
SVA Configuration
Interface

IETF/CDNi Metadata Model
Extensions
November 2021 (IETF 112)

Background

CDN Configuration Metadata Challenge
• Problem Statement: The need for an industry-standard API and configuration metadata model

becomes increasingly important as content and service providers automate more of their
operations, and as technologies such as open caching require coordination of content delivery
configurations.

• Motivational Drivers: The SVA Membership (which includes Content Providers, CDNs, ISPs,
and Open Caching technology vendors) agreed on the following drivers for defining a standard
configuration interface:

• Make integrations more efficient
• Enable self-service configuration (DevOps)
• Standardize CDN feature definitions
• Improve governance & compliance
• Create opportunities for differentiation

Wasn’t CDNI Metadata Sufficient As-Is?
Quick Answer: Almost, but not quite.

– The CDNi Metadata and Control Interfaces (RFCs 8006 & 8007) were designed for the limited
scope use cases related interchanges between upstream CDNs and downstream CDNs.

– As we look at the wider set of use cases involving Content Providers managing multiple
CDNS, along with use cases in the Open Caching ecosystem, we see gaps.

What CDNI Metadata Provides Gaps - What’s Missing

Simple CDN Metadata Object Model Metadata Object Model meeting more complex
requirements of CDN and Open Caching industries

Interfaces for retrieving metadata, and triggering
metadata prepositioning, invalidation and purging

Simple push-style metadata publishing (POST)

Interfaces to check status or cancel trigger requests Advanced configuration publishing capabilities required by
Content Providers (publishing, versioning, deployment)

The SVA Configuration Interface initiative addresses these gaps!

CDNI Metadata Model (RFC 8006)
Key Concepts:
• Inheritance model: Content Delivery Metadata (caching and

access rules) defined at the host level can be overridden at the
path level.

• Structural Objects: A small set of objects that define the host
and path matching tree.

• GenericMetadata Objects: Enable infinite extensibility. All our
proposed extensions live here.

CDNi Metadata Model Schema

6

Metadata Model Extensions
The following requirements and proposed extensions are documented in detail in the
SVA Configuration Interface Part 2 specification and are being submitted to the IETF as
extensions to RFC-8006:

• Enhanced Source/Origin Definitions:
• Origin Load Balancing, Failover
• Origin Authentication Methods

• Cache Control Policies & Computed Keys
• Dynamic CORS Headers
• Traffic Type Metadata
• Service ID Metadata
• SVA Open Caching Configuration Metadata
• Private Features for extensibility
• Processing Stages with an Expression Language(see next slide)

CDNi Metadata Extension: Processing Stages
Allows metadata rules to be applied conditionally
at a specific stage in the pipeline, based on
matching elements of HTTP requests & responses.
A rich expression language is provided to specify
matching rules and synthesis dynamic values.

 Stage-specific processing enables:

• Application of metadata (such as cache
policies)

• Request Transformations (Header modifications,
URI re-writes)

• Response Transformations (Header modifications,
status code overrides)

• Generating Synthetic Responses

clientRequest - Rules run on the client request prior
to further processing.

originRequest - Rules run prior to making a request to
the origin.

originResponse - Rules run after response is received
from the origin and before being placed in cache.

clientResponse - Rules run prior to sending the
response to the client. If response is from cache,
rules are applied to the response retrieved from
cache prior to sending to the client.

Stage Processing Object Model

9

Processing Stages Example
A complete example using the SVA
ProcessingStages and
CachePolicy extensions to the CDNI
metadata model.

In this example, clients are directed to
not cache content when there is a
200 response from the origin, with the
CDN maintaining internal caches for 5
seconds to protect the origin from
being overwhelmed.

Expression Language Examples
The CDNI Metadata Expression Language provides a syntax with a rich set of variables, operators, and built-in functions to facilitate use

cases within the extended CDNi metadata model.

ExpressionMatch where the expression is true if the user-agent (glob) matches *Safari* and the referrer equals www.example.com.

 {

 "expression": "req.h.user-agent *= '*Safari*'

 and req.h.referrer == 'www.example.com'"

 }

 Add a Set-Cookie header with a dynamically computed cookie value (concatenating user agent and host name).
 {

 "response-transform":{

 "headers":{

 "add":[

 {

 "name":"Set-Cookie",

 "value":"$req.h.user-agent - $req.h.host",

 "value-is-expression":true

 }

]

 }

 }

 }
11

Capabilities Interface
• The proposed CDNi Metadata Model extensions are optional, with dCDNs able to

advertise their support via the Footprint & Capabilities Interface (FCI).

• Any extension that is embodied as a new GenericMetadata object can be
advertised as supported via the CDNi standard FCI.Metadata object.

• Some proposed extensions entail many features, and it is quite possible that a
dCDN may support some (but not all) of these features.

• To allow for more fine-grained advertisement of feature support, additional FCI
objects will be defined containing feature flags that are specific to each
extended GenericMetadata object.

12

Extending the Metadata Interface
In addition to extending the CDNi Metadata model, the SVA is also working on APIs
that extend the interface:

• Extend the basic metadata retrieval interface defined in RFC-8006 with metadata publishing
capabilities to allow a uCDN to publish and delete metadata on a dCDN.

• Add capabilities to publish and reference sets of named GenericMetadata Objects (extending
the current HREF concept).

• Provide CDN configuration life cycle management capabilities such as publishing, versioning,
staged deployments, profiles, and templates.

• Provide configuration for additional aspects of CDN operation such as provisioning of
Certificates and configuration of log delivery endpoints.

13

Draft Status:
draft-goldstein-cdni-metadata-model-extensions-01

Changes from Revision 00
• Each newly proposed GenericMetadata object states the purpose of the object

with summary of the requirements.

• Each newly proposed GenericMetadata object has a fully specified set of
properties and descriptions of each attribute. This was omitted in the original draft
and was the source of many questions.

• Some examples added (more to come in revision 02).

• Diagrams illustrating the Processing Stages control flow and data model have been
added.

• A specification of the proposed Metadata Expression Language (MEL) has been
added.

15

Questions from Revision 00
AllowCompress: why should a dCDN allow a uCDN to dictate its use of compression?

UCDNs can be a Content Provider origin and may have specific requirements for certain types of objects (such as stream manifests) to be served
uncompressed.

 CachePolicy: why should a dCDN allow a uCDN to dictate caching policies? could this be achieved with cache-control
headers?

This capability extends Cache-control headers by allowing specification of both client and CDN caching parameters. dCDNs add a caching layer
that require distinct control parameters.

ComputedCacheKey: is there something specific that is missing from the existing Cache metadata?
Yes, there can be cases, for example, when the cache key is computed based on the value of an HTTP response header.

 NegativeCacheKey: what kind of caching policy for what kind of error?
As an example, it may be desirable to cache error responses at the CDN for a short period of time to prevent an overwhelmed origin service from
being flooded with requests.

 CacheBypassPolicy: is this specifying something that helps the dCDN identify requests for which to bypass caching?
This capability’s purpose is to facilitate QA and testing scenarios where caching rules on the CDN need to be overridden on a per-request basis.

 16

Questions from Revision 00
OcnSelection: presumably OCN is open caching node? does this dictate how the dCDN RR selects a surrogate?

Yes, OcnSelection allows the uCDN to indicate to the dCDN a preference in terms of the surrogate node selection.

PrivateFeatureList: it's not clear what this one is?
The goal is to provide a controlled extension mechanism without the need for additional GenericMetadata objects. This will be used by mutual
agreement between uCDNs and dCDNs and will enable organizations such as the SVA to define a set of features specific to their needs.

RequestedCapacityLimits: why does the uCDN need to control the dCDN capacity advertisement? couldn't it just ignore
the advertisement?

This object allows the uCDN to request a change in the capacities that the dCDN may have advertised via FCI.CapacityLimits. Typical use case
will involve a uCDN wanting to delegate more traffic to a dCDN than originally planned for.

RequestRouting: is this so that the uCDN can dictate how the dCDN redirects to further dCDNs? why should a dCDN allow a
uCDN to dictate redirection mode?

 MI.RequestRouting is a new GenericMetadata object that allows the uCDN to force the dCDN request routing mode(s) to be applied when
working in iterative redirection mode.

17

Questions from Revision 00
ServiceIds: it's not clear what these IDs are?

Provides for two tiers of ideniifers (serviceIDs and propertyIDs) that are typical in commercial CDN and Open Caching systems. Usage is optional,
and interpretation of these identifiers is based on mutual understanding between parties.

SourceMetadataExtended: it would be helpful to see the actual properties.
All properties listed in revision 01.

StaleContentCachingPolicy: similar to other questions about dictating dCDN policy.
Typical use would allow the content provider to specify that stale content be served from cache for a specified time period while refreshes from
the origin occur asynchronously.

TrafficType: it's not clear what the traffic types are or how they would be used by dCDNs.
Details have been provided in revision 01. Standard types are VOD, LIVE, and OBJECT-DOWNLOAD, along with an option for free-form traffic type
hints. Interpretation of this metadata is implementation specific.

18

Conclusion
Based on the contents of this presentation, Can the CDNI
working group accept version 01 of this document as a
Working Group Draft?

19

