Key Update for OSCORE (KUDOS)

draft-hoeglund-core-oscore-key-limits-02

Rikard Höglund, RISE Marco Tiloca, RISE

IETF 112, CoRE WG, November 8th, 2021

Recap

- OSCORE (RFC8613) uses AEAD algorithms to provide security
 - Need to follow limits in key usage and number of failed decryptions, before rekeying
 - Excessive use of the same key can enable breaking security properties of the AEAD algorithm
 - Reference draft-irtf-cfrg-aead-limits-03
- > (1) Study of AEAD limits and their impact on OSCORE
 - Defining appropriate limits for OSCORE, for a variety of algorithms
 - Defining counters for key usage; message processing details; steps when limits are reached
 - Taking into account John Mattsson's input at the April CoRE interim [1]
- (2) Defined a new method for rekeying OSCORE (KUDOS)
 - Loosely inspired by Appendix B.2 of OSCORE
 - Goal: renew the Master Secret and Master Salt; derive new Sender/Recipient keys from those
 - Achieves Perfect Forward Secrecy

[1] https://datatracker.ietf.org/meeting/110/materials/slides-110-saag-analysis-of-usage-limits-of-aead-algorithms-00.pdf

Key limits (1/3)

- > Recap on AEAD limits
 - Limits key use for encryption (q) and invalid decryptions (v)
 - Discussed in draft-irtf-cfrg-aead-limits-03

Confidentiality Advantage (CA):
Probability of breaking

Probability of breaking confidentiality properties

Integrity Advantage (IA): Probability of breaking integrity properties

- This draft defines fixed values for 'q', 'v', and 'l' and from those calculate CA & IA probabilities
 - > IA & CA probabilities must be acceptably low
- > Now explicit size limit of protected data to be sent in a new OSCORE message
 - The probabilities are influenced by 'l', i.e., maximum message size in cipher blocks
 - Implementations should not exceed 'I', and it has to be easy to avoid doing so
 - New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding for a message may not exceed the block size for the selected algorithm multiplied with 'I'
- > New table (Figure 3) showing values of 'I' not just in cipher blocks but actual bytes

Key limits (2/3)

- Increased value of 'l' (message size in blocks) for algos except AES_128_CCM_8
 - Increasing 'I' from 2^8 to 2^10 should maintain secure CA and IA probabilities
 - draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^-50
 - They have added a table in that document with calculated 'q' and 'v' values

$$q = 2^20$$
, $v = 2^20$, and $l = 2^10$

Algorithm name	IA probability 	CA probability
AEAD_AES_128_CCM AEAD_AES_128_GCM	2^-64 2^-97	2^-66 2^-89
AEAD_AES_256_GCM AEAD_CHACHA20_POLY1305	2^-97 2^-73	2^-89

- Intent is to increase 'q', 'v' and/or 'l' further. Should we?
 - Since we are well below 2^-50 for CA & IA currently

Key limits (3/3)

- Updated table of 'q', 'v' and 'l' for AES_128_CCM_8
 - Added new value for 'v', still leaving CA and IA less than 2^-50
 - Is it ideal to aim for CA & IA close to 2^-50 as defined in the CRFG document?

+	L		+		
'q', 'v' and 'l'	IA probability	CA probability	'q', 'v' and 'l'	IA probability	CA probability
q=2^20, v=2^20, l=2^8 q=2^15, v=2^20, l=2^8 q=2^10, v=2^20, l=2^8 q=2^10, v=2^15, l=2^8 q=2^10, v=2^15, l=2^8 q=2^10, v=2^15, l=2^8 q=2^10, v=2^14, l=2^8 q=2^10, v=2^14, l=2^8 q=2^10, v=2^14, l=2^8 q=2^10, v=2^14, l=2^8 q=2^10, v=2^10, l=2^8 q=2^10, l=2^10, l=2^		2^-70 2^-80 2^-90 2^-70 2^-80 2^-90 2^-70 2^-90 2^-70 2^-80 2^-90 2^-80 2^-90	q=2^20, v=2^20, l=2^6 q=2^15, v=2^20, l=2^6 q=2^10, v=2^20, l=2^6 q=2^20, v=2^15, l=2^6 q=2^15, v=2^15, l=2^6 q=2^10, v=2^15, l=2^6 q=2^10, v=2^14, l=2^6 q=2^10, v=2^14, l=2^6 q=2^10, v=2^14, l=2^6 q=2^10, v=2^14, l=2^6 q=2^20, v=2^10, l=2^6 q=2^15, v=2^10, l=2^6 q=2^10, v=2^10, l=2^6 q=2^6 q=2^10, v=2^10, l=2^6 q=2^10, v=2^10, l=2^10, l=2^	2^-50 2^-54 2^-54	2^-74 2^-84 2^-94 2^-74 2^-84 2^-94 2^-74 2^-84 2^-94 2^-74 2^-74 2^-84 2^-94
	+		+	+	-

Key update (1/4)

- Defined a new method for rekeying OSCORE
 - Key Update for OSCORE (KUDOS) Named procedure
 - Client and server exchange two nonces R1 and R2
 - UpdateCtx() function for deriving new OSCORE Security Context using the nonces
 - Current Sec Ctx (to renew) ==> Intermediate Sec Ctx

==> New Sec Ctx

> Properties

- > Can be initiated by either the client or server
- Completes in one round-trip (after that, the new Security Context can be used)
- Only one intermediate Security Context is derived
- The ID Context does not change
- Robust and secure against peer rebooting
- Compatible with prior key establishment using the EDHOC protocol

(initiator) (responder) Generate R1 CTX 1 = updateCtx(R1, CTX OLD) Request #1 Protect with CTX 1 OSCORE Option: CTX 1 = update(R1, d flag: 1 CTX OLD) ID Detail: R1 Verify with CTX 1 Generate R2 CTX NEW = update(R1|R2, CTX OLD) Response #1 Protect with CTX NEW CTX NEW = OSCORE Option: updateCtx(R1|R2, d flag: 1 CTX OLD) Verify with CTX NEW TD Detail: R2 Discard CTX OLD // The actual key update procedure ends here.

Client-initiated rekeving

Protect with CTX NEW

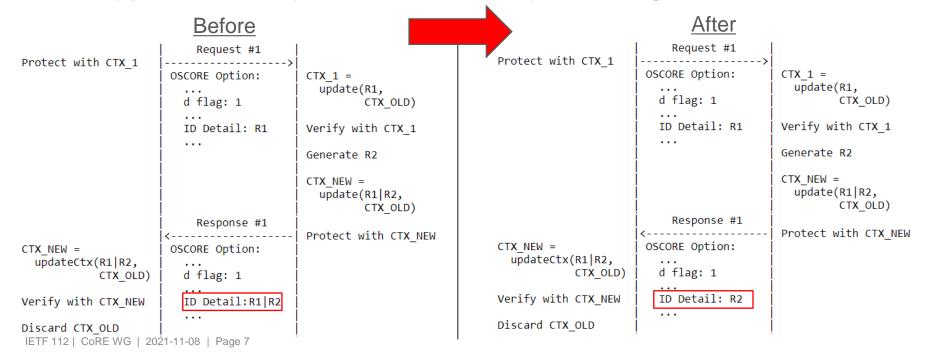
Verify with CTX NEW

Request #2

Response #2

// The two peers can use the new Security Context CTX NEW.

Verify with CTX NEW


Discard CTX OLD

Protect with CTX NEW

IETF 112 | CoRE WG | 2021-11-08 | Page 6

Key update (2/4)

- No more R1 in the Response #1 for the client-initiated rekeying
 - Just like in OSCORE Appendix B.2
 - Simply not needed: Response #1 correlates to Request #1 through the CoAP Token

Key update (3/4)

- > Recommendations on minimum length of R1 and R2 values
 - R1 and R1 | R2 are used as nonces
 - Motivation is based on similar considerations for Appendix B.2 in RFC8613
 - We now recommend minimum 8 bytes, is this sufficient?
 - Further text needs to be added as in Appendix B.2. e.g. mentioning the birthday paradox
- Currently MUST terminate ongoing observations after rekeying (derived CTX_NEW)
 - Possible to keep them ongoing for a price, i.e. admitting an earlier use of large Partial IVs
 - Possible solution: after a rekeying, the client considers PIV* as the highest req_piv among all the ongoing observations. Then, when the client starts the first new observation, the SSN jumps to PIV*+1, thus every observation request has a PIV greater than PIV*.
 - Drawback: Big jumps in PIV, i.e., faster consumption and larger communication overhead
 - (More complicated solutions like reserving some PIVs in a bit-map is also possible)
 - Is it worth keeping observations ongoing across a rekeying? Plan is to not keep observations

Key update (4/4)

- Added and discussed 6TiSCH as use case
 - 6TiSCH uses OSCORE Appendix B.2 to handle failure events
 - If the 6TiSCH JRC severely fails, it can use Appendix B.2 with the pledges (RECOMMENDED)
 - The new key update procedure is a good replacement, especially for 6TiSCH
 - Among its intrinsic advantages compared to Appendix B.2, it preserves the ID Context across rekeying
 - > 6TiSCH uses ID Context as pledge identifier, meaning that:
 - → A key update would not change pledge identifier, which remains unchanged in the long run
 - > → The JRC does not need anymore to do a remapping between new ID Context and pledge identifier
 - → ID Contexts and pledge identifiers can be used as intended at setup/deploy time

- > The update to RFC8613 includes also "deprecating and replacing" its Appendix B.2
 - Ok with this?

More general updates

- Improved Table of Content structure
 - Key Limits
 - Current rekeying methods
 - New rekeying methods
 - Building blocks
 - Client-initiated procedure
 - Server initiated procedure
 - Policies
 - Discussion
- > Editorial improvements
 - Terminology harmonization
 - Alignment to most recent EDHOC interfaces
 - Use of RFC8126 terminology in IANA considerations
 - Updated title to Key Update for OSCORE (KUDOS) Feedback on title?

Next steps

- Address open points, including:
 - Material to save to disk to support rebooting
 - Reuse applicable considerations from OSCORE Appendix B.2
 - Update security considerations
 - Further refinement of key limits
- > The document foundation and the key update protocol are stable
- > Plan to implement
- > WG adoption?

Thank you!

Comments/questions?

https://gitlab.com/rikard-sics/draft-hoeglund-oscore-rekeying-limits/

OSCORE Option update

- OSCORE Option: defined the use of flag bit 1 to signal presence of flag bits 8-15
- Defined flag bit 15 -- 'd' -- to indicate:
 - This is a OSCORE key update message
 - "id detail" is specified (length + value); used to transport a nonce for the key update

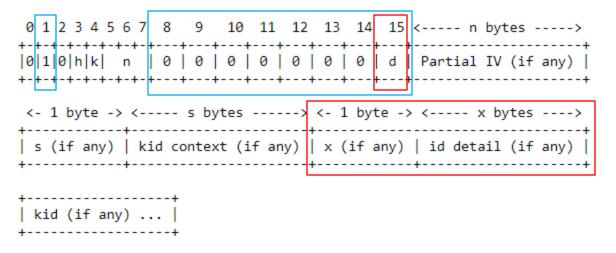


Figure 3: The OSCORE option value, including 'id detail'