Bundle Protocol Security
COSE Context

IETF 112 DTN WG

Brian Sipos
JHU APL
Background

- BPSec and its Default Security Context are usable but intentionally limited in scope:
 - A limited number of symmetric-keyed encryption and MAC algorithms.
 - Defines a variable additional authenticated data (AAD) scope.
 - No explicit key identifiers are available.

- For internet-facing nodes, possibly as subnetwork gateways, there is a need for PKI-integrated security.
 - This was indicated also by SECDIR review of BPSec draft.

- Don’t want to reinvent the wheel, and CBOR Object Signing and Encryption (COSE) already provides syntax and semantics for current and future security algorithms.
Goals for the BPSeq COSE Context

• No not alter BPSeq structures or requirements.
 - This is purely an extension within the existing security context mechanism.
• Handle current symmetric-keyed and PKIX algorithms.
 - Leverage existing algorithm definitions.
• Follow algorithm-use and key-use best practices.
 - Avoid key overuse, use random content encryption keys.
• Inherit future gains made by COSE off-the-shelf algorithms.
Proposed COSE Context Contents

• One BPSeq context codepoint defined to use in BIB and BCB.

• Parameter and result types defined for each BPSeq block type:
 - AAD scope parameter (same semantics as Default SC)
 - De-duplicated COSE header parameters
 - Integrity results (COSE MAC and Signature)
 - Confidentiality results (COSE Encrypt with AEAD)

• Public keys in context parameters to de-duplicate data.
 - Potential future extensions could provide additional supporting data (e.g. OCSP stapling).

• Full COSE messages in each target’s result.
 - Reuse COSE message tags as result type codes.
 - Allows an application to use any current or future COSE algorithm types (and combinations).
 - Allows multiple recipients for a single security block (both BIB and BCB).
 - Interoperability requirements are defined in a COSE Profile (next slide).
Interoperability Profile

- Required algorithms for AES-GCM-256, AES key-wrap, and HMAC-SHA2-256.
- Recommended algorithms for Elliptic Curve, Edwards Curve, and RSA signing and key-wrap/key-generation.
- Additional public key material can be included in an “additional header map”, applying to all results in the block.

<table>
<thead>
<tr>
<th>BPSeq Block</th>
<th>COSE Layer</th>
<th>Name</th>
<th>Code</th>
<th>Implementation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>1</td>
<td>HMAC 256/256</td>
<td>5</td>
<td>Required</td>
</tr>
<tr>
<td>Integrity</td>
<td>1</td>
<td>ES256</td>
<td>-7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Integrity</td>
<td>1</td>
<td>EdDSA</td>
<td>-8</td>
<td>Recommended</td>
</tr>
<tr>
<td>Integrity</td>
<td>1</td>
<td>PS256</td>
<td>-37</td>
<td>Recommended</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>1</td>
<td>A256GCM</td>
<td>3</td>
<td>Required</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>A256KW</td>
<td>-5</td>
<td>Required</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>ECDH-ES + A256KW</td>
<td>-31</td>
<td>Recommended</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>ECDH-SS + A256KW</td>
<td>-34</td>
<td>Recommended</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>RSAES-OAEP w/ SHA-256</td>
<td>-41</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

Table 5: Interoperability Algorithms
Next Steps

• This is not intended to replace or supersede existing BPSeq interoperability contexts (draft-ietf-dtn-bpseq-interop-sc).

• The point here is to allow BPSeq in a PKIX environment in the very near term.
 - COSE is a known quantity with existing coding and processing tools.
 - Identifying bundle security purpose and validation of a Node ID within a PKIX certificate are already defined in TCPCLv4.

• Some secondary questions remain:
 - E.g. how does a security acceptor handle a BIB signed by a key with a certificate for a different Node ID than the security source? Base BPSeq doesn’t really deal with identity logic.
 - A BIB with an “x5t” reference can include the signing certificate (chain). Should a BCB with an “x5t” recipient also include the recipient certificate itself? This is comparable to S/MIME logic.