OSCORE-capable Proxies

draft-tiloca-core-oscore-capable-proxies-01

Marco Tiloca, RISE
Rikard Höglund, RISE

IETF 112, CoRE WG, November 8th, 2021
Recap

› A CoAP proxy (P) can be used between client (C) and server (S)
 – A security association might be required between C and P --- examples in next slide

› Good to use OSCORE between C and P
 – Especially, but not only, if C and S already use OSCORE end-to-end

› This is not defined and not admitted in OSCORE (RFC 8613)
 – C and S are the only considered “OSCORE endpoints”
 – It is forbidden to double-protect a message, i.e., both over C ↔ S and over C ↔ P

› This started as an Appendix of draft-tiloca-core-groupcomm-proxy
 – Agreed at IETF 110 [1] and at the June CoRE interim [2] to have a separate draft

Some use cases

1. CoAP Group Communication with Proxies
 – `draft-tiloca-core-groupcomm-proxy`
 – CoAP group communication through a proxy
 – P must identify C through a security association

2. CoAP Observe Notifications over Multicast
 – `draft-ietf-core-observe-multicast-notifications`
 – If Group OSCORE is used for e2e security …
 – … C provides P with a Ticket Request obtained from S
 – That provisioning should be protected over C ↔ P

3. LwM2M Client and External Application Server
 – The LwM2M Client may communicate with an External Application Server, also using OSCORE
 – The LwM2M Server would act as CoAP proxy, forwarding outside the LwM2M domain
Contribution

› Twofold update to RFC 8613

1. Define the use of OSCORE in a communication leg including a proxy
 › Between origin client/server and a proxy; or between two proxies in a chain
 › Not only an origin client/server, but also an intermediary can be an “OSCORE endpoint”

2. Explicitly admit nested OSCORE protection – “OSCORE-in-OSCORE”
 – E.g., first protect end-to-end over C ↔ S, then further protect the result over C ↔ P
 – Typically, at most 2 OSCORE “layers” for the same message
 › 1 end-to-end + 1 between two adjacent hops
 – Possible to seamlessly apply >2 OSCORE layers to the same message

› Focus on OSCORE, but the same applies “as is” to Group OSCORE
Updates since v -00

› Version -00 and planned updates presented at the September interim meeting [3]

› Latest version -01 addresses comments from Göran and Christian – Thanks!
 – Suggestions for more uses case to mention
 – Lift the limit of 2 OSCORE layers applied to the same message
 – Main feedback: the original presentation of message processing was too complicated

› Added more use cases, now in a new Section 2.4
 – Cross-proxy, as third party service to indicate transports available at the server [4][5]
 – Proxy as an entry point in a firewalled network, accessible only by authenticated clients
 – Privacy-oriented scenarios, with chain of proxies and >2 OSCORE layers per message

[5] https://mailarchive.ietf.org/arch/msg/core/RZH8pgyksEwtMYVE1MrPkJ9opyg/
Updates since v -00

› Revised presentation of message processing
 – Now much shorter and simpler
 – High-level general algorithm, fitting a client, proxy or server as a message processor
 – Now clearly said: no need for an explicit signaling method to guide the message processing

› Unlike RFC 8613, protect also these CoAP options when applying an OSCORE layer
 – An OSCORE Option, when present as the result of the immediately previous OSCORE layer
 – Options intended to the other OSCORE endpoint X, e.g., proxy related options when X is proxy

› Processing of an outgoing request
 – More options are protected (see above)
 – The origin client uses the Security Context shared with the origin server as first one
Processing of an incoming request REQ, based on what it includes

- **Case A** – Proxy-related options: included
 - Forward to the next hop, possibly adding a further OSCORE layer

- **Case B** – Proxy-related options: not included; OSCORE option: not included
 - Deliver to the application, if any

- **Case C** – Proxy-related options: not included; OSCORE option: included
 - Decrypt REQ using the Security Context retrieved through the OSCORE option
 - Repeat the (A/B/C) condition assessment over the decrypted request

Error handling is also documented in the draft
Updates since v -00

› Processing of an outgoing response
 – More options are protected (see previous slide)
 – The origin server uses the Security Context shared with the origin client as first one
 – Apply the same OSCORE layers removed from the request
 › In the reverse order than the one they were removed
 › Only the successfully removed layers, if it is an error response

› Processing of an incoming response
 – Remove the same OSCORE layers added to the request
 › In the reverse order than the one they were added
 – The layers to remove are at most as many as the added ones
Summary and next steps

› Proposed update to RFC 8613
 – Define the use of OSCORE in a communication leg including a proxy
 – Explicitly admit nested OSCORE protection – “OSCORE-in-OSCORE”

› Main update in v-01
 – Message processing simplified and generalized to >2 OSCORE layers
 – Removed detailed breakdown and heavy notation → document much shorter and simpler

› Next steps
 – Add examples
 – Discuss caching of responses, building on draft-amsuess-core-cachable-oscore
 – Elaborate on applying >2 OSCORE layers to a same message
 – Look into CoAP header compression from RFC 8824. Use as is? Need for adaptations?

› More comments and input are welcome!
Thank you!

Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
Some use cases

› CoAP Group Communication with Proxies
 – *draft-tiloca-core-groupcomm-proxy*
 – CoAP group communication through a proxy
 – Possible e2e security with Group OSCORE
 – P must identify C through a security association before forwarding a request to the group

› CoAP Observe Notifications over Multicast, with Group OSCORE for e2e security
 – *draft-ietf-core-observe-multicast-notifications*
 – C provides P with a Ticket Request obtained from S
 – This allows P to correctly listen to multicast notifications sent by S
 – The provisioning of the Ticket Request to P should be protected over C ↔ P
Some use cases

- **OMA LwM2M Client and External Application Server**

 OSCORE MAY also be used between LwM2M endpoint and non-LwM2M endpoint, e.g., between an Application Server and a LwM2M Client via a LwM2M server. Both the LwM2M endpoint and non-LwM2M endpoint MUST implement OSCORE and be provisioned with an OSCORE Security Context.

 - The LwM2M Client may register to and communicate with the LwM2M Server using OSCORE
 - The LwM2M Client may communicate with an External Application Server, also using OSCORE
 - The LwM2M Server would act as CoAP proxy, forwarding outside the LwM2M domain