure
and the BDP Frame extension provides more information to the client
and more interoperability. The Figure 1 provides a summary of the
advantages and drawbacks of each approach.

o ————— o ————— o ————————— o ————————————— o ————— +
|Rationale| Solution | Advantage | Drawback | Comment
o t———— o o t———— +
#1 #1
Variable |set Ingress optim. Risks of adding|MUST NOT
Network current_* congestion implement
to saved_*
F————— F——————— F—————— F————— +
#2
Implement Reduce risks of |Negative impact |MUST
safety adding on ingress implement
check congestion optim. Section 3
o ————— o ————— o ————————— o ————————————— o ————— +
#2 #1
Malicious |Local Enforced Client unable
client storage security to decide to
reject
Malicious

server could
fill client’s

buffer
Limited
use—cases Section 4.2
o ————— o o —————— o ————— +
#2
NEW_TOKEN Save resource Malicious
at server client could
Opaque token change token
protected even if
protected

Kuhn, et al. Expires 26 April 2022 [Page 9]

Internet-Draft Transport for O-RTT October 2021

+__

Malicious
server could
fill client’s
buffer
Server may not
trust client Section 4.3
e e —— o e ————— +
#3
BDP Extended Malicious
extension use—-cases client could
Save resource change BDP
at server even if
Client can protected
read and decide|Server may not
to reject trust client
BDP extension
protected
Section 4.4
——————— Bt e ottt T T

Figure 1: Comparing solutions

3. Safety guidelines

The safety guidelines are designed to avoid a server adding excessive
congestion to an already congested path. The following mechanisms
help in fulfilling this objective:

*

Kuhn,

The server SHOULD compare the measured transport parameters (in
particular current_rtt) of the O0-RTT connection with those of the
1-RTT connection (in particular saved_rtt);

The server SHOULD NOT consider the saved_bb parameter when there
is any indicated congestion (e.g., loss of packet during the first
transmission of data or ECN-CE mark);

The server MUST NOT send more than the recommended maximum IW
(recom_iw) in the first transmission of data. This wvalue could be
based on a local understanding of the path characteristics.
Knowing the congestion status of the network in closed
environments may help in increasing the recommended maximum IW.

The server SHOULD NOT store and/or send information related to the
previously estimated bottleneck bandwidth (saved_bb) (see

Section 1.1 for more details on bottleneck bandwidth definition),

if this estimation has not been computed after some rounds during

the 1-RTT connection. At least, the 1-RTT connection should have

reached the congestion avoidance phase.

et al. Expires 26 April 2022 [Page 10]

Internet-Draft Transport for O-RTT October 2021

The proposed mechanisms SHOULD be limited by any rate-limitation
mechanisms of QUIC, such as flow control mechanisms or amplification
attack prevention. 1In particular, it may be necessary to issue
proactive MAX_DATA frames to increase the flow control limits of a
connection. In particular, the maximum number of packets that can be
sent without acknowledgment needs to be chosen to avoid the creation
and the increase of congestion for the path.

This extension should not provide an opportunity for the current
connection to be a vector of an amplification attack. The address
validation process, used to prevent amplification attacks, SHOULD be
performed [REFC9000].

The following mechanisms could be implemented:
* Exploit a standard IW:

1. The server sends the first data packet using the IW - this is
a safe starting point for any path where there is no path
information or where there is no congestion state. This
avoids adding excessive congestion to the path;

2. If the reception of IW exhibits characteristics that resemble
those of a recent previous session from the client (i.e.
current_rtt < 1l.2*saved_rtt and all data was acknowledged
without reported congestion), the method permits the sender to
consider the saved_bb as an input to adapt current_bb to
rapidly determine a new safe rate;

3. The sender needs to avoid a burst of packets resulting from a
step-increase in the congestion window [RFC9000]. Pacing the
packets as a function of the current_rtt can provide this
additional safety during the period in which the CWND is
increased by the method.

* TIdentify a relevant pacing rhythm:

— The server estimates the pacing rhythm using saved_rtt and
saved_bb. The Interpacket Transmission Time (ITT) is
determined by the ratio between the current Maximum Message
Size (MSS) for packets and the ratio between the saved_bb and
saved_rtt. A tunable safety margin might be introduced to
avoid sending more than a recommended maximum IW (recom_iw) :

o current_iw = min(recom_iw, saved_bb)

o ITT = MSS/(current_iw/saved_rtt)

Kuhn, et al. Expires 26 April 2022 [Page 11]

Internet-Draft Transport for O-RTT October 2021

— When the IW is acknowledged, the server falls back to a
standard slow-start mechanism.

* Tune slow-start mechanisms: After transport parameters are set to
a previously estimated bottleneck bandwidth, if slow-start
mechanisms continue, the sender can overshoot the bottleneck
capacity. This can occur even if the safety check described in
this section is implemented.

— For NewReno and CUBIC, it is recommended to exit slow-start and
enter in congestion avoidance phase.

- For BBR, it is recommended to move to the "probe bandwidth"
state.

This follows the idea of [RFC4782],
[I-D.irtf-iccrg-sallantin-initial-spreading] and [CONEXT15].

4. Implementation considerations
4.1. Rationale behind the different implementation options

The NewSessionTickets messages of TLS offer a solution. The idea
would have been to add a 'bdp_metada’ field in the NewSessionTickets
that the client could read. The sole extension currently defined in
TLS1.3 that can be seen by the client is max_early_data_size (see
section 4.6.1 of [RFC8446]). However, in the general design of QUIC,
TLS sessions are managed by the TLS stacks.

Three distinct approaches are presented: sending an opaque blob to
the client that it may return to the server for a future connection
(see Section 4.3), enable a local storage of BDP related values (see
Section 4.2) and a BDP Frame extension (see Section 4.4).

4.2. Independent local storage of values

This approach independently lets both a client and a server remember
their BDP parameters:

* During a 1-RTT session, the endpoint stores the RTT (as the
saved_rtt) and bottleneck bandwidth (as the saved_bb) together
with the session resume ticket. The client can also store the IP
address of the server.

* The server maintains a table of previously issued tickets, indexed
by the random ticket identifier that is used to guarantee
uniqueness of the Authenticated Encryption with Associated Data
(AEAD) encryption. 0ld tokens are removed from the table using

Kuhn, et al. Expires 26 April 2022 [Page 12]

Internet-Draft Transport for O-RTT October 2021

the Least Recently Used (LRU) logic. For each ticket identifier,
the table holds the RTT and bottleneck bandwidth (i.e. saved_rtt
and saved_bb), and also the IP address of the client (i.e.
saved_client_ip).

During the O0-RTT session, the endpoint waits for the first RTIT
measurement from the peer’s IP address. This is used to verify that
the current_rtt has not significantly changed from the saved_rtt, and
hence is an indication that the BDP information is appropriate to the
path that is currently being used.

If this RTT is confirmed (e.g. current_rtt < 1l.2*saved_rtt, the
endpoint also verifies that an initial window of data has been
acknowledged without requiring retransmission. This second check
detects a path with significant incipient congestion (i.e. where it
would not be safe to update the CWND based on the saved_bb). In
practice, this could be realized by a proportional increase in the
CWND, where the increase is (saved_bb/IW) *proportion_of IW_currently-
ACKed.

This solution does not allow the client to refuse the exploitation of
the BDP parameters. If the server does not want to store the metrics
from previous connections, an equivalent of the tcp_no_metrics_save
for QUIC may be necessary. This option could be negociated that
alows a client to choose whether to use the saved information.

4.3. Using NEW_TOKEN frames

Using NEW_TOKEN Frames, the server could send a token to the client
through a NEW_TOKEN Frame. The token is an opaque blob and the
client can not read its content (see section 19.7 of [RFC9000]). The
client sends the received token in the header of an Initial packet
for a later connection.

4.4. BDP Frame

This section describes the use of a new Frame, the BDP Frame. The
BDP Frame MUST be contained in O-RTT packets, if sent by the client.
The BDP Frame MUST be contained in 1-RTT packets, if sent by the
server. The BDP Frame MUST be considered by congestion control and
its data is not be limited by flow control limits. The server MAY
send multiple BDP Frames in both 1-RTT and O-RTT connections. The
client can send BDP Frames during 1-RTT and O-RTT connections.

4.4.1. BDP Frame Format

A BDP Frame is formatted as shown in Figure 2.

Kuhn, et al. Expires 26 April 2022 [Page 13]

Internet-Draft Transport for O-RTT October 2021

BDP Frame {
Type (i) = 0xXXX,
Lifetime (i),
Saved BB (i),
Saved RTT (i),
Saved IP length (i),
Saved IP (...)

Figure 2: BDP Frame Format

A BDP Frame contains the following fields:

* Lifetime (extension_lifetime): The extension_lifetime is a value
in milliseconds, encoded as a variable length integer. This
follows the idea of NewSessionTicket of TLS [RFC8446]. This

represents the validity in time of this extension.

* Saved BB (saved_bb): The saved_bb is a value in bytes, encoded as
a variable length integer. The bottleneck bandwidth estimated for
the previous connection by the server. Using the previous values
of bytes_in_flight defined in [RFC9002] can result in overshoot of
the bottleneck capacity and is not advised.

* Saved RTT (saved_rtt): The saved_rtt is a value in milliseconds,
encoded as a variable length integer. This could be set to the
minimum RTT (min_rtt). The saved_rtt can be set to min_rtt.

NOTE: The min_rtt defined in [RFC9002], does not track a
decreasing RTT: therefore min_rtt reported might be larger than
the actual minimum RTT measured during the 1-RTT connection.

* Saved IP length (saved_ip_length) : The length of the IP address
set to either 4 (IPv4) or 16 (IPv6).

* Saved IP (saved_client_ip) : The saved_client_ip could be set to
the IP address of the client.

4.4.2. Extension activation

The client can accept the transmission of BDP Frames from the server
by using the enable_bdp transport extension.

enable_bdp (0xTBD): in the 1-RTT connection, the client indicates to
the server that it wishes to receive BDP extension Frames for
improving ingress of O-RTT connection. The default value is 0.
Values strictly above 3 are invalid, and receipt of these values MUST
be treated as a connection error of type TRANSPORT_PARAMETER_ERROR.

Kuhn, et al. Expires 26 April 2022 [Page 14]

Internet-Draft Transport for O-RTT October 2021

* 0: Default value. If the client does not send this parameter, the
server considers that the client does not support or does not wish
to activate the BDP extension.

* 1: The client indicates to the server that it wishes to receive
BDP Frame and activates the ingress optimization for the O-RTT
connection.

* 2: The client indicates that it does not wish to receive BDP
Frames but activates ingress optimization.

* 3: The client indicates that it wishes to receive BDP Frames but
does not activate ingress optimization.

This Transport Parameter is encoded as per Section 18 of [RFC9000].
5. Discussion
5.1. BDP extension protected as much as initial_max_data

The BDP metadata parameters are measured by the server during a
previous connection. The BDP extension is protected by the mechanism
that protects the exchange of the 0-RTT transport parameters. For
version 1 of QUIC, the BDP extension is protected using the mechanism
that already protects the "initial max_data" parameter. This is
defined in sections 4.5 to 4.7 of [RFC9001]. This provides a way for
the server to verify that the parameters proposed by the client are
the same as those that the server sent to the client during the
previous connection.

5.2. Other use-cases
5.2.1. Optimizing client’s requests

When using Dynamic Adaptive Streaming over HTTPS (DASH), clients
might encounter issues in knowing the available path capacity or DASH
can encounter issues in reaching the best available video playback
quality. The client requests could then be adapted and specific
traffic could utilize information from the path characteristics (such
as encouraging the client to increase the quality of video chunks, to
fill the buffers and avoid video blocking or to send high quality
adds) .

In other cases, applications could provide additional services if
clients can know the server estimation of the path characteristics.

Kuhn, et al. Expires 26 April 2022 [Page 15]

Internet-Draft Transport for O-RTT October 2021

5.

9.

2.2. Sharing transport information across multiple connections

There can be benefit in sharing transport information across multiple
connections. [I-D.ietf-tcpm-2140bis] considers the sharing of
transport parameters between TCP connections originating from the
same host. The proposal in this document has the advantage of
storing server—-generated information at the client and not requiring
the server to retain additional state for each client.

Acknowledgments

The authors would like to thank Gabriel Montenegro, Patrick McManus,
Ian Swett, Igor Lubashev, Robin Marx, Roland Bless and Franklin Simo
for their fruitful comments on earlier versions of this document.

IANA Considerations

TBD: Text is required to register the BDP Frame and the enable_bdp
transport parameter. Parameters are registered using the procedure
defined in [RFC9000].

Security Considerations

Security considerations are discussed in Section 5 and in Section 3.
References

1. Normative References

[I-D.ietf-tcpm-2140bis]
Touch, J., Welzl, M., and S. Islam, "TCP Control Block
Interdependence", Work in Progress, Internet-Draft, draft-
ietf-tcpm-2140bis-11, 12 April 2021,
<https://www.ietf.org/archive/id/draft-ietf-tcpm-2140bis—
11.txt>.

[REFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc—editor.org/info/rfc2119>.

[RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick-
Start for TCP and IP", RFC 4782, DOI 10.17487/RFC4782,
January 2007, <https://www.rfc-editor.org/info/rfc4782>.

Kuhn, et al. Expires 26 April 2022 [Page 16]

Internet-Draft Transport for O-RTT October 2021

[REFC6349] Constantine, B., Forget, G., Geib, R., and R. Schrage,
"Framework for TCP Throughput Testing", RFC 6349,
DOI 10.17487/RFC6349, August 2011,
<https://www.rfc—editor.org/info/rfc6349>.

[RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
"Increasing TCP’s Initial Window", RFC 6928,
DOI 10.17487/RFC6928, April 2013,
<https://www.rfc-editor.org/info/rfc6928>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.

[REFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc—editor.org/info/rfc9000>.

[RFC9001] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
<https://www.rfc-editor.org/info/rfc9001>.

[REFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
May 2021, <https://www.rfc-editor.org/info/rfc9002>.

9.2. Informative References

[CONEXT15] Li, Q., Dong, M., and P B. Godfrey, "Halfback: Running
Short Flows Quickly and Safely", ACM CoNEXT , 2015.

[I-D.irtf-iccrg-sallantin-initial-spreading]
Sallantin, R., Baudoin, C., Arnal, F., Dubois, E., Chaput,
E., and A. Beylot, "Safe increase of the TCP’s Initial
Window Using Initial Spreading", Work in Progress,
Internet-Draft, draft-irtf-iccrg-sallantin-initial-
spreading-00, 15 January 2014,
<https://www.ietf.org/archive/id/draft-irtf-iccrg-
sallantin-initial-spreading-00.txt>.

Authors’ Addresses

Kuhn, et al. Expires 26 April 2022 [Page 17]

Internet-Draft Transport for O-RTT October 2021
Nicolas Kuhn
CNES
Email: nicolas.kuhn.ietf@gmail.com
Emile Stephan
Orange
Email: emile.stephan@orange.com
Godred Fairhurst
University of Aberdeen
Department of Engineering
Fraser Noble Building
Aberdeen
Email: gorry@erg.abdn.ac.uk
Tom Jones
University of Aberdeen
Department of Engineering
Fraser Noble Building
Aberdeen
Email: tom@erg.abdn.ac.uk
Christian Huitema

Private Octopus Inc.

Email: huitema@huitema.net

Kuhn, et al. Expires 26 April 2022 [Page 18]

QUIC Working Group Y. Liu

Internet-Draft Y. Ma
Intended status: Standards Track Alibaba Inc.
Expires: 28 April 2022 Q. De Coninck
O. Bonaventure

UCLouvain

C. Huitema

Private Octopus Inc.
M. Kuehlewind, Ed.
Ericsson

25 October 2021

Multipath Extension for QUIC
draft-lmbdhk-quic-multipath-00

Abstract

This document specifies a multipath extension for the QUIC protocol
to enable the simultaneous usage of multiple paths for a single
connection.

Discussion Venues
This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the QUIC Working Group
mailing list (quic@ietf.org), which is archived at
https://mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at
https://github.com/mirjak/draft-1lmbdhk-quic-multipath.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

Liu, et al. Expires 28 April 2022 [Page 1]

Internet-Draft Multipath QUIC October 2021

This Internet-Draft will expire on 28 April 2022.
Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license—-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction 3
1.1. Conventions and Deflnltlons 4
2. Handshake Negotiation and Transport Parameter 5
3. Path Setup and Removal 6
3.1. Path Initiation 7
3.2 Path Close . 7
3.2.1. Use PATH ABANDON Frame to Close a Path 7
3.2.2. Effect of RETIRE_CONNECTION_ID Frame 8
3.2.3. 1Idle Timeout 9

3.3 Path States 9
4. Congestion Control 11
5. Computing Path RTT 11
6. Packet Scheduling 12
7. Packet Number Space and Use of Connectlon ID 13
7.1. Using One Packet Number Space . .o 13
7.1.1. Sending Acknowledgements and Handllng Ranges 14
7.2. Using Multiple Packet Number Spaces . 15
7.2.1. Packet Protection for QUIC Multipath 15
7.2.2. Key Update for QUIC Multipath 16

8. Examples 17
8.1. Path Establlshment 17
8.2. Path Closure 18
9. Implementation Con51deratlons 19
10. New Frames 19
10.1. PATH ABANDON Frame 19
10.2. ACK_MP Frame 21
11. Error Codes 22
12. IANA Con81deratlons 22
13. Security Considerations 23
14. Contributors 23

Liu, et al. Expires 28 April 2022 [Page 2]

Internet-Draft Multipath QUIC October 2021

15. Acknowledgments ¢ v 4 v v e 4 e e e e v . . 23
16. References « ¢« v v « v« v i e e e e e e e e e . . 23
16.1. Normative References« « « « « « < < . . 23
16.2. Informative References « « « o . . . 24
Authors’ Addresses 2o

1. Introduction

This document specifies an extension to QUIC vl [QUIC-TRANSPORT] to
enable the simultaneous usage of multiple paths for a single
connection.

This proposal is based on several basic design points:

* Re-use as much as possible mechanisms of QUIC-vl. 1In particular
this proposal uses path validation as specified for QUIC vl and
aims to re-use as much as possible of QUIC’s connection migration.

* Use the same packet header formats as QUIC vl to avoid the risk of
packets being dropped by middleboxes (which may only support QUIC
vl)

* Congestion Control, RTT measurements and PMTU discovery should be
per-path (following [QUIC-TRANSPORT])

* A path is determined by the 4-tuple of source and destination IP
address as well as source and destination port. Therefore there
can be at most one active paths/connection ID per 4-tuple.

The path management specified in section 9 of [QUIC-TRANSPORT]
fulfills multiple goals: it directs a peer to switch sending through
a new preferred path, and it allows the peer to release resources
associated with the old path. Multipath requires several changes to
that mechanism:

* Allow simultaneous transmission of non probing frames on multiple
paths.

* Continue using an existing path even if non-probing frames have
been received on another path.

* Manage the removal of paths that have been abandoned.
As such this extension specifies a departure from the specification
of path management in section 9 of [QUIC-TRANSPORT] and therefore

requires negotiation between the two endpoints using a new transport
parameter, as specified in Section 2.

Liu, et al. Expires 28 April 2022 [Page 3]

Internet-Draft Multipath QUIC October 2021

This proposal supports the negotiation of either the use of one
packet number space for all paths or the use of separate packet
number spaces per path. While separate packet number spaces allow
for more efficient ACK encoding, especially when paths have highly
different latencies, this approach requires the use of a connection
ID. Therefore use of a single number space can be beneficial in
highly constrained networks that do not benefit from exposing the
connection ID in the header. While both approaches are supported by
the specification in this version of the document, the intention for
the final publication of a multipath extension for QUIC is to choose
one option in order to avoid incompatibility. More evaluation and
implementation experience is needed to select one approach before
final publication. Some discussion about pros and cons can be found
here: https://github.com/mirjak/draft-1mbdhk-quic—
multipath/blob/master/presentations/PacketNumberSpace_s.pdf

As currently defined in this version of the draft the use of multiple
packet number spaces requires the use of connection IDs is both
directions. Today’s deployments often only use destination
connection ID when sending packets from the client to the server as
this addresses the most important use cases for migration, like NAT
rebinding or mobility events. Further discussion and work is
required to evaluate if the use of multiple packet number spaces
could be supported as well when the connection ID is only present in
one direction.

This proposal does not cover address discovery and management.
Addresses and the actual decision process to setup or tear down paths
are assumed to be handled by the application that is using the QUIC
multipath extension. Further, this proposal only specifies a simple
basic packet scheduling algorithm in order to provide some basic
implementation guidance. However, more advanced algorithms as well
as potential extensions to enhance signaling of the current path
state are expected as future work.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

We assume that the reader is familiar with the terminology used in
[QUIC-TRANSPORT]. In addition, we define the following terms:

Liu, et al. Expires 28 April 2022 [Page 4]

Internet-Draft Multipath QUIC October 2021

* Path Identifier (Path ID): An identifier that is used to identify
a path in a QUIC connection at an endpoint. Path Identifier is
used in multi-path control frames (etc. PATH_ABANDON frame) to
identify a path. By default, it is defined as the sequence number
of the destination Connection ID used for sending packets on that
particular path, but alternative definitions can be used if the
length of that connection ID is =zero.

* Packet Number Space Identifier (PN Space ID): An identifier that
is used to distinguish packet number spaces for different paths.
It is used in 1-RTT packets and ACK_MP frames. Each node
maintains a list of "Received Packets" for each of the CID that it
provided to the peer, which is used for acknowledging packets
received with that CID.

The difference between Path Identifier and Packet Number Space
Identifier, is that the Path Identifier is used in multipath control
frames to identify a path, and the Packet Number Space Identifier is
used in 1-RTT packets and ACK_MP frames to distinguish packet number
spaces for different paths. Both identifiers have the same value,
which is the sequence number of the connection ID, if a non-zero
connection ID is used. If the connection ID is zero length, the
Packet Number Space Identifier is 0, while the Path Identifier is
selected on path establishment.

2. Handshake Negotiation and Transport Parameter
This extension defines a new transport parameter, used to negotiate
the use of the multipath extension during the connection handshake,
as specified in [QUIC-TRANSPORT]. The new transport parameter is
defined as follow:
* name: enable_multipath (TBD - experiments use Oxbabf)
* wvalue: 0 (default) for disabled. Endpoints use 2-bits in the

value field for negotiating one or more PN spaces, available
option value for client and server are listed in Table 1

Liu, et al. Expires 28 April 2022 [Page 5]

Internet-Draft Multipath QUIC October 2021

+ + + +
Client Option Definition Allowed server
responses
t=============== t=========================== t================ +
| 0x0 | don’t support multi-path | 0x0
o —————— o o +
Ox1 only support one PN space 0x0 or Ox1
for multi-path
o e o +
0x2 only support multiple PN 0x0 or 0x2
spaces for multi-path
o —————— o o +
0x3 support both one PN space 0x0, 0x1 or
and multiple PN space 0x2
o e o +

Table 1: Available value for enable_multipath

If the peer does not carry the enable_multipath transport parameter,
which means the peer does not support multipath, endpoint MUST
fallback to [QUIC-TRANSPORT] with single path and MUST NOT use any
frame or mechanism defined in this document. If endpoint receives
unexpected value for the transport parameter "enable_multipath", it
MUST treat this as a connection error of type MP_CONNECTION_ERROR and
close the connection.

Note that the transport parameter "active_connection_id_limit"
[QUIC-TRANSPORT] limits the number of usable Connection IDs, and also
limits the number of concurrent paths. For the QUIC multipath
extension this limit even applies when no connection ID is exposed in
the QUIC header.

3. Path Setup and Removal
After completing the handshake, endpoints have agreed to enable
multipath feature and can start using multiple paths. This document
does not discuss when a client decides to initiate a new path. We
delegate such discussion in separate documents.

This proposal adds one multi-path control frame for path management:

* PATH_ABANDON frame for the receiver side to abandon the path
Section 10.1

All the new frames are sent in 1-RTT packets [QUIC-TRANSPORT].

Liu, et al. Expires 28 April 2022 [Page 6]

Internet-Draft Multipath QUIC October 2021

3.1. Path Initiation

When the multipath option is negotiated, clients that want to use an
additional path MUST first initiate the Address Validation procedure
with PATH_CHALLENGE and PATH_RESPONSE frames described in Section 8
of [QUIC-TRANSPORT]. After receiving packets from the client on the
new paths, the servers MAY in turn attempt to validate these paths
using the same mechanisms.

If validation succeed, the client can send non-probing, 1-RTT packets
on the new paths. In contrast with the specification in section 9 of
[QUIC-TRANSPORT], the server MUST NOT assume that receiving non-
probing packets on a new path indicates an attempt to migrate to that
path. Instead, servers SHOULD consider new paths over which non-
probing packets have been received as available for transmission.

3.2. Path Close

Each endpoint manages the set of paths that are available for
transmission. At any time in the connection, each endpoint can
decide to abandon one of these paths, following for example changes
in local connectivity or changes in local preferences. After an
endpoint abandons a path, the peer will not receive any more non-
probing packets on that path.

An endpoint that wants to close a path SHOULD NOT rely on implicit
signals like idle time or packet losses, but instead SHOULD use
explicit request to terminate path by sending the PATH_ABANDON frame
(see Section 10.1).

3.2.1. Use PATH_ABANDON Frame to Close a Path

Both endpoints, namely the client and the server, can close a path,
by sending PATH_ABANDON frame (see Section 10.1) which abandons the
path with a corresponding Path Identifier. Once a path is marked as
"abandoned", it means that the resources related to the path, such as
the used connection IDs, can be released. However, information
related to data delivered over that path SHOULD not be released
immediately as acknowledgments can still be received or other frames
that also may trigger retransmission of data on another path.

The endpoint sending the PATH_ABANDON frame SHOULD consider a path as
abandoned when the packet that contained the PATH_ABANDON frame is
acknowledged. When releasing resources of a path, the endpoint
SHOULD send a RETIRE_CONNECTION_ID frame for the connection IDs used
on the path, if any.

Liu, et al. Expires 28 April 2022 [Page 7]

Internet-Draft Multipath QUIC October 2021

The receiver of a PATH_ABANDON frame SHOULD NOT release its resources
immediately but SHOULD wait for the receive of the
RETIRE_CONNECTION_ID frame for the used connection IDs or 3 RTOs.

Usually it is expected that the PATH_ABANDON frame is used by the
client to indicate to the server that path conditions have changed
such that the path is or will be not usable anymore, e.g. in case of
an mobility event. The PATH_ABANDON frame therefore indicates to the
receiving peer that the sender does not intend to send any packets on
that path anymore but also recommends to the receiver that no packets
should be sent in either direction. The receiver of an PATH_ABANDON
frame MAY also send an PATH_ABANDON frame to signal its own
willingness to not send any packet on this path anymore.

If connection IDs are used, PATH_ABANDON frames can be sent on any
path, not only the path that is intended to be closed. Thus a
connection can be abandoned even if connectivity on that path is
already broken. If no connection IDs are used and the PATH_ABANDON
frame has to sent on the path that is intended to be closed, it is
possible that the packet containing the PATH_ABANDON frame or the
packet containing the ACK for the PATH_ABANDON frame cannot be
received anymore and the endpoint might need to rely on an idle time
out to close the path, as described in Section Section 3.2.3.

Retransmittable frames, that have previously been send on the
abandoned path and are considered lost, SHOULD be retransmitted on a
different path.

If a PATH_ABANDON frame is received for the only active path of a
QUIC connection, the receiving peer SHOULD send a CONNECTION_CLOSE
frame and enters the closing state. If the client received a
PATH_ABANDON frame for the last open path, it MAY instead try to open
a new path, if available, and only initiate connection closure if
path validation fails or a CONNECTION_CLOSE frame is received from
the server. Similarly the server MAY wait for a short, limited time
such as one RTO if a path probing packet is received on a new path
before sending the CONNECTION_CLOSE frame.

3.2.2. Effect of RETIRE_CONNECTION_ID Frame

Receiving a RETIRE_CONNECTION_ID frame causes the endpoint to discard
the resources associated with that connection ID. If the connection
ID was used by the peer to identify a path from the peer to this
endpoint, the resources include the list of received packets used to
send acknowledgements. The peer MAY decide to keep sending data
using the same IP addresses and UDP ports previously associated with
the connection ID, but MUST use a different connection ID when doing
so.

Liu, et al. Expires 28 April 2022 [Page 8]

Internet-Draft Multipath QUIC October 2021

3.2.3. 1Idle Timeout

[QUIC-TRANSPORT] allows for closing of connections if they stay idle

for too long. The connection idle timeout in multipath QUIC is
defined as "no packet received on any path for the duration of the
idle timeout". When only one path is available, servers MUST follow

the specifications in [QUIC-TRANSPORT].

When more than one path is available, servers shall monitor the
arrival of non-probing packets on the available paths. Servers
SHOULD stop sending traffic on paths through where no non-probing
packet was received in the last 3 path RTTs, but MAY ignore that rule
if it would disqualify all available paths. Server MAY release the
resource associated with paths for which no non-probing packet was
received for a sufficiently long path-idle delay, but SHOULD only
release resource for the last available path if no traffic is
received for the duration of the idle timeout, as specified in
section 10.1 of [QUIC-TRANSPORT]. This means if all paths remain
idle for the idle timeout, the connection is implicitly closed.

Server implementations need to select the sub-path idle timeout as a
trade—- off between keeping resources, such as connection IDs, in use
for an excessive time or having to promptly reestablish a path after
a spurious estimate of path abandonment by the client.

3.3. Path States

Figure 1 shows the states that an endpoint’s path can have.

Liu, et al. Expires 28 April 2022 [Page 9]

Internet-Draft Multipath QUIC October 2021

o
| PATH_CHALLENGE sent/received on new path
v
- + Path validation abandoned
| Validating | —————————————————————————————————— +
F———— +

PATH_RESPONSE received

v Associated CID have been retired
e + Path’s idle timeout

Associated CID have been retired
Path’s idle timeout

Figure 1: States of a path
In non-final states, hosts have to track the following information.

* Associated 4-tuple: The tuple (source IP, source port, destination
IP, destination port) used by the endhost to send packets over the
path.

* Associated Destination Connection ID: The Connection ID used to
send packets over the path.

If multiple packet number spaces are used over the connection, hosts
MUST also track the following information.

* Path Packet Number Space: The endpoint maintains a separate packet
number for sending and receiving packets over this path. Packet
number considerations described in [QUIC-TRANSPORT] apply within
the given path.

In the "Active" state, hosts MUST also track the following
information.

Liu, et al. Expires 28 April 2022 [Page 10]

Internet-Draft Multipath QUIC October 2021

* Associated Source Connection ID: The Connection ID used to receive
packets over the path.

A path in the "Validating" state performs path validation as
described in Section 8.2 of [QUIC-TRANSPORT]. An endhost should not
send non-probing frames on a path in "Validating" state, as it has no
guarantee that packets will actually reach the peer.

The endhost can use all the paths in the "Active" state, provided
that the congestion control and flow control currently allow sending
of new data on a path.

In the "Closing" state, the endhost SHOULD NOT send packets on this
path anymore, as there is no guarantee that the peer can still map
the packets to the connection. The endhost SHOULD wait for the
acknowledgment of the PATH_ABANDONED frame before moving the path to
the "Closed" state to ensure a graceful termination of the path.

When a path reaches the "Closed" state, the endhost releases all the
path’s associated resources. Consequently, the endhost is not able
to send nor receive packets on this path anymore.

4. Congestion Control

Senders MUST manage per-path congestion status, and MUST NOT send
more data on a given path than congestion control on that path
allows. This is already a requirement of [QUIC-TRANSPORT].

When a Multipath QUIC connection uses two or more paths, there is no
guarantee that these paths are fully disjoint. When two (or more
paths) share the same bottleneck, using a standard congestion control
scheme could result in an unfair distribution of the bandwidth with
the multipath connection getting more bandwidth than competing single
paths connections. Multipath TCP uses the LIA congestion control
scheme specified in [RFC6356] to solve this problem. This scheme can
immediately be adapted to Multipath QUIC. Other coupled congestion
control schemes have been proposed for Multipath TCP such as [OLIA].

5. Computing Path RTT

Acknowledgement delays are the sum of two one-way delays, the delay
on the packet sending path and the delay on the return path chosen
for the acknowledgements. When different paths have different
characteristics, this can cause acknowledgement delays to vary
widely. Consider for example multipath transmission using both a
terrestrial path, with a latency of 50ms in each direction, and a
geostationary satellite path, with a latency of 300ms in both
directions. The acknowledgement delay will depend on the combination

Liu, et al. Expires 28 April 2022 [Page 11]

Internet-Draft Multipath QUIC October 2021

of paths used for the packet transmission and the ACK transmission,
as shown in Table 2.

+ + + +
| ACK Path \ Data path | Terrestrial | Satellite |
+ + + +
| Terrestrial | 100ms | 350ms

= o - +
| satellite | 350ms | 600ms |
Fm Fmm Fm—— +

Table 2: Example of ACK delays using multiple
paths

Using the default algorithm specified in [QUIC-RECOVERY] would result
in suboptimal performance, computing average RTT and standard
deviation from series of different delay measurements of different
combined paths. At the same time, early tests showed that it is
desirable to send ACKs through the shortest path, because a shorter
ACK delay results in a tighter control loop and better performances.
The tests also showed that it is desirable to send copies of the ACKs
on multiple paths, for robustness if a path experiences sudden
losses.

An early implementation mitigated the delay variation issue by using
time stamps, as specified in [QUIC-Timestamp]. When the timestamps
are present, the implementation can estimate the transmission delay
on each one-way path, and can then use these one way delays for more
efficient implementations of recovery and congestion control
algorithms.

If timestamps are not available, implementations could estimate one
way delays using statistical techniques. For example, in the example
shown in Table 1, implementations can use use "same path"
measurements to estimate the one way delay of the terrestrial path to
about 50ms in each direction, and that of the satellite path to about
300ms. Further measurements can then be used to maintain estimates
of one way delay variations, using logical similar to Kalman filters.
But statistical processing is error-prone, and using time stamps
provides more robust measurements.

6. Packet Scheduling
The transmission of QUIC packets on a regular QUIC connection is
regulated by the arrival of data from the application and the

congestion control scheme. QUIC packets can only be sent when the
congestion window of at least one path is open.

Liu, et al. Expires 28 April 2022 [Page 12]

Internet-Draft Multipath QUIC October 2021

Multipath QUIC implementations also need to include a packet
scheduler that decides, among the paths whose congestion window is
open, the path over which the next QUIC packet will be sent. Many
factors can influence the definition of these algorithms and their
precise definition is outside the scope of this document. Various
packet schedulers have been proposed and implemented, notably for
Multipath TCP. A companion draft [I-D.bonaventure-iccrg-schedulers]
provides several general-purpose packet schedulers depending on the
application goals.

7. Packet Number Space and Use of Connection ID

If the connection ID is present (non-zero length) in the packet
header, the connection ID is used to identify the path. If no
connection ID is present, the 4 tuple identifies the path. The
initial path that is used during the handshake (and multipath
negotiation) has the path ID 0 and therefore all O0-RTT packets are
also tracked and processed with the path ID 0. For 1-RTT packets the
path ID is the sequence number of the Destination Connection ID
present in the packet header, as defined in Section 5.1.1 of
[QUIC-TRANSPORT], or also 0 if the Connection ID is zero-length.

If non-zero-length Connection IDs are used, an endpoint MUST use
different Connection IDs on different paths. Still, the receiver may
observe the same Connection ID used on different 4-tuples due to,
e.g., NAT rebinding. In such case, the receiver reacts as specified
in Section 9.3 of [QUIC-TRANSPORT].

Acknowledgements of Initial and Handshake packets MUST be carried
using ACK frames, as specified in [QUIC-TRANSPORT]. The ACK frames,
as defined in [QUIC-TRANSPORT], do not carry path identifiers. If
for any reason ACK frames are received in 1-RTT packets while the
state of multipath negotiation is ambiguous, they MUST be interpreted
as acknowledging packets sent on path O.

7.1. Using One Packet Number Space

If the multipath option is negotiated to use one packet number space
for all paths, the packet sequence numbers are allocated from the
common number space, so that, for example, packet number N could be
sent on one path and packet number N+1 on another.

ACK frames report the numbers of packets that have been received so
far, regardless of the path on which they have been received. That
means the senders needs to maintain an association between sent
packet numbers and the path over which these packets were sent. This
is necessary to implement per path congestion control.

Liu, et al. Expires 28 April 2022 [Page 13]

Internet-Draft Multipath QUIC October 2021

When a packet is acknowledged, the state of the congestion control
MUST be updated for the path where the acknowledged packet was
originally sent. The RTT is calculated based on the delay between
the transmission of that packet and its first acknowledgement (see
Section 5) and is used to update the RTT statistics for the sending
path.

Also loss detection MUST be adapted to allow for different RTTs on
different paths. For example, timer computations should take into
account the RTT of the path on which a packet was sent. Detections
based on packet numbers shall compare a given packet number to the
highest packet number received for that path.

7.1.1. Sending Acknowledgements and Handling Ranges

If senders decide to send packets on paths with different
transmission delays, some packets will very likely be received out of
order. This will cause the ACK frames to carry multiple ranges of
received packets. The large number of range increases the size of
ACK frames, causing transmission and processing overhead.

The size and overhead of the ACK frames can be controlled by the
combination of one or several of the following:

* Not transmitting again ACK ranges that were present in an ACK
frame acknowledged by the peer.

* Delay acknowledgements to allow for arrival of "hole filling"
packets.

* Limit the total number of ranges sent in an ACK frame.

* Limiting the number of transmissions of a specific ACK range, on
the assumption that a sufficient number of transmissions almost
certainly ensures reception by the peer.

* Send multiple messages for a given path in a single socket
operation, so that a series of packets sent from a single path
uses a series of consecutive sequence numbers without creating
holes.

Liu, et al. Expires 28 April 2022 [Page 14]

Internet-Draft Multipath QUIC October 2021

7

7

.2. Using Multiple Packet Number Spaces

If the multipath option is enabled with a value of 2, each path has
its own packet number space for transmitting 1-RTT packets and a new
ACK frame format is used as specified in Section 10.2. Compared to
the QUIC vl ACK frame, the MP_ACK frames additionally contains a
Packet Number Space Identifier (PN Space ID). The PN Space ID used
to distinguish packet number spaces for different paths and is simply
derived from the sequence number of Destination Connection ID.
Therefore, the packet number space for 1-RTT packets can be
identified based on the Destination Connection ID in each packets.

As soon as the negotiation of multipath support with value 2 is
completed, endpoints SHOULD use ACK_MP frames instead of ACK frames
for acknowledgements of 1-RTT packets on path 0, as well as for O0-RTT
packets that are acknowledged after the handshake concluded.

Following [QUIC-TRANSPORT], each endpoint uses NEW_CONNECTION_ID
frames to issue usable connections IDs to reach it. Before an
endpoint adds a new path by initiating path validation, it MUST check
whether at least one unused Connection ID is available for each side.

If the transport parameter "active_connection_id_limit" is negotiated
as N, the server provided N Connection IDs, and the client is already
actively using N paths, the limit is reached. If the client wants to
start a new path, it has to retire one of the established paths.

ACK_MP frame Section 10.2 can be returned via either a different
path, or the same path identified by the Path Identifier, based on
different strategies of sending ACK_MP frames.

Using multiple packet number spaces requires changes in the way AEAD
is applied for packet protection, as explained in Section 7.2.1, and
tighter constraints for key updates, as explained in Section 7.2.2.

.2.1. Packet Protection for QUIC Multipath

Packet protection for QUIC vl is specified is Section 5 of
[QUIC-TLS]. The general principles of packet protection are not
changed for QUIC Multipath. No changes are needed for setting packet
protection keys, initial secrets, header protection, use of 0-RTT
keys, receiving out-of-order protected packets, receiving protected
packets, or retry packet integrity. However, the use of multiple
number spaces for 1-RTT packets requires changes in AEAD usage.

Liu, et al. Expires 28 April 2022 [Page 15]

Internet-Draft Multipath QUIC October 2021

Section 5.3 of [QUIC-TLS] specifies AEAD usage, and in particular the
use of a nonce, N, formed by combining the packet protection IV with
the packet number. If multiple packet number spaces are used, the
packet number alone would not guarantee the uniqueness of the nonce.

In order to guarantee the uniqueness of the None, the nonce N is
calculated by combining the packet protection IV with the packet
number and with the path identifier.

The path ID for 1-RTT packets is the sequence number of of
[QUIC-TRANSPORT], or zero if the Connection ID is zero-length.
Section 19 of [QUIC-TRANSPORT] encodes the Connection ID Sequence
Number as a variable-length integer, allowing values up to 2762-1; in
this specification a range of less than 2732-1 values MUST be used
before updating the packet protection key.

To calculate the nonce, a 96 bit path-and-packet—-number is composed
of the 32 bit Connection ID Sequence Number in byte order, two zero
bits, and the 62 bits of the reconstructed QUIC packet number in
network byte order. TIf the IV is larger than 96 bits, the path-and-
packet—-number is left-padded with zeros to the size of the IV. The
exclusive OR of the padded packet number and the IV forms the AEAD
nonce.

For example, assuming the IV value is 6b26114b9cba2b63a9%9e8dd4f, the
connection ID sequence number is 3, and the packet number is aead,
the nonce will be set to 6b2611489cba2b63a9e873e2.

7.2.2. Key Update for QUIC Multipath

The Key Phase bit update process for QUIC vl is specified in

Section 6 of [QUIC-TLS]. The general principles of key update are
not changed in this specification. Following QUIC vl1l, the Key Phase
bit is used to indicate which packet protection keys are used to
protect the packet. The Key Phase bit is toggled to signal each
subsequent key update. Because of network delays, packets protected
with the older key might arrive later than the packets protected with
the new key. Therefore, the endpoint needs to retain old packet keys
to allow these delayed packets to be processed and it must
distinguish between the new key and the old key. In QUIC V1, this is
done using packet numbers so that the rule is made simple: Use the
older key if packet number is lower than any packet number frame the
current key phase.

When using multiple packet number spaces on different paths, some
care is needed when initiating the Key Update process, as different
paths use different packet number spaces but share a single key.
When a key update is initiated on one path, packets sent to another

Liu, et al. Expires 28 April 2022 [Page 16]

Internet-Draft Multipath QUIC October 2021

8.

8.

path needs to know when the transition is complete. Otherwise, it is
possible that the other paths send packets with the old keys, but
skip sending any packets in the current key phase and directly jump
to sending packet in the next key phase. When that happens, as the
endpoint can only retain two sets of packet protection keys with the
l-bit Key Phase bit, the other paths cannot distinguish which key
should be used to decode received packets, which results in a key
rotation synchronization problem.

To address such a synchronization issue, if key update is initialized
on one path, the sender SHOULD send at least one packet with the new
key on all active paths. Further, an endpoint MUST NOT initiate a
subsequent key update until a packet with the current key has been
acknowledged on each path.

Following Section 5.4 of [QUIC-TLS], the Key Phase bit is protected,
so sending multiple packets with Key Phase bit flipping at the same
time should not cause linkability issue.

Examples

1. Path Establishment

Figure 2 illustrates an example of new path establishment using
multiple packet number spaces.

Client Server

(Exchanges start on default path)

1-RTT[]: NEW_CONNECTION_ID[Cl, Seg=1l] —-—>
<-— 1-RTT[]: NEW_CONNECTION_ID[S1, Seqg=1l]
<-— 1-RTT[]: NEW_CONNECTION_ID[S2, Seg=2]

(starts new path)
1-RTT[0]: DCID=S2, PATH_CHALLENGE[X] —-——>
Checks AEAD using nonce (CID sequence 2, PN 0)
<-— 1-RTT[0]: DCID=Cl, PATH_RESPONSE[X], PATH_CHALLENGE[Y],
ACK_MP [Seg=2,PN=0]
Checks AEAD using nonce (CID sequence 1, PN 0)
1-RTT[1]: DCID=S2, PATH_RESPONSE([Y],
ACK_MP [Seg=1, PN=0], ... ——>

Figure 2: Example of new path establishment

Liu, et al. Expires 28 April 2022 [Page 17]

Internet-Draft Multipath QUIC October 2021

In Figure Figure 2, the endpoints first exchange new available
Connection IDs with the NEW_CONNECTION_ID frame. In this example the
client provides one Connection ID (Cl with sequence number 1), and
server provides two Connection IDs (S1 with sequence number 1, and S2
with sequence number 2).

Before the client opens a new path by sending an packet on that path
with a PATH_CHALLENGE frame, it has to check. whether there is an
unused Connection IDs available for each side. In this example the
client chooses the Connection ID S2 as the Destination Connection ID
in the new path.

If the client has used all the allocated CID, it is supposed to
retire those that are not used anymore, and the server is supposed to
provide replacements, as specified in [QUIC-TRANSPORT]. Usually it
is desired to provide one more connection ID as currently in used, to
allow for new paths or migration.

8.2. Path Closure

In this example the client detects the network environment change
(client’s 4G/Wi-Fi is turned off, Wi-Fi signal is fading to a
threshold, or the quality of RTT or loss rate is becoming worse) and
wants to close the initial path.

In Figure Figure 3 the server’s 1-RTT packets use DCID Cl, which has
a sequence number of 1, for the first path; the client’s 1-RTT
packets use DCID S2, which has a sequence number of 2. For the
second path, the server’s 1-RTT packets use DCID C2, which has a
sequence number of 2; the client’s 1-RTT packets use CID S3, which
has a sequence number of 3. Note that two paths use different packet
number space.

Thee client initiates the path closure for the path with ID 1 by
sending a packet with an PATH_ABANDON frame. When the server
received the PATH_ABANDON frame, it also sends an PATH_ABANDON frame
in the next packet. Afterwards the connection IDs in both directions
can be retired using the RETIRE_CONNECTION_ID frame.

Liu, et al. Expires 28 April 2022 [Page 18]

Internet-Draft Multipath QUIC October 2021

Client Server

(client tells server to abandon a path)
1-RTT[X]: DCID=S2 PATH_ABANDON[path_id=1]->
(server tells client to abandon a path)
<-1-RTT[Y]: DCID=Cl PATH_ABANDON [path_id=2], ACK_MP[Seg=2, PN=X]
(client abandons the path that it is using)
1-RTT[U]: DCID=S3 RETIRE_CONNECTION_ID[2], ACK_MP[Seg=1l, PN=Y] ->
(server abandons the path that it is using)
<— 1-RTT[V]: DCID=C2 RETIRE_CONNECTION_ID[1], ACK_MP[Seq=3, PN=U]

Figure 3: Example of closing a path (path id type=0x00)
9. Implementation Considerations
TDB
10. New Frames

All the new frames MUST only be sent in 1-RTT packet, and MUST NOT
use other encryption levels.

If an endpoint receives multipath-specific frames from packets of
other encryption levels, it MUST return MP_PROTOCOL_VIOLATION as a
connection error and close the connection.

10.1. PATH_ABANDON Frame
The PATH_ABANDON frame informs the peer to abandon a path. More
complex path management can be made possible with additional
extensions (e.g., PATH_STATUS frame in [I-D.liu-multipath-quic]).
PATH_ABANDON frames are formatted as shown in Figure 4.
PATH_ABANDON Frame {
Type (i) = TBD-03 (experiments use 0xbabal5),
Path Identifier (..),
Error Code (i),
Reason Phrase Length (i),
Reason Phrase (..),
Figure 4: PATH_ABANDON Frame Format

PATH_ABANDON frames contain the following fields:

Path Identifier: An identifier of the path, which is formatted as
shown in Figure 5.

Liu, et al. Expires 28 April 2022 [Page 19]

Internet-Draft Multipath QUIC October 2021

* TIdentifier Type: Identifier Type field is set to indicate the type
of path identifier.

— Type 0: Refer to the connection identifier used by the sender
of the control frame when sending data over the specified path.
This method SHOULD be used if this connection identifier is
non-zero length. This method MUST NOT be used if this
connection identifier is zero-length.

— Type 1l: Refer to the connection identifier used by the receiver
of the control frame when sending data over the specified path.
This method MUST NOT be used if this connection identifier is
zero—length.

- Type 2: Refer to the path over which the control frame is sent
or received.

* Path Identifier Content: A variable-length integer specifying the
path identifier. TIf Identifier Type is 2, the Path Identifier
Content MUST be empty.

Path Identifier {
Identifier Type (i) = 0x00..0x02,
[Path Identifier Content (i)],

Figure 5: Path Identifier Format

Note: If the receiver of the PATH_ABANDON frame is using non-zero
length Connection ID on that path, endpoint SHOULD use type 0x00 for
path identifier in the control frame. If the receiver of the
PATH_ABANDON frame is using zero-length Connection ID, but the peer
is using non-zero length Connection ID on that path, endpoints SHOULD
use type 0x01 for path identifier. If both endpoints are using
O-length Connection IDs on that path, endpoints SHOULD only use type
0x02 for path identifier.

Error Code: A variable-length integer that indicates the reason for
abandoning this path.

Reason Phrase Length: A variable-length integer specifying the
length of the reason phrase in bytes. Because an PATH_ABANDON
frame cannot be split between packets, any limits on packet size
will also limit the space available for a reason phrase.

Reason Phrase: Additional diagnostic information for the closure.

Liu, et al. Expires 28 April 2022 [Page 20]

Internet-Draft Multipath QUIC October 2021

10

This can be zero length if the sender chooses not to give details
beyond the Error Code value. This SHOULD be a UTF-8 encoded
string [RFC3629], though the frame does not carry information,
such as language tags, that would aid comprehension by any entity
other than the one that created the text.

PATH_ABANDON frames SHOULD be acknowledged. If a packet containing a
PATH_ABANDON frame is considered lost, the peer SHOULD repeat it.

If the Identifier Type is 0x00 or 0x01l, PATH_ABANDON frames MAY be
sent on any path, not only the path identified by the Path Identifier
Content field. If the Identifier Type if 0x02, the PATH_ABANDON
frame MUST only be sent on the path that is intended to be abandoned.

.2. ACK_MP Frame

The ACK_MP frame (types TBD-00 and TBD-01; experiments use
Oxbabal00..0xbabal0l) is an extension of the ACK frame defined by
[QUIC-TRANSPORT]. It is used to acknowledge packets that were sent
on different paths when using multiple packet number spaces. If the
frame type is TBD-01, ACK_MP frames also contain the sum of QUIC
packets with associated ECN marks received on the connection up to
this point.

ACK_MP frame is formatted as shown in Figure 6.

ACK_MP Frame {
Type (i) = TBD-00..TBD-01 (experiments use 0xbaba00..0xbaball),
Packet Number Space Identifier (i),
Largest Acknowledged (i),
ACK Delay (i),
ACK Range Count (i),
First ACK Range (i),
ACK Range (..) ...,
[ECN Counts (..)]1,

Figure 6: ACK_MP Frame Format

Compared to the ACK frame specified in [QUIC-TRANSPORT], the
following field is added.

Liu, et al. Expires 28 April 2022 [Page 21]

Internet-Draft

Packet Number Space Identifier: A
number space, which is the sequen
ID of the 1-RTT packets which are
If the endpoint receives 1-RTT pa
1D,
If an endpoint receives a ACK_MP

number space ID, it MUST treat th

Multipath QUIC

October 2021

n identifier of the path packet

ce number of Destination Connection
acknowledged by the ACK_MP frame.
ckets with zero-length Connection

it SHOULD use Packet Number Space Identifier 0 in ACK_MP frames.

frame with a non-existing packet
is as a connection error of type

MP_PROTOCOL_VIOLATION and close the connection.

When using a single packet number
ACK_MP frames. If an endhost rec
packet number space was negotiate
connection error of type MP_PROTO
connection.

11. Error Codes

Multi-path QUIC transport error c
following [QUIC-TRANSPORT].

This section lists the defined mu
that can be used in a CONNECTION_
These errors apply to the entire

MP_PROTOCOL_VIOLATION (experiment
an error with protocol compliance
specific error codes.

12. IANA Considerations

space, endhosts MUST NOT send
eives an ACK_MP frame while a single
d, it MUST treat this as a
COL_VIOLATION and close the

odes are 62-bit unsigned integers

ltipath QUIC transport error codes
CLOSE frame with a type of 0Oxlc.
connection.

s use 0xball): An endpoint detected
that was not covered by more

This document defines a new transport parameter for the negotiation

of enable multiple paths for QUIC
draft defines provisional values
to allocate short values if the d

The following entry in Table 3 sh
Parameters" registry under the "Q

and two new frame types. The
but we expect IANA

14
for experiments,
raft is approved.

ould be added to the "QUIC Transport
UIC Protocol" heading.

t============================== t================== t=============== +
| value | Parameter Name. | Specification |
+ + + +
| TBD (experiments use Oxbabf) | enable multipath | Section 2 |
B e o +

Table 3: Addition to QUIC

The following frame types defined
"QUIC Frame Types" registry under

Liu, et al. Expires 28

Transport Parameters Entries

in Table 4 should be added to the
the "QUIC Protocol" heading.

April 2022 [Page 22]

Internet-Draft Multipath QUIC October 2021

+ + + +
| value | Frame Name | Specification |
t============================== t============== t=============== +
| TBD-00 - TBD-01 (experiments | ACK_MP | section 10.2

| use 0xbaba00-0xbaball) | | |
e o o +
| TBD-02 (experiments use | PATH_ABANDON | Section 10.1 |
| Oxbaba05) | | |
e e o o +

Table 4: Addition to QUIC Frame Types Entries

The following transport error code defined in Table 5 should be added
to the "QUIC Transport Error Codes" registry under the "QUIC
Protocol" heading.

+ + + + +
| value | Code |Description | Specification |
+ + + + +
| TBD | MP_PROTOCOL_VIOLATION |Multi-path | Section 11
| (experiments | |protocol |
| use 0xba01l) | |violation | |
- +-—— - - +
Table 5: Error Code for Multi-path QUIC

13. Security Considerations
TBD

14. Contributors

This document is a collaboration of authors that combines work from
three proposals. Further contributors that were also involved one of
the original proposals are:
* Qing An
* Zhenyu Li

15. Acknowledgments
TBD

16. References

16.1. Normative References

Liu, et al. Expires 28 April 2022 [Page 23]

Internet-Draft Multipath QUIC October 2021

[QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
<https://www.rfc-editor.org/info/rfc9001>.

[QUIC-TRANSPORT]
Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/info/rfc9000>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <https://www.rfc-editor.org/info/rfc3629>.

[REFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

16.2. Informative References

[I-D.bonaventure-iccrg-schedulers]
Bonaventure, 0., Piraux, M., Coninck, Q. D., Baerts, M.,
Paasch, C., and M. Amend, "Multipath schedulers", Work in
Progress, Internet-Draft, draft-bonaventure-iccrg-
schedulers-02, 25 October 2021,
<https://www.ietf.org/archive/id/draft-bonaventure-iccrg-
schedulers-02.txt>.

[I-D.liu-multipath—-quic]
Liu, Y., Ma, Y., Huitema, C., An, Q., and Z. Li,
"Multipath Extension for QUIC", Work in Progress,
Internet-Draft, draft-liu-multipath-quic-04, 5 September
2021, <https://www.ietf.org/archive/id/draft-liu-
multipath-quic-04.txt>.

[OLIA] Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.-
Y. Le Boudec, "MPTCP is not pareto-optimal: performance
issues and a possible solution", Proceedings of the 8th
international conference on Emerging networking
experiments and technologies, ACM , 2012.

Liu, et al. Expires 28 April 2022 [Page 24]

Internet-Draft Multipath QUIC

[QUIC-Invariants]

October 2021

Thomson, M., "Version-Independent Properties of QUIC",

RFC 8999, DOI 10.17487/RFC8999, May 2021,
<https://www.rfc—editor.org/info/rfc8999>.

[QUIC-RECOVERY]

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
May 2021, <https://www.rfc-editor.org/info/rfc9002>.

[QUIC-Timestamp]

Huitema, C., "Quic Timestamps For Measuring One-Way

Delays", Work in Progress, Internet-Draft,
quic-ts-06, 12 September 2021,

draft-huitema-

<https://www.ietf.org/archive/id/draft-huitema-quic-ts-

06.txt>.

[RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled

Congestion Control for Multipath Transport Protocols",

RFC 6356, DOI 10.17487/RFC6356, October 2011,

<https://www.rfc-editor.org/info/rfc6356>.
Authors’ Addresses

Yanmei Liu
Alibaba Inc.

Email: miaoji.lym@Ralibaba-inc.com
Yunfei Ma
Alibaba Inc.

Email: yunfei.malRalibaba-inc.com

Quentin De Coninck

UCLouvain

Email: quentin.deconinck@uclouvain.be
Olivier Bonaventure

UCLouvain

Email: olivier.bonaventure@Quclouvain.be

Liu, et al. Expires 28 April 2022

[Page 25]

Internet-Draft Multipath QUIC October 2021

Christian Huitema

Private Octopus Inc.
Email: huitema@huitema.net
Mirja Kuehlewind (editor)

Ericsson

Email: mirja.kuehlewind@ericsson.com

Liu, et al. Expires 28 April 2022 [Page 26]

QUIC C. Smith

Internet-Draft NVIDIA
Intended status: Informational I. Swett, Ed.
Expires: 22 January 2026 Google LLC

J. Beshay, Ed.

S. Jaiswal, Ed.

Meta Platforms, Inc.
21 July 2025

QUIC Extended Acknowledgement for Reporting Packet Receive Timestamps
draft-smith-quic-receive-ts-03

Abstract
This document defines an extension to the QUIC transport protocol
which supports reporting multiple packet receive timestamps for post-—
handshake packets.

Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the QUIC Working Group
mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at
https://github.com/wcsmith/draft—-quic—receive-ts.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). ©Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.”

This Internet-Draft will expire on 22 January 2026.

Smith, et al. Expires 22 January 2026 [Page 1]

Internet-Draft QUIC Receive Timestamps

Copyright Notice

July 2025

Copyright (c) 2025 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal

Provisions Relating to IETF Documents
license-info)
Please review these documents carefully,
and restrictions with respect to this document.

(https://trustee.ietf.org/

in effect on the date of publication of this document.
as they describe your rights
Code Components

extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

Sw N

(6]

= o 00 J

0.

Introduction

Motivation ..
Conventions and Deflnltlons
ACK Frame Wire Format

.1. Timestamp Ranges

Extension Negotiation

.1. Multiple Extensions to the ACK Frame
.2. Receive Timestamp Basis

Discussion

.1. Best-Effort Behav1or

Examples

Security Con81deratlons
IANA Considerations
References

10.1. Normative References
10.2. Informative References

Acknowledgments
Authors’ Addresses

1. Introduction

The QUIC Transport Protocol [RFC9000] provides a secure,

O WOWWOWIJOOOOHOPBWWWN

B e
oo ow

multiplexed

connection for transmitting reliable streams of application data.

This document defines an extension to the QUIC transport protocol

which supports reporting multiple packet receive timestamps.

Smith,

et al. Expires 22 January 2026

[Page 2]

Internet-Draft QUIC Receive Timestamps July 2025

2.

Motivation

QUIC congestion control ([RFC9002]) supports sampling round-trip time
(RTT) by measuring the time from when a packet was sent to when it is
acknowledged. However, more precise delay signals measured via
packet receive timestamps have the potential to improve the accuracy
of network bandwidth measurements and the effectiveness of congestion
control, especially for latency-critical applications such as real-
time video conferencing or game streaming.

Numerous existing algorithms and techniques leverage receive receive
timestamps to improve transport performance. Examples include:

* The WebRTC congestion control algorithm described in
[I-D.ietf-rmcat-gcc] uses the difference between packet inter-—
departure and packet inter—-arrival times as the input to its
delay-based controller.

* The pathChirp ([RRBNC]) technique estimates available bandwidth by
measuring inter-arrival time of multiple packets.

Notably, these techniques require receive timestamps for more than
one packet per round-trip in order to best measure the network.

Additionally, receive timestamps can provide valuable network
telemetry, even if they are not used by the congestion controller.

Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

ACK Frame Wire Format

Endpoints send ACK frames in 1-RTT packets as they otherwise would,
with 0 or more receive timestamps following the Ack Ranges and
optional ECN Counts. Receive timestamps MUST NOT be sent in Initial
or Handshake packets, because the peer would not know to use the
extended wire format. ACK frames are never sent in O0-RTT packets, so
there is no change to O-RTT.

Once negotiated, the ACK format is identical to RFC9000, but with an
additional section for receive timestamps at the end:

Smith, et al. Expires 22 January 2026 [Page 3]

Internet-Draft QUIC Receive Timestamps July 2025

ACK Frame {
Type (i) = 0x02..0x03,
Largest Acknowledged (i),
ACK Delay (i),
ACK Range Count (i),
First ACK Range (1),
ACK Range (..) ...,
[ECN Counts (..)1,
// Timestamp Extension, see {{ts-ranges}}
Receive Timestamps (..)

Figure 1: ACK Frame Format

The fields Largest Acknowledged, ACK Delay, ACK Range Count, First
ACK Range, ACK Range and ECN Counts are the same as for ACK
(type=0x02..0x03) frames specified in Section 19.3 of [RFC9000].

The format of the Receive Timestamps field is shown in Figure 2.

Receive Timestamps {
Timestamp Range Count (i),
Timestamp Range (..)

}

Figure 2: Receive Timestamps Fields

Timestamp Range Count: A variable-length integer specifying the
number of Timestamp Range fields in the frame.

Timestamp Ranges: Ranges of receive timestamps for contiguous
packets in descending packet number order; see Section 4.1.

4.1. Timestamp Ranges

Each Timestamp Range describes a series of contiguous packet receive
timestamps in descending sequential packet number (and descending
timestamp) order. Timestamp Ranges consist of a Delta Largest
Acknowledged indicating the largest packet number in the range,
followed by a list of Timestamp Deltas describing the relative
receive timestamps for each contiguous packet in the Timestamp Range
(descending) . Packets within a range are in descending packet number
and timestamp order. Ranges are in descending timestamp order but do
not have to be in descending packet number order.

Timestamp Ranges are structured as shown in Figure 3.

Smith, et al. Expires 22 January 2026 [Page 4]

Internet-Draft QUIC Receive Timestamps July 2025

Timestamp Range {
Delta Largest Acknowledged (i),
Timestamp Delta Count (i),
Timestamp Delta (i) ...,

}

Figure 3: Timestamp Range Format
The fields that form each Timestamp Range are:

Delta Largest Acknowledged: A variable-length integer indicating the
largest packet number in the Timestamp Range as a delta to
subtract from the Largest Acknowledged in the ACK frame. For
example, 0 indicates the range starts with the Largest
Acknowledged.

Timestamp Delta Count: A variable-length integer indicating the
number of Timestamp Deltas in the current Timestamp Range.

The sum of Timestamp Delta Counts for all Timestamp Ranges in the
frame MUST NOT exceed max_receive_timestamps_per_ack as specified
in Section 5.

Timestamp Deltas: Variable-length integers encoding the receive
timestamp for contiguous packets in the Timestamp Range in
descending packet number order as follows:

For the first Timestamp Delta of the first Timestamp Range in the
frame: the value is the difference between (a) the receive
timestamp of the largest packet in the Timestamp Range (indicated
by Gap) and (b) the session receive_timestamp_basis (see

Section 5.2), decoded as described below.

For all other Timestamp Deltas: the value is the difference

between (a) the receive timestamp specified by the previous

Timestamp Delta and (b) the receive timestamp of the current
packet in the Timestamp Range, decoded as described below.

All Timestamp Delta values are decoded by mulitplying the wvalue in
the field by 2 to the power of the receive_timestamps_exponent
transport parameter received by the sender of the ACK frame (see
Section 5):

When the receiver receives packets out-of-order, it SHOULD report
them with other packets in a single ACK frame, starting with the most
recently received packet regardless of the packet number order. See
Section 7 for examples of reporting timestamps of out-of-order
packets.

Smith, et al. Expires 22 January 2026 [Page 5]

Internet-Draft QUIC Receive Timestamps July 2025

5. Extension Negotiation

max_receive_timestamps_per_ack (0xff0al002 temporary value for

draft use): A variable-length integer indicating that the maximum
number of receive timestamps the sending endpoint would like to
receive in an ACK frame.

Each ACK frame sent MUST NOT contain more than the peer’s maximum
number of receive timestamps.

receive_timestamps_exponent (0xff0a003 temporary value for draft

use): A variable-length integer indicating the exponent to be used
when encoding and decoding timestamp delta fields in ACK frames
sent by the peer (see Section 4.1). If this value is absent, a
default value of 0 is assumed (indicating microsecond precision).
Values above 20 are invalid.

5.1. Multiple Extensions to the ACK Frame

Multiple extensions can alter the ACK Frame or define new codepoints
for variations on the ACK frame, such as [MP-QUIC]. Each extension
defines how it co-exists with past extensions. If multiple
extensions add more information to the ACK Frame, as this receive
timestamp extension does, the additional extensions are appended at
the end of the ACK Frame in the order of their RFC number, unless
otherwise specified.

5.2. Receive Timestamp Basis

Endpoints which negotiate the extension need to determine a value,
receive_timestamp_basis, relative to which all receive timestamps for
the session will be reported (see Section 4.1).

The value of receive_timestamp_basis MUST be less than the smallest
receive timestamp reported, and MUST remain constant for the entire
duration of the session. The receive_timestamp_basis is a local
value that is not communicated to the peer.

Receive timestamps are reported relative to the basis, rather than in
absolute time to avoid requiring clock synchronization between

endpoints and to make the frame more compact.

6. Discussion

Smith, et al. Expires 22 January 2026 [Page 6]

Internet-Draft QUIC Receive Timestamps July 2025

6.1. Best-Effort Behavior

Receive timestamps are sent on a best-effort basis. Endpoints MUST
gracefully handle scenarios where the receiver does not communicate
receive timestamps for acknowledged packets. Examples of such
scenarios are:

* A packet containing an ACK frame is lost.

* The sender truncates the number of timestamps sent in order to (a)
avoid sending more than max_receive_timestamps_per_ack
(Section 5); or (b) fit the ACK frame into a packet.

7. Examples

To illustrate the usage of the Receive Timestamps fields, consider a
peer that sent 14 packets with numbers 87 to 100.

Assume the receiver receives packets 87 to 91 and 96 to 100 at the
following timestamps relative to the basis:

+ + +
| Packet Number | Relative Timestamp |
+ + +
| 87 | 300 |
- - +
| 88 | 305 |
- +--— +
| 89 | 310 |
- - +
| 90 | 320 |
- - +
| 91 | 330 |
- +--— +
| 96 | 350 |
- - +
| 97 | 355 |
- - +
| 98 | 360 |
- +--— +
| 99 | 370 |
- - +
| 100 | 380 |
- - +
Table 1

Smith, et al. Expires 22 January 2026 [Page 7]

Internet-Draft QUIC Receive Timestamps July 2025

When it’s time to acknowledge these packets, the receiver will send
an ACK frame with two ranges, as follows:

Largest Acknowledged: 100
Timestamp Ranges Count: 2

Timestamp Range 1:
Delta Largest Acknowledged: 0 // Starting at packet 100
Timestamp Delta Count: 5
Timestamps Deltas: 380, 10, 10, 5, 5

Timestamp Range 2:
Delta Largest Acknowledged: 9 // Starting at packet 91
Timestamp Delta Count: 5
Timestamp Deltas: 20, 10, 10, 5, 5

After that assume that the receiver receives packets 92 to 95 out-of-
order at the following timestamps relative to the basis:

t=============== t==================== +
| Packet Number | Relative Timestamp |
+ + +
| 92 | 390 |
Fom Fom +
| 93 | 392 |
- - +
| 94 | 394 |
- - +
| 95 | 395 |
Fom Fom +
Table 2

The receiver can send a new ACK frame with all of the timestamps, as
follows:

Smith, et al. Expires 22 January 2026 [Page 8]

Internet-Draft QUIC Receive Timestamps July 2025

Largest Acknowledged: 100

Timestamp Ranges Count: 3

Timestamp Range 1:
Delta Largest Acknowledged: 5 // Starting at packet 95
Timestamp Delta Count: 4
Timestamps Deltas: 395, 1, 2, 2

Timestamp Range 2:
Delta Largest Acknowledged: 0 // Starting at packet 100
Timestamp Delta Count: 5
Timestamps Deltas: 10, 10, 10, 5, 5

Timestamp Range 3:
Delta Largest Acknowledged: 9 // Starting at packet 91
Timestamp Delta Count: 5
Timestamp Deltas: 20, 10, 10, 5, 5

In this particular scenario, the receiver can also choose to report
the first timestamp range only since the timestamps for the other two
ranges have already been reported.

8. Security Considerations

TODO Security

9. IANA Considerations

This document has no IANA actions.

10. References

10.1.

Normative References

[REC2119]

[RFC8174]

[RFC9000]

Smith,

et al.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,

DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/rfc/rfc9000>.

Expires 22 January 2026 [Page 9]

Internet-Draft QUIC Receive Timestamps July 2025

10.2. Informative References

[I-D.ietf-rmcat—-gcc]
Holmer, S., Lundin, H., Carlucci, G., De Cicco, L., and S.
Mascolo, "A Google Congestion Control Algorithm for Real-
Time Communication", Work in Progress, Internet-Draft,
draft-ietf-rmcat-gcc-02, 8 July 2016,
<https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-
gcc—-02>.

[MP-QUIC] Liu, Y., Ma, Y., De Coninck, Q., Bonaventure, O., Huitema,
C., and M. KAkhlewind, "Multipath Extension for QUIC", Work
in Progress, Internet-Draft, draft-ietf-quic-multipath-15,
7 July 2025, <https://datatracker.ietf.org/doc/html/draft-
ietf-quic—multipath-15>.

[RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
May 2021, <https://www.rfc-editor.org/rfc/rfc9002>.

[RRBNC] Cottrel, R. V. R. R. B. R. N. J. and L., "pathChirp:
Efficient Available Bandwidth Estimation for Network
Paths", 2003.

Acknowledgments

The editors would like to thank Ilango Purushothaman and Brandon
Schlinker for their contributions to the design of this QUIC
extension.

Authors’ Addresses

Connor Smith
NVIDIA
Email: connorsmith.ietf@gmail.com

Ian Swett (editor)
Google LLC
Email: ianswett@google.com

Joseph Beshay (editor)
Meta Platforms, Inc.
Email: jbeshay@meta.com

Smith, et al. Expires 22 January 2026 [Page 10]

Internet-Draft QUIC Receive Timestamps July 2025

Sharad Jaiswal (editor)
Meta Platforms, Inc.
Email: sj77@meta.com

Smith, et al. Expires 22 January 2026 [Page 11]

	draft-duke-quic-v2-02
	draft-ietf-quic-load-balancers-21
	draft-ietf-quic-qlog-h3-events-12
	draft-ietf-quic-qlog-main-schema-13
	draft-ietf-quic-qlog-quic-events-12
	draft-ietf-quic-version-negotiation-14
	draft-kuhn-quic-0rtt-bdp-11
	draft-lmbdhk-quic-multipath-00
	draft-smith-quic-receive-ts-03

