A. Sajassi (Cisco), K. Thiruvenkatasamy (Cisco)
S. Thoria (Cisco), A. Gupta (Vmware),
L. Jalil (Verizon)

IETF 112, November 2021
Online
Changes between Rev-00 to Rev-03

- Interop with L2 EVPN PE is added.
- Section 5 which discusses IRB unicast vs IRB multicast is now covered as part of the "Solution overview" section.
- Appendix A “use case section” that discusses IGMP/MLD host, multicast router has been removed. (Main document covers these cases)
- Proposal to handle TTL 1 packets (section 11) has been moved to the Appendix A.
- Minor editorial changes has been made in some parts of the document.
Interop with L2 EVPN PEs

- A gateway device is needed to do interop with L2 EVPN PEs.
- A tenant domain can be provisioned with one or more gateway devices known as "Seamless interop EVPN Multicast Gateway (SEMG)".
- PE which is configured as SEMG must be provisioned with all BDs that are available in the tenant domain.
- Given the set of eligible PEs, one PE is elected as the SEMG designated forwarder (SEMG-DF).
L2 EVPN interop – Possible scenarios

- Case 1: draft-ietf-bess-evpn-igmp-mld-proxy draft is supported by both the seamless interop PE and L2 EVPN PE.
- Case 2: draft-ietf-bess-evpn-igmp-mld-proxy is supported by seamless interop capable PE only.
- Case 3: draft-ietf-bess-evpn-igmp-mld-proxy is supported by seamless interop capable PE and subset of L2 EVPN PEs.
- Case 4: draft-ietf-bess-evpn-igmp-mld-proxy is not supported by interop capable PE.

L2 multicast state is built either by SMET routes or IGMP/PIM control plane packets depending on whether PE supports draft-ietf-bess-evpn-igmp-mld-proxy or not.
L2 EVPN interop – Operation Overview

• SEMG-DF groups L2 EVPN PEs into two separate groups (one that supports the evpn-igmp-mld-proxy and other doesn’t) and learns l2 multicast state.
• SEMG-DF acts as LHR for receivers behind L2 EVPN PEs w.r.t other seamless interop capable PEs.
• SEMG-DF acts as FHR for sources behind L2 EVPN PE w.r.t other seamless interop capable PEs.
• SEMG-DF uses BUM tunnel for traffic forwarding towards L2 EVPN PEs.
• SEMG-DF continues to use VRF tunnel for traffic forwarding towards other seamless interop capable PEs/MVPN PEs.
L2 EVPN interop – source behind L2 EVPN PE

Customer VRF info:
VLAN 10, 20, 30 – customer VLANs
IRB-X → IRB interface of VLAN/BD X

Seamless interop
PE
L2 EVPN PE
Seamless interop
PE - L2GW
Spine

GW nodes

L3 Mroute state at PE5(SMEG-DF)
S1,G1
IIF: IRB-10
OIF: VRF tunnel (MVPN),IRB-30

R1 - S1, G1 or *,G1
vlan 10

R2 – *, G1
vlan 30

S1, G1 – vlan 10

L2 BUM encap (Vlan 10)

MVPN type 6/7

EVPN/IPVPN host route

VRF tunnel encap (Vxlan/MPLS)

L2 BUM encap (vlan 30)

SMET(S,G)SMET(*,G)
OR IGMP packets

S1, G1 – vlan 10
L2 EVPN interop – Source behind Seamless interop PE

GW nodes

- PE1
- PE2
- PE3
- PE4
- PE5
- PE6
- PE7
- PE8
- S1
- S2
- S3
- S4
- DF

L3 Mroute state at PE5(SMEG-DF)

- S2, G2 – vlan 20
- S2, G2
 - IIF: VRF tunnel interface
 - OIF: IRB-30

Customer VRF info:
- VLAN 10, 20, 30 – customer VLANs
- IRB-X → IRB interface of VLAN/BD X

VRF tunnel encapsulation (Vxlan/MPLS)

SMET(S,G) SMET(*,G)

OR IGMP packets

L2 BUM encaps (vlan 30)
New Flags in EVPN Multicast Flag EC

- Multicast Flags Extended Community is defined in [I-D.ietf-bess-evpn-igmp-mld-proxy]

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-11</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SEMG</td>
<td>I-D.ietf-bess-evpn-mvpn-seamless-interop (This draft)</td>
</tr>
<tr>
<td>13</td>
<td>Seamless interop capable PE</td>
<td>I-D.ietf-bess-evpn-mvpn-seamless-interop (This draft)</td>
</tr>
<tr>
<td>14</td>
<td>MLD Proxy Support</td>
<td>I-D.ietf-bess-evpn-igmp-mld-proxy</td>
</tr>
<tr>
<td>15</td>
<td>IGMP Proxy Support</td>
<td>I-D.ietf-bess-evpn-igmp-mld-proxy</td>
</tr>
</tbody>
</table>

Bit 12 - Seamless interop EVPN Multicast Gateway(SEMG). PE which is configured as gateway device for L2 EVPN interop sets this flag.

Bit 13 – All PE that support seamless interop procedures sets this flag.
Next Steps

• Has been around for almost five years
• This solution is widely deployed in the Industry across many sectors (Financial, Data centers, Service providers, Broadcasting, Universities, etc.)
• Requesting WG last call