Private Access Tokens Crypto

draft-private-access-tokens-01
Setting

Problem statement

Client → Mediator → Issuer
Setting
Problem statement

Client

Mediator

Issuer

Fixed per-client private value

Fixed public value

Fixed private value
Requirements

Problem statement

Compute deterministic value y over private Client input x and private Issuer input k

$$y = F(k, x)$$

Such that

- The Mediator only learns y if the client engages in the protocol with x;
- The Client cannot engage in the protocol for private input $x' \neq x$; and
- The Issuer does not learn x, nor when two requests have the same x.
Assume prime-order group with generator G and order q, where x and k are private scalars, and $X = xG$ a non-hiding commitment to x

$\pi = \text{NIZK}(\text{DL}(x, y) = z)$ is non-interactive Schnorr proof that $\log(z(x)) = y$

$\text{VerifyNIZK}(x, y, \pi)$ outputs 1 for $\pi = \text{NIZK}(\text{DL}(x, y) = z)$, and 0 otherwise
Protocol Overview

Solution sketch

Client x

$r \leftarrow Z_q$

$P = rX$

Mediator X

(r, P)

Issuer k

$V = kP = krX = krxG$

$y = r^{-1}V = xkG$
Protocol Overview

Solution sketch

Malicious, acts as client to learn y

Client x

Mediator X

Issuer k

$r \leftarrow Z_q$

$P = rX$

P

$V = kP = krX = krxG$

V

$y = r^{-1}V = xkG$
Protocol Overview
Solution sketch

\[
\begin{align*}
\text{Client} & \quad \text{Mediator} & \quad \text{Issuer} \\
r & \leftarrow Z_q \\
P &= rX \\
\pi &= \text{NIZK}(\text{DL}(P, x) = rG) \\
(r, \pi) &\quad \text{VerifyNIZK}(rG, P, \pi) \\
V &\quad \text{VerifyNIZK}(rG, P, \pi) \\
y &= r^{-1}V = xkG \\
V &= kP = krX = krxG
\end{align*}
\]
Protocol Overview

Solution sketch

\[r \leftarrow Z_q \]
\[P = rX \]
\[\pi = \text{NIZK}(\text{DL}(P, x) = rG) \]

\[(r, \pi) \rightarrow \text{VerifyNIZK}(rG, P, \pi) \]

\[V = kP = krX = krxG \]

\[y = r^{-1}V = xkG \]
Questions

Future work

Does the problem make sense?

Is the security model sensible?

Does the sketched protocol meet the desired security goals?