
Carrier Grade Minimalist Multicast (CGM2)
using Bit Index Explicit Replication (BIER)

with Recursive BitString Structure (RBS) Addresses

IETF 112 / BIER

draft-eckert-bier-cgm2-rbs-00

Toerless Eckert (tte@cs.fau.de) Futurewei USA

Based on design/work from
Sheng Jiang, Xu Bing, Yan Shen, Meng Rui, Wan Junjie and Wang Chuang {jiangsheng|

bing.xu|ynshen|mengrui|wanjunjie2|wangchuang}@huawei.com
1

mailto:tte@cs.fau.de)

What is wrong with BIER-TE ?
BIER-TE is the best multicast forwarding solution for its target constraints:

BIER per flow/tree stateless forwarding with added stateless traffic steering…

When we can only reuse the pre-existing BIER-TE ”flat-bitstring”

and only no…minimal changes to BIER forwarding algorithm.

But this comes at undesirable limitations / complexities:

N-bit bitstring can address only fixed set of N-M BFER (e.g.: N=256)
Because every bit of address is statically assigned to an adjacency (e.g.; BFER)

M is number of bits needed to ’steer’ packets (BFR). Also fixed, potentially sub-part of topo.

Same static mapping issues exist in BIER, but less severe

Result (as seen from BIER-TE draft):
Design complexities minimizing required M bits (LAN, hub&spoke, p2p, overlay topologies, …).
Controller and network operator.

Larger number of copies with different bitstrings to reach arbitrary subset of BFER in large network

OPS and CONTROLLER COMPLEXITY, less TRAFFIC EFFICIENCY for FORWARDING PLANE SIMPLICITY. 2

Carrier-Grade Minimalist Multicast (CGM2)
Deployment Simplicity Vision

3Unicast encap

Encapsulation format ：

Multicast encap Payload

CGM2 Router

Unicast-Only Router

Source

Client1

Client2

Client3

Client4

A B C D

E

F

G

H

Controller

Recipient

Recipient

Recipient
Forward multicast traffic

Control signaling traffic

Fix the bitstring addressing issue

Eliminate duplication: IP multicast on top of bitstring forwarding (“overlay”)

End-to-end integration with controller plane

Complete TE services via controller plane and forwarding plane

Deterministic Latency, Path Selection (Steiner, diverse, …)

BitString for R
Recursive

Unit 1
…

Recursive Unit

Addressing Field

Recursive Bitstring Structure
Multicast Packet ：

Fixed Field

Total len rsv

Padding

L1 … Ln-1

R

1 2 3 4 n…

1 2 3 4 m…

Recursive Bitstring Structure (RBS)

Recursive
Unit 2

Recursive
Unit n

BitString for 1
Recursive

Unit 1
…Addressing Field

Recursive
Unit 2

Recursive
Unit m

•Fixed Field ：
 Total len ： indicate the total length of the Recursive Unit, Filed length can be set flexibly to 8/16/32, with bit/byte/word. Padding is not

included.
 Rsv: Reserved Fields

•Recursive Unit ：
 Bitstring ： instructs a node to locally duplicate packets and forwarding – like a BIER-TE bitstring (but without complex options)
 Addressing Field ： length of ‘child’ recursive units .
 Recursive Unit ： has the same structures as the unit it sits in.

•Padding (Optional) ： Used for alignment to byte (or larger).

Recursive Unit

4

B

C

D

E

R

S

Client1

Client2

Client3

Client4

B:01 R:011 S:011 C:001 D:0001 E:001Len=10

Encapsulation to
B

Recursive unit0

Total_len:26 Padding(6bit)

Recursive Unit
B

R:011 S:011 C:001 D:0001 E:001Len=10

Recursive unit0 Recursive unit1

Encapsulation to
R

Total_len:24

Recursive Unit
R

S:011 C:001 D:0001

Encapsulation to
S

Recursive unit1Recursive unit0

Total_len:10 Padding(6bit)

Recursive Unit S

C:001

Encapsulation to
C

Total_len:3 Padding(5bit) D:0001

Encapsulation to
D

Total_len:4 Padding(4bit)

E:001

Encapsulation to
E

Total_len:3 Padding(5bit)

Client2 Client3

Client4

Client1

1

1

Index Next hop

0 client1

1 R

Bitmap(B) Forwarding table(B)

0 1

1

1

1

1

Bitmap(R) Forwarding table(R)

0 1 1

Index Next hop

0 B

1 S

2 E

1

1

1

Index Next hop

0 R

1 C

2 D
Bitmap(S)

Forwarding table(S)

0 1 1

1

1

1

Index Next hop

0 S

1 D

2 client2
Bitmap(C)

Forwarding table(C)

0 0 1

•Multicast route identifier ：
 Define the local bitmap 。

 Each bit corresponds to a

multicast object, which

denote the direct delivery

destination of multicast

packet.

•Forwarding table ：
 Each table entry corresponds

to a bit in the bitmap.
 Instruct the forwarding

method to the corresponding

multicast object (outgoing

interface, next hop address,

etc.) Unicast
Packet

Unicast
Packet

Unicast
Packet

Example:

5The bug in this example is left as an exercise to the reader

Simplifications / Performance Enhancements

Naturally no need for loop prevention measures (as in BIER/BIER-TE) (no clear bits)

No need to split up topology into different SI and/or multiple SD bitstrings

No (or much smaller) need to create optimized bit semantics.

Just use all adjacencies of topology and/or shortest tunnel adjacencies over unicast-routers.

Especially for ‘sparse’ (small number of BFER) distributions

Can encode any subset and steering in single RBS address == single packet packet

If majority of packet have sparse receiver sets. Duplicate packet reduction maximized.

When total number of BFR too large for desired max RBS address structure (eg: > 512 bit ?)

Controller can arbitrary duplicate/split distribution tree to create multiple packets for ‘sub-trees’.

6

Forwarding Pseudocode

void ForwardRBSPacket (Packet)

RBS = GetPacketMulticastAddr(Packet);

Total_len = RBS;

Rsv = Total_len + length(Total_Len);

BitStringA = Rsv + length(Rsv);

AddressingField = BitStringA + BIFT.entries;

// [1] calculate number of recursive bits set in BitString

CopyBitString(*BitStringA, *RecursiveBits, BIFT.entries);

And(*RecursiveBits,*BIFTRecursiveBits, BIFT.entries);

N = CountBits(*RecursiveBits, BIFT.entries);

// Start of first RecursiveUnit in RBS address

// After AddressingField array with 8-bit length fields

RecursiveUnit = AddressingField + (N - 1) * 8;

RemainLength = *Total_len - length(Rsv) - BIFT.entries;

Index = GetFirstBitPosition(*BitStringA);

 while (Index) {

 PacketCopy = Copy(Packet);

 if (BIFT.BP[Index].recursive) {

 if(N == 1) {

 RecursiveUnitLength = RemainLength;

 } else {

 RecursiveUnitLength = *AddressingField;

 N--;

 AddressingField += 8;

 RemainLength -= RecursiveUnitLength;

 RemainLength -= 8; // 8 bit of AddressingField

 }

 RewriteRBS(PacketCopy, RecursiveUnit,

 RecursiveUnitLength);

 SendTo(PacketCopy, BIFT.BP[Index].adjacency)

 RecursiveUnit += RecursiveUnitLength;

 } else {

 DisposeRBSheader(PacketCopy);

 SendTo(PacketCopy, BIFT.BP[Index].adjacency);

 }

 Index = GetNextBitPosition(*BitStringA, Index);

 }

7

Other thoughts

• Natural variable length address (structure)
> Compared to naturally fixed-size in BIER/BIER-TE

• Forwarding plane complexity
> Basic Bitstring replication the same as BIER-TE (only simple subset of adjacencies required)

> Main added work:

- For each R)eplicating adjacency:
locate offset/length of Recursive Unit for adjacency, rewrite RBS to that Recursive Unit

• TBD: stochastical analysis/comparison of efficiency (#copies), compared to BIER/BIER-TE
> Wide comparison space…

• Packet encoding
> Not purpose of this draft

> Could just use RFC8296 and be considered ‘yet another BIFT mode’ (BIER, BIER-TE, BIER-RBS)

> Or any other encap if more desirable / applicable

THE END

9

	Slide 1
	What is wrong with BIER-TE ?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	THE END

