DANE TLS Client Authentication

draft-hugue-dane-client-cert-07
draft-huque-tls-dane-clientid-05

IETF 112; DANCE Working Group
Friday, November 12th 2021
Shumon Huque

https://datatracker.ietf.org/doc/html/draft-huque-dane-client-cert-07
https://datatracker.ietf.org/doc/html/draft-huque-tls-dane-clientid-05

Protocol Goal & History

e Goal: Authenticate client side of TLS connection with DANE

e History
o Drafts originally developed in mid 2015
o Target use cases: IOT device authentication & SMTP Transport security

Protocol Summary

e C(Client has a DNS domain name identity

o A public/private key pair & a certificate binding the public key to the domain name
o Corresponding DANE TLSA record published in DNS

e TLS server

o Sends Certificate Request message in handshake; extracts client identity from presented
certificate, constructs TLSA query, validates DANE TLSA response with DNSSEC

Protocol Summary

e New TLS extension for conveying client's DANE identity to the server

O O O O

For signaling support for DANE TLS client authentication (empty extension if signal only)
For conveying client DNS identity when used with TLS raw public key auth (RFC 7250)

In TLS 1.3, this extension is carried in the (encrypted) Client Certificate message.

In TLS 1.2 it is carried in the first client Client Hello extension, and thus has no provision for
privacy protection.

(Optionally, the server can also send an empty extension to signal that it supports this
capability. TLS 1.3: Certificate Request message, TLS 1.2: Server Hello extension)

Client DNS Naming Convention

Draft is not proscriptive, but proposes 2 naming formats that may be generally suitable for many types of
applications.

Format 1: Service specific client identity
_service.[client-domain-name]

e.g.
_smtp-client.relay1.example.com

1st label identifies the application service name. The remaining labels are composed of the client domain
name. Allows the same client to have distinct authentication credentials for distinct application services.

Client DNS Naming Convention

Format 2: (I0OT?) Device ldentity
[deviceid]._device.[org-domain-name]
e.g.
a1b2c3. device.subdomain.example.net.
“a1b2c3”: device identifier (could be multiple left most labels)
_device: identity grouping label

subdomain: organizational label(s) (optional)
example.net: organizational domain

sensor’/. device.example.com. IN TLSA (
312
0£f8b48ff5£fd94117£f21b6550aaee89c8
d8adbc3f433c8e587a85a14e54667b25
f4dcd8c4ae6162121ea9166984831b57
b408534451£fd1b9702£8de0532ecd03¢c)

TLS Client
eg. 0T
Device

e

TLS Handshake Start

Server Certificate; Client Certificate Request

Client Certificate ¢ DANE Indication

Server
g./I0T
Controller

Verify client's certificate
against DANE TLSA
record in the DNS

Protocol annotation for TLS 1.3

TLS CLIENT
Key 7 ClientHello
Exch | + key share*
| + psk key exchange modes~*

v + pre shared key* = —--—--—-- >
< ________
~ {Certificate}
Auth | {CertificateVerify*}
v {Finished} ———————- >
[Application Datal] < >

TLS SERVER

ServerHello

+ key share*

+ pre shared key*
{EncryptedExtensions}
{CertificateRequest}

{Certificate*}
{CertificateVerify*}
{Finished}
[Application Data*]

[Application Data]

~ Key
| Exch
v

Server
v Params

| Auth

10

TLS CLTIENT TLS SERVER

Key 7 ClientHello
Exch | + key share*
| + psk key exchange modes~*

v + pre shared key* = —-——-———- >
ServerHello * Key
+ key share* | Exch
+ pre shared key* v
{EncryptedExtensions} ~ Server
{CertificateRequest v Params
[*+DANE Client ID ex]t}
{Certificate™’ ~
{CertificateVerify*} | Auth
{Finished} v
Lmm [Application Data*]
~ {Certificate}
Auth | {CertificateVerify*} Optiona' Capabmty
v {Finished} — —mmmmmm- > advertisement
via empty extension.
Lmmm > [Application Data]

[Application Datal]

11

TLS CLIENT

Key 7 ClientHello

Exch | + key share*
| + psk key exchange modes~*
v + pre shared key*

~ {Certificate
+DANE Client ID ext])}
Auth | {CertificateVerify*}
v {Finished}

[Application Datal]

TLS SERVER

~ Key
Exch

ServerHello

+ key share* |

+ pre shared key* v
{EncryptedExtensions} ~ Server

{CertificateRequest v Params
*+DANE Client ID ext}
{Certificate*} ~
{CertificateVerify*} | Auth

{Finished} v
[Application Data*]

Empty extension: convey intent to be
authenticated via DANE. For raw pubkey
authentication, convey client’s full domain
name.

[Application Data]

TLS CLIENT

Key 7 ClientHello

Exch | + key share*
| + psk key exchange modes~*
v + pre shared key*

~ {Certificate
+DANE Client ID ext]}
Auth | {CertificateVerify*}
v {Finished}

[Application Datal]

TLS SERVER

ServerHello

+ key share*

+ pre shared key*

{EncryptedExtensions}
{CertificateRequest

A

A\

AN

A\

*+DANE Client ID ext}

{Certificate*}
{CertificateVerify*}
{Finished}
[Application Data*]

[Verify Client w/ DANE]
[TLS alert on failure]

|

———————— >
< ________
———————— >
<——————= >

[Application Data]

AN

A\

Key
Exch

Server
Params

Auth

Extract client’s identity,
lookup TLSA RRset and
authenticate the client’s
cert or pubkey.

13

Discussion & next steps

e Should these drafts be used as the initial protocol building blocks for DANCE?
e If so, we should adopt them as WG documents.

14

Extra slides for Reference

15

1-Slide DANE Primer

data (hex encoded) associated with the
port, protocol, domain name certificate or public key

Y

[25. tcp. ma:|.l example com] IN TLSA (
|3 1 1| d2abde240d7cd3ee6b4b28c54d£034b9
T 7983a1d16e8a410e4561cb106618e971))

Selector O: Full Certificate

Parameters: Usage, Selector, Matching-Type Selector 1: Public Key (could be raw)
Usage 0: PKIX-CA: CA Constraint]

Usage 1: PKIX-EE: Service Cert Constraint Matching-Type 0: Full Content
Usage 2: DANE-TA: Trust Anchor Assertion Matching-Type 1: SHA-256 Hash
Usage 3: DANE-EE: Domain Issued Certificate Matching-Type 2: SHA-512 Hash

DANE record in this example specifies the SHA256 hash of the subject public key of the
certificate that should match the End-Entity certificate. Authenticated entirely in the DNS.

