ATP: In-network Aggregation for Multi-tenant Learning

Wenfei Wu

Peking University
Distributed Training (PS Architecture)

Parameter Servers (PS)

\[a' = a_1 + a_2 + a_3 + a_4 \]

Network can be bottleneck for Distributed Training
Trend of In-network Computation

• Programmable switch offers in-transit packet processing and in-network state

• Reduce training time by moving gradient aggregation into the network
State-of-the-art In-network Aggregation

• SwitchML (Sapio et al. NSDI’21)
 • Target single-rack settings
 • Support multiple jobs by static partitioning of switch resources

• Shortcomings
 • Inefficiently use the switch resources
 • Does not consider multi-rack setting

<table>
<thead>
<tr>
<th>Time</th>
<th>System</th>
<th>Num GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 min</td>
<td>DGX SuperPOD</td>
<td>92 x 1</td>
</tr>
<tr>
<td>67 min</td>
<td>DGX SuperPOD</td>
<td>64 x 1</td>
</tr>
</tbody>
</table>
Key Goal

Speed up multiple DT jobs in a cluster while maximizing the benefits from in-network multi-switch aggregation
Outline

• Multi-tenant
• Multi-rack
• Additional challenges
 • Reliability
 • Congestion control
 • Improve floating point computation
• Evaluation
Multi-tenant: dynamic allocation

• Objective: maximize switch resource utilization
• Key idea: dynamic allocation in per-packet level
 • Randomly hash gradient packets to whole memory
Multi-tenant: dynamic allocation

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory
Challenge 1: Heavy Contention

Best-effort

Job 1
Worker 1 Worker n PS

Job 2
Worker 1 Worker n PS

Job 3
Worker 1 Worker n PS

Switch
Challenge 1: Heavy Contention

Best-effort

![Diagram showing job scheduling and worker distribution]

Job 1
- Worker 1
- Worker 2
- Worker n
- PS

Job 2
- Worker 1
- Worker 2
- Worker n
- PS

Job 3
- Worker 1
- Worker n
- PS
Challenge 2: Incomplete Aggregation

Job 1
Worker 1 Worker n PS

Job 2
Worker 1 Worker n PS

Job 3
Worker 1 Worker n PS

Switch

\[a_1 \]

\[a_2 + a_3 + ... + a_n \]
Challenge 2: Incomplete Aggregation
Challenge 2: Incomplete Aggregation

Job 1
- Worker 1
- Worker 2
- …
- Worker n
- PS

Job 2
- Worker 1
- Worker 2
- …
- Worker n
- PS

Job 3
- Worker 1
- …
- Worker n
- PS

Switch

\[a_1 + a_2 + \ldots + a_n + a_1 \]
Inter-Rack Aggregation

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP
- Support two-level aggregation at ToR switches
 - Workers and PS(es) locate in different racks
 - Scale up to 1024 workers
Additional Challenges

• Rethink reliability
 • Recovery from packet loss
 • Ensure exact once aggregation
 • Memory leak: aggregators are reserved forever, but not used

• Rethink congestion control
 • N flows merged into one flow communication
 • Drop congestion signal, i.e., ECN

• Improve the floating point computation
 • Convert gradients to 32-bit integer at workers by a scaling factor
 • Aggregation overflow at switch
ATP Implementation and Evaluation

• Implementation
 • Replace the networking stack of BytePS at the end host
 • Use P4 to implement the in-network aggregation service at Barefoot Tofino switch

• Evaluation
 • Setup: 9 servers, each with one GPU, one 100G NIC
 • Baseline: (BytePS + TCP, BytePS+ RDMA) x (Nto1, NtoN), SwitchML, Horovod+RDMA, Horovod+TCP
 • Metrics: Training Throughput, Time-to-Accuracy
 • Workloads: AlexNet, VGG11, VGG16, VGG19, ResNet50, ResNet101, and ResNet152
Single Job Performance

ATP is comparable to, and outperforms the state-of-the-art approaches. ATP gets larger performance gains on network-intensive workloads (VGG) than the computation-intensive workloads (ResNet).
Multiple Jobs: dynamic (ATP) vs static

• 3 VGG16 Jobs
• Static approach evenly distributes

More evaluations about packet loss, congestion control in various scenarios to achieve the peak aggregation throughput.

When switch memory is sufficient, ATP’s dynamic ≈ static
When switch memory is insufficient, ATP’s dynamic > static
Summary

• A network service that supports best-effort, dynamic in-network aggregation aimed at multi-rack, multi-tenant

• Co-design end-host and switch logic
 • Reliability
 • Congestion control
 • Dealing with floating point

Opensource: https://github.com/in-ATP/ATP
ATP: In-network Aggregation for Multi-tenant Learning

Wenfei Wu

Peking University

Thank You!

Open source: https://github.com/in-ATP/ATP