Private Access Tokens Crypto draft-private-access-tokens-01

Hendrickson, Iyengar, Pauly, Valdez, Wood – IETF 112 Online – CFRG

Setting Problem statement

Issuer

2

Setting Problem statement

Requirements **Problem statement**

Such that

- The Mediator only learns y if the client engages in the protocol with x;
- The Client cannot engage in the protocol for private input $x' \neq x$; and
- The Issuer does not learn x, nor when two requests have the same x.

Compute deterministic value y over private Client input x and private Issuer input k y = F(k, x)

Building Blocks Solution sketch

Assume prime-order group with generator G and order q, where x and k are private scalars, and X = xG a non-hiding commitment to x $\pi = NIZK(DL(x, y) = z)$ is non-interactive Schnorr proof that $\log_7(x) = y$

- VerifyNIZK(x, y, π) outputs 1 for $\pi = NIZK(DL(x, y) = z)$, and 0 otherwise

Client x $r \leftarrow Z_q$ P = rX

(r, P)

Client

 ${\mathcal X}$

 $r \leftarrow Z_q$ P = rX $\pi = \mathsf{NIZK}(\mathsf{DL}(P, x) = rG)$

 (r,π)

VerifyNIZK (rG, P, π) V = kP = krX = krxG

 $y = r^{-1}V = xkG$

Client

 $\boldsymbol{\chi}$

 $r \leftarrow Z_q$ P = rX $\pi = \mathsf{NIZK}(\mathsf{DL}(P, x) = rG)$

 (r,π)

Issuer

 $y = r^{-1}V = xkG$

Mediator

Questions **Future work**

Does the problem make sense? Is the security model sensible? Does the sketched protocol meet the desired security goals?