Information-Centric Dataflow

T1 Andrew Moore Retweeted

Programming Wisdom @CodeWisdom - 18h

/3
@ The eight fallacies of distributed computing:
| 1. The network is reliable;

Dirk Kutscher, Laura Al Wardani, T M Rayhan Gias 2. Latency is zero;
3. Bandwidth is infinite;

4. The network is secure;

5. Topology doesn’t change;
6. There is one administrator;

IRTF COINRG Meeting at IETF-112 7. Transport cost is zero;

2021-11-11 8. The network is homogeneous.
— L Peter Deutsch

QO 21 11 589

COIN

My Perspective: Two strands

Dataplane
Programmability

Distributed
Computing

Enhancing
IETF Protocols
to Support
Connecting
Computations

Re-imagine
relationship of
networking and

computing

This
work

University of Applied Sciences

Y HOCHSCHULE ..,

wl EMDEN-LEER #

ACM ICN-2021

Vision: Information-Centric Dataflow
- Re-Imagining Reactive Distributed Computing

Dirk Kutscher Laura Al Wardani T M Rayhan Gias
University of Applied Sciences University of Applied Sciences University of Applied Sciences
Emden/Leer Emden/Leer Emden/Leer
Emden, Germany Emden, Germany Emden, Germany
Dirk.Kutscher@hs-emden-leer.de laura.al.wardani@hs-emden-leer.de rayhan.gias@hs-emden-leer.de
ABSTRACT computation processes but connections imply transport end-

This paper describes an Information-Centric Dataflow system that
is based on name-based access to computation results, NDN PSync
dataset synchronization for enabling consuming compute functions
to learn about updates and for coordinating the set of compute func-
tions in a distributed Dataflow pipeline. We describe how relevant
Dataflow concepts can be mapped to ICN and how data-sharing,
data availability and scalability can be improved compared to state-
of-the-art systems. We also provide a specification of an application-
independent namespace design and report on our experience with
a first prototype implementation.

CCS CONCEPTS

» Networks — Network architectures; Network protocols;
Application layer protocols;

KEYWORDS
Information-Centric Networking, Distributed Computing, Dataflow

1 INTRODUCTION

The Dataflow paradigm is a popular distributed computing abstrac-
tion that is leveraged by several popular data processing frame-
works such as Apache Flink [12] and Google Dataflow [4]. Fun-
damentally, Dataflow is based on the concept of asynchronous
messaging between computing nodes, where data controls program
execution, i.e., computations are triggered by incoming data and
associated conditions. This typically leads to very modular sys-
tem architectures that enable re-use, re-composition, and parallel
execution naturally. Most of the popular distributed processing
frameworks today are implemented as overlays, i.e., they allow
for instantiating computations and for inter-connecting them, for
example by creating and maintaining communication channels
between nodes such as system processes and microservices.

We claim that the connection-based approach incurs several ar-
chitectural problems and inefficiencies, for example: application
logic is concerned with receiving and producing data as a result of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissic org.

ICN '21, September 22-24, 2021, Paris, France

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8460-5/21/09...$15.00
https://doLorg/10.1145/3460417.3482975

point addresses that are typically not congruent. This typ-
ically implies a mapping or orchestration system. One key goal
for Dataflow systems is to enable parallel execution, i.e., one com-
putation is run in parallel, which also affects the communication
relationships with upstream producers and downstream consumers.
For example, when parallelizing a computation step, it typically
implies that each instance is consuming a partition of the inputs
instead of all the inputs. An indirection- and connection-based
approach makes it harder to configure (and especially to
dynamically re-configure) such dataflow graphs.

In some variants of Dataflow, for example stream processing, it
can be attractive if one computation output can be consumed by
multiple downstream functions. Connection-based overlays typi-
cally require duplicating the data for each such connection,
incurring significant overheads. In large-scale scenarios, the com-
putation functions may be distributed to multiple hosts that are
inter-connected in a network. Orchestrators may have visibility
into compute resource availability but typically have to treat the
TCP/IP network as a blackbox. As a result, the actual data flow is
locked into a set of overlay connections that do not neces-
sarily follow optimal paths, i.e., the communication flows are
incongruent with the logical data flows.

In this paper, we present IceFlow — an Information-Centric Data-
flow system approach that supports traditional Dataflow with In-
formation-Centric principles and that can be used as a drop-in
replacement for existing Dataflow-based frameworks. IceFlow’s ob-
jectives are: (i) reducing complexity in Dataflow systems by remov-
ing connection-based overlays and corresponding orchestration re-
quirements; (ii) enabling efficient communication by reducing data
duplication; and (iii) enabling additional improvements through
more direct communication and caching in the network.

IceFlow is employing access to authenticated data in the network
as per CCNx/NDN-based ICN for the communication between com-
putation functions and provides additional features such as flow-
control, partitions for data streaming, and a window concept for
synchronizing computations in streaming pipelines. The contribu-
tions of this paper are: (i) an ICN naming scheme for Dataflow; (ii) a
concept for receiver-driven flow control in IceFlow-based Dataflow
systems and, (iii) for dealing with parallel processing in IceFlow-
based Dataflow systems; and (iv) a prototype implementation.

The rest of the paper is structured as follows: section 2 presents
fundamental Dataflow concepts and a problem statement. Section 3
presents IceFlow’s design. We report on first implementation expe-
rience in section 4, discuss related work in section 5 and conclude
this vision paper with a discussion in section 6.

University of Applied Sciences

HOCHSCHULE e
EM DEN - LEER Systems

Distributed Computing

Many Different Types of Interactions

» Message passing
e Remote Method Invocation

» Dataset synchronization

 Key-value store

/node/rl/a /node/r1l/b

University of Applied Sciences

N
\ "~ HOCHSCHULE o
N\ EMDEN-LEER 9t

Dataflow

Structured Distributed Data Processing

. |accumulated
- |result

e
) v
- o y s .
o g a2l P VDD SN
- -
R .
¢
Jer
T A]
26585 NP
g i "
2y
=
- oo
\

Immutable
Data Object

University of Applied Sciences

+++++ \ " HOCHSCHULE .0
\F EMDEN-LEER s

Dataflow

Structured Distributed Data Processing

. |accumulated
- |result

n
_ J
AN Ayt a0 aece - N
- Sacig-nie 2k LANCr <Ll o e N
- -
R .
U
Jer
T A]
25485 ‘Y@
g Gkl "
2
=
2
X

Received asynchronously at 1

- University of Applied Sciences

%\\\\\& HOCHSCHULE
" 4 EMDEN-LEER ba=

//

Dataflow

Structured Distributed Data Processing

e, | 2CCUMuUlated
¥ |result

Triggering Compufation at 1,
Consumed by f1 6

- University of Applied Sciences

\\\\¥

HOCHSCHULE e
EMDEN-LEER o=

Dataflow

Structured Distributed Data Processing

e, | 2CCUMuUlated
¥ |result

Newly produced result object

- University of Applied Sciences

%\\\\\& HOCHSCHULE
" 4 EMDEN-LEER ba=

//

Dataflow

Structured Distributed Data Processing

e, |ACCUMuUlated
@ |result

Triggering computation at 2,

consumed at f82

- University of Applied Sciences

\\\\¥

HOCHSCHULE e
EMDEN-LEER o=

Dataflow

Structured Distributed Data Processing

e, | 2CCUMuUlated
¥ |result

Newly produced result object

- University of Applied Sciences

\\\\¥

HOCHSCHULE e
EMDEN-LEER o=

Dataflow

Structured Distributed Data Processing

e, | 2CCUMuUlated
¥ |result

- Newly produced result object

10

University of Applied Sciences

HOCHSCHULE e
EMDEN-LEER o=

Dataflow

Structured Distributed Data Processing

University of Applied Sciences

HOCHSCHULE e
EMDEN-LEER o=

Dataflow

Poster Child Example: word-count

a: 42
. |ther 39
' ¥ (tree: 27
house: 13
dog: 4

text file.__

12

Dataflow Concepts

Batch & Stream Processing

 Data objects as
asynchronous events

e Stream processing:
each data object
processed
iIndependently
(unbounded)

 Batch processing:
grouping of data
objects (bounded)

Fixed

13

Sliding

University of Applied Sciences

HOCHSCHULE .o
EMDEN-LEER #

Sessions

University of Applied Sciences

HOCHSCHULE .o
EMDEN-LEER #

Windowing

» Slicing data sets for
processing as a group
(aggregation)

 One data item can be
assign to more than one

group

» Directing data to specific
consumers

3

AN 7\
.1 I B\

Dataflow Concepts

Fixed

14

Sliding

Sessions

Dataflow Concepts

Timing

» Elastic data processing
* Asynchronous sourcing

* Unpredictable transport and
processing delays

» |deally: processing matches
production rate

e Jask of a Dataflow system: adjust
processing graph to production
rate and "real-time requirements”

15

Processing Time

18:05

18:04 —

18:03 —

18:02 —

18:01 — ,

University of Applied Sciences

HOCHSCHULE yvorie
EMDEN-LEER s

L I I I l I

I I I I I
18:01 18:02 18:03 18:04 18:05

Event Time

Actual watermark: sesmsssmegiy
|deal watermark:
Event Time Skew: ¢=—p

Dataflow

Mainstream Implementations

« Apache BEAM

* Unified programming model for
data processing pipelines

e Dataflow runners

e Execution environments for
Dataflow applications

* Apache Flink, Samza, Spark
 Google Cloud Dataflow

Client

/

N

DataFlow
Graph

Deploy Task/Cancel
Tasks

Send Dataflow

(Submit/Cancel/Update
K Actor Systems Job)

Progress Report & Result

University of Applied Sciences

HOCHSCHULE .o
EMDEN-LEER s

Job Manager

Checkp
Coordin

(:

ator

. N
2

_

g I
.

-
-
-
-

/ [Actor Systems J\

Task Slot Task Slot
— N N

Task Manager
16

Actor Systems J /
= \

Task Status/
Statistics/
Hearbeats
/ [Actor Systems J \
Task Slot Task Slot
guum— e D

< Data Streams >

—

Task Manager

University of Applied Sciences

\ HOCHSCHULE o

Recent Additions to Flink ol EMDEN-LEER
Announced at Flink Forward 2021

Buffer Debloating Elastic Jobs

Minimizing the in-flight data while keeping the network connections saturated How to react to changing workloads?

* Network memory buffers records to keep network connections fully utilized

* All buffered records need to be processed before a checkpoint can complete

* The more buffered records, the longer the checkpoint takes

* I|deally, Flink adjusts memory to minimize in-flight records and keep connections fully utilized

Long running streaming applications will eventually face changing workloads

Risk to over/under provision
Ideally Flink would adjust resources based on workload

Static resources Elastic resources

Aligned checkpoint time under backpressure (with 5 network exchanges) A B | - —

Buffer debloating (ELIP-183)]
* Dynamically adjust memory wrt to consumers 4 /\
throughput . / \

* Keep as many bytes as can be processed in X ms

* Stable and predictable checkpoint times under
backpressure

Checkpoint time (ms)

19256.75

8293.25 |

No debloat 10000 S000 2000 100

. Debloat target (ms per network exchange) by c
@ © 2021 Ververica 26 @ 021 Ververica

17

University of Applied Sciences

HOCHSCH U I-E Networked

Dataflow EMDEN-LEER =~

Transport and Back Pressure

« Example: Apache Flink

Task Manager 1 Task Manager 2
* Connections connect task SubTask A.2 SubTask 5.1
managers, not tasks : e |
Cretit O o ”Fﬁ‘jztﬁffg
* Need to regulate upstream sackiog s] gutrs
processing rates 00000\ e) | (5] aiogsie

18

University of Applied Sciences

HOCHSCH U I-E Networked

Problem Statement EMDEN:- LEER
Overlays, Pipes, Address Mappings, Orchestration

Job Manager

* Overlays do not match the inherent logic of Client /Check_point Scheduler\
processing immutable data objects . N Coordinator
_ _ _ { DataFlow } / \
 Data is locked into connections Graph

Send Dataflow

 Connections are virtual channels between IP hosts (Submit/Cancel/Update |
K{ Actor Systems Job) .
* Orchestrator required to track resources, maintain _ .

mappings of task relationships to connections \I Achor Sustems] /

Progress Report & Result

between hosts
Task Status/

Deploy Task/Cancel
Tasks

- - - - Statisti
» Elastic Dataflow requires agile function Sraustice/
instantiation, flow graph updates etc. /
[Actor Systems] \ / [Actor Systems] \
 Performance is a function of upstream data rates, Sl sl sl o Slox
network throughput, processing speed
P N R G N R
« Limited visibility into root causes of performance «| | «
problems at orchestrator ® < > ®
| | Data Streams ; |
o o
Task Manager Task Manager

19

?‘\\\\ ' University of Applied Sciences
\ 7 HOCHSCHULE e

EMDEN*LEER 5=

lceFlow

Information-Centric Dataflow

/infrastrl/f infrastrl/g /infrastrl/h

/infrastrl/d /infrastrl/e

[infrastrl/a /infrastrl/b

20

University of Applied Sciences

A

A

HOCHSCHULE \orie
EMDEN-LEER =

lceFlow

Information-Centric Dataflow

/word-count/text-to-lines/

«<>» <_>

/infrastrl/f infrastrl/g /infrastrl/h

/infrastrl/d /infrastrl/e

/infrastrl/c

[infrastrl/a /infrastrl/b

21

- University of Applied Sciences

HOCHSCHULE \orie
2 EMDEN-LEER s~

lceFlow

Information-Centric Dataflow

/word-count/text-to-lines/

/infrastr1/f
/word-count/lines-to-words/1

infrastrl/g /infrastrl/h

/infrastrl/d /infrastrl/e

/infrastrl/c

[infrastrl/a /infrastrl/b

22

\\g HOCHSCHULE yuoea

~ . EMDEN-LEER s

University of Applied Sciences

lceFlow

Information-Centric Dataflow

/word-count/text-to-lines/

<>

/infrastr1/f
/word-count/lines-to-words/1

infrastrl/g /infrastrl/h

/infrastrl/d /infrastrl/e

/word-count/count-words/1 -
’ /infrastrl/c

[infrastrl/a /infrastrl/b

23

University of Applied Sciences

A

\S= Networked
IceFlow 4 EMDEN-LEER 5

Information-Centric Dataflow

/word-count/text-to-lines/

-

infrastrl/g
/word-count/lines-to-words/2

/infrastr1/f
/word-count/lines-to-words/1

/infrastrl/h

/infrastrl/d /infrastrl/e

/word-count/count-words/1 /word-count/count-words/?2

’ /infrastril/c ‘

[infrastrl/a /infrastrl/b

24

University of Applied Sciences

HOCHSCHULE Networked

lceFlow EMDEN-LEER =

Concepts

/[appl/[actor]/[instance]/data/[partition]/[object]
 Just Names

* For infrastructure app the name of the application
actor the name of a Dataflow actor
 And for actors instance | actor instance number

partition | monotonically increasing partition number to struc-
ture data objects on the producer’s side
. Usual ICN properties object monotonically increasing sequence number

Asynchronous data production /word-count/text-to-lines/1/data/1/1
« Consumer has to know when data is available /word-count/lines-to-words/2/data/3/27

* Flow control

« Computation results as Named Data Objects

* Some coupling between consumers and producers

* Garbage collection _.
: : acC

* producers may be resource-constrained

* cannot keep data forever

25

lceFlow Operation

Dataset Synchronization

* Producers produce data under a known
prefix

* Consumers subscribe to prefix
 And learn update new input data

» |deally: one prefix for whole application
("word-count")

* Everyone could learn about all data in
the app context

* For practical reasons: need indirection

* One prefix per consumer group

University of Applied Sciences

HOCHSCHULE .o
EMDEN-LEER 9=

26

/word-count

/text-to-lines

/obj1| |/obj2

/lines-to-words

lceFlow

Windows and Result Sharing

 Need more flexibility to re-use
computation results in different
contexts

 Group data objects In
windows

* Group windows under per-
consumer name prefixes

27

*
do eiusmod” tem
*

../data/partition/27
/00| [WATERM
»
/01 Lore‘b:l ipsu lor
/02 sittame
../03 consectetr-.,
3

../04| adipiscing efi‘t:s,e.d

< =
../05 por

University of Applied Sciences

HOCHSCHULE yvorie
EMDEN-LEER s

/word-count/text-to-lines

./window/54 ../stream/lines-to-words/1
../00 Q== mmmagy /B0 = = =
../01 -
/01 ./window/55 €=~ "7
/02 /00, /02
""""" ../03
--------- , /01‘
“““““ “‘ ../04
............ /02
"""""" ../05

University of Applied Sciences

HOCHSCH U I-E Networked

lceFlow EMDEN-LEER =

Dataflow data and configuration

word-count

e Need additional shared information

Static application flowgraph [conf] { coumwor ds cr;ggﬁlc;;
* Actual current dynamic flowgraph /\ N |
| .)] C current | [R }ﬂ] [J @
« Also: loose coupling between consumers and { L _gen 7 — |
producers H H (reports J [data J[window J stream

 Consumers reports: what windows have been mmﬁm lines-to- |
processed "' U UL words

* So that producer can advance

Configuration Dataflow

* Result: share namespace with Dataflow data and
configuration info

 Some config info represented in CRDTs
(like in CFN)

28

University of Applied Sciences

HOCHSCH U LE Networked

lceFlow EMDEN-LEER =

Resource Management

Node 2

Compute Slots

e |ceFlow can be smarter than receiver-
driven AIMD Window

Node 3 éNode1 ENode4

UOO0) |\0NER 0000 AO0O

Input d‘i}e\ye Output Queue

f2/A > I

* No need to fetch data that cannot be
processed at throughput speed Node

Compute Slots

Node 2 iNode 3 Node 4

. "Receive Window" 0000] |00 cmmn W00

Output Queue

e Producers should not overrun consumers iﬁﬁ —>

* Qutput queue occupancy...

 When consistently full: trigger scale-out

29

University of Applied Sciences

HOCHSCH U LE Networked

lceFlow EMDEN-LEER =
Insights So Far
 Todays Dataflow systems are powering many Dataset synchronization in principle the right approach

data science applications

 NDN Psync performance not great in experiments (NFD)
* Overlay approach

. . C Also requires multicast forwarding strate
 Usual address mapping and virtual circuit issues 9 9 gy

» Limited data sharing * Additional mechanisms needed
* Centralized orchestration * Name-based routing (NLSR should be fine)
* Real opportunity for redesigning distributed * Failure recovery

data processing with ICN

. * Take- for COIN
* Elegant name-based approach: no mappings, areraways for

no resolution — just data * |ceFlow an example for new protocol work

* Direct sharing of computation results |
* Breaking up overlays

* Potentially better visibility into network
performance * Here: Dataflow — other interaction classes next?

30

piccolo-project.org

This project receives funding from the German Federal Ministry for Ecomomic
Affairs and Energy (BMWi) within the "Development of Digital Technologies™
framework programme and is managed by the "Digital Technologies and
Applications" project agency of the German Aerospace Center (DLR) in Bonn,

Germany.

% Federal Ministry
for Economic Affairs
and Energy Deutsches Zentrum

DLR fir Luft- und Raumfahrt
German Aerospace Center

http://piccolo-project.org

