
Verifiable Distributed 
Aggregation Functions 

draft-patton-cfrg-vdaf-00

Presented at IETF 112 (CFRG)
Authors: Christopher Patton (speaker), Richard Barnes, Phillipp Schoppmann

1



Motivation

● PRIV BoF (Wednesday): Privacy preserving aggregation of user 
measurements

○ Privacy made possible by distributing the computation across multiple servers
○ Coordination required to ensure correctness of the computation

● Lots of recent work in the literature, but...
○ There is no "one-size-fits-all" solution

■ Each protocol is tailored to a particular (class of) aggregation functions
○ Protocols vary in their security and operational considerations

■ Lack consistent abstraction boundary for PRIV (and other standardization efforts) to 
build upon

draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG) 2



Objective of this draft

● Provide an abstraction boundary (VDAF) that:
○ addresses the security/operational considerations of real-world deployments (ENPA, Origin 

Telemetry)
○ provides design criteria for cryptographers to build new and improved schemes

● Standardize a few VDAFs from the literature
○ in particular, those discussed in PRIV so far

3draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)



Verifiable Distributed Aggregation Function (VDAF)

● Want to compute A := F(p, m[1], …, m[n])  
○ m[1], …, m[n] are the client measurements
○ p is the aggregation parameter
○ A is the aggregate result

● Examples:
○ A is arithmetic mean
○ A is a histogram estimating the distribution
○ A counts how many times p occurs in m[1], …, m[n]

Collector

m[1] m[2] m[3]

Client Client Client

A

p

4draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)



Y

x[3]x[1] x[2]

Verifiable Distributed Aggregation Function (VDAF)

● Privacy via secret sharing
○ Shard(m)→(x, x): Client shards its measurement 

into input shares and distributes them among the 
Aggregators.

○ Prepare(p, x)→y: Aggregator maps the 
aggregation parameter and its input share to its 
output share (e.g., DPFs).

○ Aggregate(y[1], …, y[n])→Y: Aggregator combines 
output shares to get its aggregate share.

○ Unshard(Y, Y)→A: Collector combines aggregate 
shares to get aggregate.

● Correctness
○ (y[1] + y[2] + y[3]) + (y[1] + y[2] + y[3])                      

= Y + Y = A

Client Client Client

A

Aggregator

x[1] x[2] x[3]

Aggregatorp

Collector

p

Y

5draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)



??

x[3]garbage in ... x[2]

Verifiable Distributed Aggregation Function (VDAF)

● What about malicious (or merely 
misconfigured) clients?

○ (?? + y[2] + y[3]) + (?? + y[2] + y[3]) = ??

Client Client Client

Aggregator

?? x[2] x[3]

Aggregatorp

Collector

p

??

… garbage out

6draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)



Verifiable Distributed Aggregation Function (VDAF)

Y

x[3]x[1] x[2]

Client Client Client

A

Aggregator

x[1] x[2] x[3]

Aggregatorp

Collector

p

Y

● Robustness via multi-party computation
○ Shard(m)→(x, x): Client shards its measurement 

into input shares and distributes them among the 
Aggregators.

○ Prepare: Aggregators engage in a secure MPC of 
(y, y) := Dist-Prepare(p, x, x).

○ Aggregate(y[1], …, y[n])→Y: Aggregator 
combines output shares to get its aggregate 
share.

○ Unshard(Y, Y)→A: Collector combines aggregate 
shares to get aggregate.

● Not general-purpose MPC!

7draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)



Constructions of VDAFs

● prio3 [CBG17, BBCG+19]
○ Encode each measurement m as vector x of elements of a finite field
○ Aggregation parameter: number of measurements n
○ Any aggregation function of the form f(n, x[1] + … + x[n])
○ Any number of aggregators
○ Dist-Prepare: C(x)=0 for arithmetic circuit C that defines validity

● hits [BBCG+21]
○ Measurement: N-bit string (encoded as IDPF shares)
○ Aggregation parameter: sequence of P-bit strings (the "candidate prefixes") where P <= N
○ Aggregation function: how many inputs are prefixed by each candidate
○ Two aggregators
○ Dist-Prepare: input is prefixed by at most one candidate

● … and many more!
8draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)



Implementations (so far)

● Rust github.com/abetterinternet/libprio-rs
○ prio3
○ hits (proof-of-concept only, missing efficient IDPF)
○ "Prio v2" (used in ENPA)

● C++ github.com/google/distributed_point_functions
○ IPDF

● C++ github.com/google/libprio-cc
○ "Prio v2" (used in ENPA)

● C github.com/mozilla/libprio
○ "Prio v1" (used in Origin Telemetry)

prio3 client perf (two aggregators)

aggregation function shard time communication

count 8 μs 208 bytes

histogram (10 buckets) 15 μs 432 bytes

sum (32 bit integers) 35 μs 960 bytes

9draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)

https://github.com/abetterinternet/libprio-rs
https://github.com/google/distributed_point_functions
https://github.com/google/libprio-cc
https://github.com/mozilla/libprio


References

● [CGB17] Corrigan-Gibbs-Boneh. "Prio: Private, Robust, and Scalable 
Computation of Aggregate Statistics". NSDI 2017.

● [BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via 
Fully Linear PCPs". CRYPTO 2019.

● [BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters". 
IEEE S&P 2021.

10draft-patton-cfrg-vdaf-00 - IETF 112 (CFRG)


