

1

Bandwidth Estimation on OpenNetLab

Zhixiong Niu on behalf of OpenNetLab community

RTC is Growing Super Fast

Most Critical KPI: Poor Call Rate (PCR)

One of Key Reasons for PCR - Bandwidth Estimation

Poor Calls for 1:1 Call

28.9% Poor 1:1 Calls are highly related to bandwidth control
40.9% Poor 1:1 Calls are related to bandwidth control
Related

		%	
	Problem token	tokens	Top reasons
			Device selection, device issues, network loss/jitter, limited
1	No sound	22.7%	BW
2	Distorted audio	14.6%	Network loss/jitter, limited bandwidth or control
3	Background noise	12.8%	Background noise, mic/ADSP issues, network loss/jitter
			Device acoustics, non-linear loudspeaker effects, cascaded
2	Acoustic echo	8.5%	audio processing
	Audio loudness		Microphone issues, lack of device gain control, device
5	low		selection
6	Audio delay	6.1%	Network RTT/jitter, bandwidth control
7	Call dropped	5.4%	Network loss, network device lost, app crash

Can BWE be a service?

Traditional BWE

Proprietary Single model for all users Hard to innovate

Traditional Bandwidth Control

Standard BWE Service Simpler architecture Enable more customization Everyone can contribute to this service and can share the service

Microsoft Micros

Goal: Optimize QoE for real-time communications (RTC) video and audio quality, video frame drop rate and delay, etc.

Key algorithm: bandwidth estimation (BWE) computes a bandwidth estimate dynamically based on network stats passes the estimate into video codec to control the encoded bitrate

Heterogeneous real networks make data-driven approaches a good fit BWE can be modeled as a reinforcement learning problem

Challenge results

	Rank	Score	Paper Title	Institute	Team Members
$\mathbf{\Psi}$	Winner	78.33	Gemini: An Ensemble Framework for Bandwidth Estimation in Web Real-Time Communications	Nanjing University	Tianrun Yin, Jiaqi Zheng, Runyu He, Shushu Yi, Hongyu Wu, Dingwei Li
$\mathbf{\Psi}$	Runner-up	67.96	A Hybrid Receiver-side Congestion Control Scheme for Web Real-time Communication [accepted]	Communication University of China	Bo Wang, Yuan Zhang, Size Qian, Zipeng Pan, Yuhong Xie
	3	67.37	A Bandwidth Estimator Using Advantage Actor-Critic Algorithm	Peking University	Yunze Luo, Ting Lei
	4	66.43	Bandwidth Estimation for Real-Time Communications with Reinforcement Learning	New York University	Siyuan Hong, Cheng Chen, H. Jonathan Chao, Chenyu Yen, Ke Chen, Xiaotian Li
	5	62.50	Adaptive Bandwidth Estimation using Network Modeling	National University of Singapore	Yuan Li, Bingsheng He, Bryan Hool, Yuhang Chen
	б	62.43	Bandwidth Estimation for Video and Audio Transfer using A2C	Peking University	Haipeng Zhang, Shenhan Zhu
	Baseline	71.47	Google Congestion Control	WebRTC/Google	N/A

OpenNetLab Introduction

OpenNetLab (ONL)

The next generation platform for open and practical networking research

Heterogenous nodes

VM, PM, desktop, laptop, smart devices

Real applications

Real full-stack WebRTC application

Chrome/Edge

Iperf

Customized applications

Network in the wild

Wired network: campus network, cloud network Wireless network: Wi-Fi 5/6 Mobile network: 3G, 4G, 5G

Platform Building

Finished 37 nodes, and building 8 nodes

Org.	Location	Deployment Status
MSRA	Beijing, China	Finished: 8 nodes
PKU	Beijing, China	Finished: 6 nodes
LZU	Lanzhou, China	Finshed: 5 nodes Building: 1 nodes
NJU	Nanjing, China	Finished: 6 node
SUSTec h	Shenzhen, China	Finished: 2 node Building: 1 node
SNU	Seoul, South Korea	Finished: 3 node Building: 3 nodes
VAICT	Daejeon, South	Finished: 3 node

Thank you

Backup Slides

Hard to improve in Current Bandwidth Control

10-year old technology

Unscented Kalman Filter (UKF) in Resource Manager (BWE/RM)

Hard to tune

100's of heuristics to improve performance of Kalman filter Requires both network and codec experts with steep ramp-up time

Extremely hard to maintain

>150K lines code for **green** blocks Need to be future-proof

Software 2.0: BWE as a Service for RTC

Simpler architecture

No hard-coded rules

Everything is automatically trained

Much less domain expertise required

New network/device support is automatic

Traditional Bandwidth Control

Ideal RL-based Bandwidth Control

Challenge framework

Simple interface to implement participants are only required to fill in a Python class executed as WebRTC's bandwidth estimator in AlphaRTC containerized runtime environment

Simulated environment to facilitate ML solutions AlphaRTC-Gym

Real-world testbed with automated evaluation OpenNetLab

```
class Estimator(object):
def report states(self, stats: dict):
    111
    stats is a dict with the following items
        "send time ms": uint,
        "arrival_time_ms": uint,
        "payload type": int,
        "sequence_number": uint,
        "ssrc": int,
        "padding length": uint,
        "header_length": uint,
        "payload size": uint
    1.1.1
    pass
def get estimated bandwidth(self)->int:
    return int(1e6) # 1Mbps
```

Evaluation setup

405 runs per scheme on OpenNetLab

9 videos

online video chat, remote desktop, etc.

3 networks

High bandwidth (300–400 Mbps) Lanzhou → Hong Kong; wired network

Medium bandwidth (2–3 Mbps) Beijing \rightarrow Hong Kong; 4G network with competing flows

Low bandwidth (<1 Mbps)

Beijing \rightarrow Hong Kong; Wi-Fi in an isolation box

3 series of 5 runs per scheme in round robin

final score = average weighted sum of video score, audio score, and network score

Standardize the BWE Service

Location

Receiver side (Fig. 1)

Input

Packet states (send time, arrival time, seq, ssrc, etc.)

Output

Estimated bandwidth to the sender

Fig. 2 Input and output