
René Struik

Struik Security Consultancy

E-mail: rstruik.ext@gmail.com

IETF 112 – virtual Madrid, USA, November 2021

Verification-Friendly

ECDSA

(and use with JOSE/COSE)

1

1. ECC Signature Schemes:

– ECDSA Signing and Verification

– Speed-ups with ECDSA*

2. Putting ECDSA and ECDSA* into same format

– JWS Example

– General Approach for Reusing ECDSA Standard

3. Transitioning Considerations

4. Conclusions, next steps

Outline

2

ECDSA:

Signature: r || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: Compute R´ = (e/s) G + (r/s) Q, where Q= d G;

check that R´ → r

Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.)

ECDSA*:

Signature: R || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: compute R → r;

compute R → R

check that R = (e/s) G + (r/s) Q, where Q= d G

ECDSA and ECDSA* have same security, but different formats

ECDSA* allows faster verification

speed-ups: ~1.3x make scalars small, which halves ECC doubles (single verify)

up to ~ 6x amortize ECC doubles and common terms (batch verify)

(This uses alternative verification equation: λ (- R + (e/s) G + (r/s) Q) = O for any λ≠0)

ECDSA Algorithm

3

ECDSA:

Signature: r || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: Compute R´ = (e/s) G + (r/s) Q, where Q= d G;

check that R´ → r

Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.)

ECDSA*:

Signature: R || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: compute R → r;

compute R → R

check that R = (e/s) G + (r/s) Q, where Q= d G

ECDSA and ECDSA* have same security, but and different same formats (with a trick)

(our examples assume prime-order curves)

ECDSA* allows faster verification

speed-ups: ~1.3x make scalars small, which halves ECC doubles (single verify)

up to ~ 6x amortize ECC doubles and common terms (batch verify)

(This uses alternative verification equation: λ (- R + (e/s) G + (r/s) Q) = O for any λ≠0)

ECDSA Algorithm

4

5

JWS Example
JWS Protected Header:

{"alg":"ES256"}

JWS Payload:

{"iss":"joe",

"exp":1300819380,

"http://example.com/is_root":true}

JWK Key:

{"kty":"EC",

"crv":"P-256",

"x":"f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU",

"y":"x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0"}

ECDSA signature (r, ± s):

r: 0x0ed12153 79636c48 3c2f7f15 5807d402 a3b22803 3af97c7e 17819ac3 169ea665

+s: 0xc50a07d3 8c3c70e5 d8f12daf 084a5480 a66590c5 f293509a 8f3f7f8a 83a354d5

-s: 0x3af5f82b 73c38f1b 270ed250 f7b5ab7f 168169e7 b4844dea 647a4b38 78bfd07c

Option #1: with ECDSA signature (r,+s)
eyJhbGciOiJFUzI1NiJ9.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSApmWQxfKTUJqPP3-Kg6NU1Q

Option #2: with ECDSA signature (r,-s)
eyJhbGciOiJFUzI1NiJ9.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmU69fgrc8OPGycO0lD3tat_FoFp57SETepkeks4eL_QfA

with ECDSA (r, +s)…

with ECDSA (r, -s)…

(RFC 7515, Appendix A.3)

6

JWS Example
JWS Protected Header:

{"alg":"ES256"}

JWS Payload:

{"iss":"joe",

"exp":1300819380,

"http://example.com/is_root":true}

JWK Key:

{"kty":"EC",

"crv":"P-256",

"x":"f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU",

"y":"x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0"}

ECDSA signature (r, ± s):

r: 0x0ed12153 79636c48 3c2f7f15 5807d402 a3b22803 3af97c7e 17819ac3 169ea665

+s: 0xc50a07d3 8c3c70e5 d8f12daf 084a5480 a66590c5 f293509a 8f3f7f8a 83a354d5

−s: 0x3af5f82b 73c38f1b 270ed250 f7b5ab7f 168169e7 b4844dea 647a4b38 78bfd07c

Option #1: with ECDSA signature (r,+s)
eyJhbGciOiJFUzI1NiJ9.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSApmWQxfKTUJqPP3-Kg6NU1Q

Option #2: with ECDSA signature (r,-s)
eyJhbGciOiJFUzI1NiJ9.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmU69fgrc8OPGycO0lD3tat_FoFp57SETepkeks4eL_QfA

with ECDSA (r, +s)…

with ECDSA (r, −s)…

(RFC 7515, Appendix A.3)

R:=(xR,yR), with yR even

R:=(xR,yR), with yR odd

7

JWS Protected Header:

{"alg":"ES256"}

JWS Payload:

{"iss":"joe",

"exp":1300819380,

"http://example.com/is_root":true}

JWK Key:

{"kty":"EC",

"crv":"P-256",

"x":"f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU",

"y":"x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0"}

ECDSA signature (r, ± s):

r: 0x0ed12153 79636c48 3c2f7f15 5807d402 a3b22803 3af97c7e 17819ac3 169ea665

+s: 0xc50a07d3 8c3c70e5 d8f12daf 084a5480 a66590c5 f293509a 8f3f7f8a 83a354d5

−s: 0x3af5f82b 73c38f1b 270ed250 f7b5ab7f 168169e7 b4844dea 647a4b38 78bfd07c

Rule: Choose ECDSA option (r, ± s) such that R:=(xR, yR) with yR even

Option #2: with ECDSA signature (r,-s)
eyJhbGciOiJFUzI1NiJ9.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmU69fgrc8OPGycO0lD3tat_FoFp57SETepkeks4eL_QfA

(RFC 7515, Appendix A.3)

with ECDSA (r, −s)…

R:=(xR,yR), with yR even, so r→ R unique (r=xR in practice)

JWS Example

ECDSA:

Signature: r || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: Compute R´ = (e/s) G + (r/s) Q, where Q= d G;

check that R´ → r

Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.)

ECDSA*:

Signature: R || s in most-significant-bit/octet first order

Signing equation: e = s ⋅ k - d ⋅ r (mod n), where e=Hash(m), R=k G, R → r

Verification: compute R → r;

compute R → R

check that R = (e/s) G + (r/s) Q, where Q= d G

ECDSA and ECDSA* have same security, but and different same formats (with a trick)

ECDSA* via modified ECDSA signing procedure

− Step 1: Generate ECDSA signature (r, s) of message m, as usual;

− Step 2: Change (r, s) to (r,-s) if ephemeral key R has y-coordinate with odd parity

ECDSA and ECDSA* have same format, since R → r map reversible (r → ±R unique in practice)

ECDSA Algorithm

Notes:

− If (r, s) is a valid ECDSA signature, then so is (r, -s) −− the so-called malleability

This modified ECDSA signature is still an ECDSA signature, so no security impact

− Any party can perform Step 2, since for valid signatures R:=(e/s) G + (r/s) Q

This party does not have to be the signer and this can be done retroactively

Impact on ECDSA verifiers:

− If verifier knows that modified signing procedure was used, R‘ → r has unique preimage

in practice for all prime-order curves (implicit point compression R) and speed-ups always

work

− If verifier does not know that modified signing procedure was used, it can still verify

ECDSA signatures as usual (but will not get single-verify and batch verification speed-ups)

− If verifier wishes to use ordinary ECDSA signature verification for whatever reason, it can

do so

Implementation of ECDSA*

9

ECDSA* via modified ECDSA signing procedure

− Step 1: Generate ECDSA signature (r, s) of message m, as usual;

− Step 2: Change (r, s) to (r,-s) if ephemeral key R has y-coordinate with odd parity

Transitioning towards ECDSA*
Applications with IETF protocols:

Everywhere, e.g., PKIX, CMS, Certificate Transparency, OpenPGP, COSE, JOSE, lake, etc.

JOSE:

− Define new "alg" field named "ES256vf" (ES256 with modified signing)

− Verifier who does not want to use speed-ups interprets this as "ES256"

This is possible since ECDSA* signatures are also ECDSA signatures

− Signer can use modified ECDSA signing procedure

Use of new label does not allow retroactively putting “ES256”-based JWS signatures into

ECDSA* format, since the new label is part of the “to-be-signed data”

Note: this would be possible, if one would replace “ES256vf” by “ES256” before signing and

verification, but this likely would create JWS processing anomalies

Alternatives:

− Put all existing ECDSA signatures retroactively into ECDSA* format (“Big Bang”);

− Mandate in specific protocols.

Question is whether this would entice implementors enough to switch to always-on ECDSA*.

This also comes down to side-information re whether the modified signing procedure was

followed that is not part of the JWS string (something JSON parsers may not be able to handle)

10

Conclusions & Question to Group
Summary:

− ECDSA verification can take advantage of ECDSA* speed-ups, similarly to EdDSA,

both in single-verify and batch-verify cases

− Techniques useful in all settings, where use of the modified ECDSA signing

procedure can be signalled

− Techniques known since 2005 (single-verify), 1995 (batch-verify), published in

well-respected, peer-reviewed crypto conferences. {Also used in Bitcoin signing}

Why now, why here?

− techniques known for long; standardization incentive for implementation needed

− e-health initiatives (e.g., SmartHealth, IATA Pass (jws); EU digital covid certs (cose))

Question to Group:

− Does group support this work, once crypto review gating hurdle taken?

− How can we make this quick project, so that it can have real-life impact?

(e.g., already reserving code points, so that this does not become a dead horse)

− Any volunteers for implementation, getting this done asap, etc.?

− Any pointers to iana templates, other than Section 9 of RFC 7515?

11

