MVPN/EVPN Controller for Provider Tunnel Discovery

draft-zzhang-bess-mvpn-evpn-controller

Jeffrey Zhang (Juniper), Rishabh Parekh (Cisco)
Sandy Zhang (ZTE), Hooman Bidgoli (Nokia)

BESS, IETF112
Controller Usage in MVPN/EVPN

• Calculation and Signaling of Provider Tunnels
 • draft-ietf-pim-sr-p2mp-policy
 • draft-ietf-bess-mvpn-evpn-sr-p2mp
 • Ingress PEs collect tree information (root, leaves, constraints) and pass to controller

• Setting up overlay forwarding state on PEs
 • draft-ietf-bess-bgp-multicast-controller
 • The procedures can be used to set up not only provider tunnels but also (C-S,C-G) state in VRFs directly

• Participating in MVPN/EVPN signaling to collect/signal provider tunnel information at overlay
 • draft-zzhang-bess-mvpn-evpn-controller
 • What this presentation is about
Background for Tree/Leaf Discovery

• PMSI – Provider Multicast Service Interface
 • A logical interface used by a PE to send C-multicast data to all/some PEs
• Inclusive/Selective-PMSI A-D routes announce tunnel used to instantiate the I/S-PMSI
• Ingress PE advertises I/S-PMSI A-D route and may track leaves explicitly
 • For I-PMSI, tunnel leaves include all those who advertise I-PMSI A-D route
 • For S-PMSI, egress PEs send Leaf A-D routes in response
• Ingress PE triggers tunnel setup
 • Local RSVP-TE module signals the tree based on local or controller calculation, or
 • Requests a controller to calculate and signal SR-P2MP tree
 • draft-ietf-bess-mvpn-evpn-sr-p2mp
Tree/Leaf Discovery by Controller w/o Involving Ingress PEs

• The controller participates in MVPN/EVPN signaling to discover tree/leaf information
 • It may be running BGP protocol already, e.g., BGP-LS for topology information

• It receives I/S-PMSI A-D routes to learn tree identification and inclusive tunnel leaves

• It receives Leaf A-D routes to learn selective tunnel leaves

• To direct Leaf A-D routes to the controller, an ingress PE attaches one or more Controller Extended Community in I/S-PMSI A-D routes
 • The Controller EC encodes a controller’s address, and tunnel leaves use it to construct a Route Target to direct Leaf A-D routes to the controller
Controller Advertising A-D Routes

• Instead of ingress PEs advertising the I/S-PMSI A-D routes, a controller can advertise on their behalf
 • If the ingress PEs advertises the routes, it would be based on certain configurations, which must be from a central planning entity anyway
 • This facilitates PCE Initiated P2MP trees

• This also makes Domain-wide Common Block (DCB) label allocation easier
 • DCB labels are like “global labels” – e.g., all PEs use the same label value for a VPN (when tunnel aggregation is used – one underlay tunnel for many VPNs)

• Ingress PE would treat an I/S-PMSI A-D route advertised on its behalf as if it advertised route itself and set up forwarding state accordingly

• Some special considerations for tunnel segmentation in next slides
Tunnel Segmentation Consideration

- With tunnel segmentation, I/S-PMSI A-D routes advertised from a controller on behalf of an ingress PE need to be targeted at the ingress PE, who will then re-advertise.
 - Otherwise, the I/S-PMSI A-D routes may not be propagated along desired path of segmentation points.
- Although this is a detour, it relieves the ingress PEs from the burden of advertising the routes based on configuration.
 - And makes DCB label allocation easy as previously mentioned.

Diagram:

[Diagram showing PE1, PE2, PE3, PE4, PE5 connected with PMSI and leaf nodes with arrows indicating direction of traffic.]
Ingress triggered I/S-PMSI A-D Routes

• There may still be cases for ingress PE triggered I/S-PMSI A-D routes
 • E.g., selective tunnels only when certain flows’ data rate exceeds a threshold

• Yet we may need a controller to allocate DCB labels for them
 • Instead of giving each ingress PE its own DCB (that are accepted by all PEs)

• For that the ingress PE first targets the routes at the controller
 • Controller allocates the DCB label and send it back in Leaf A-D route
 • Ingress PE then re-advertise the routes normally

• This extra round-trip (step #1/#2 in diagram) is basically a DCB label allocation request/response
Summary

• Controller participating in MVPN/EVPN signaling to discover/advertise provider tunnel information
 • Controller learning tunnel ID and leaf information
 • PCE delegation w/o relying on ingress PEs
 • Controller advertising I/S-PMSI A-D routes on behalf of PEs
 • PCE initiation
 • Controller allocating DCB labels dynamically for ingress PE’s I/S-PMSI routes
 • To be added: ESI labels from DCB

• Comments appreciated!