Bundle Protocol Version 7
Wireshark Dissectors

IETF 112 DTN WG

Brian Sipos
JHU APL
Since early 2019 there has been a development version of TCPCLv4, BPv7, and (since late 2019) BPSec.

These were used as both proof-of-concept and steering for TCPCL and as a framework for higher-level protocols:
- ACME Node ID Validation
- BPSec COSE context

Recently these were integrated into wireshark main-branch dissectors for TCPCL and “bundle”.
- TCPCL uses explicit contact header version negotiation, v3 was pre-existing.
- The “bundle” dissector (used by TCPCL, UDPCL, LTP) uses version introspection, v4-6 were pre-existing.
Current Behavior

• The dissectors use wireshark “dissector tables” to delegate handling:
 - TCPCLv4 session and transfer extension types
 - BPv7 block types (with all types from BPbis included)
 - BPv7 Administrative Record types (types from BPbis included)
 - BPv7 payload (based on IPN service number and DTN demux name)
 - BPSec per-context parameter types and result types (with default context included)

• The TCPCL dissector includes de-fragmentation and sequence analysis (time-for-full-transfer, time-to-ACK-segment, etc.).
 - Packet icons indicate segment ACK associations.
 - During integration this was applied to TCPCLv3 as well.

• The TCPCL dissector lost the ability to opportunistically dissect messages when contact headers are not captured.

• The BPv7 dissector includes de-fragmentation and sequence analysis (duplicate identity detection, status report cross-reference, etc.)
 - Packet icons indicate status subjects and bundle retransmits.
 - The block dissector is also BPSec-aware, indicating which blocks are BIB or BCB targets.
TCPCLv4 Example Capture

Example shows init/termination, segmented transfer, and message packing.

Frame 20: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface any, id 0
Linux cooked capture v1
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
DTN TCP Convergence Layer Protocol Version 4
- TCPCLv4 Message: XFER_ACK, Xfer ID: 1, Flags: START
 Message Type: XFER_ACK (0x02)
 Transfer Flags: 0x02, START
 Acknowledged ID: 0x0000000000000001
 Acknowledged Length: 100 octets
 [Expected Total Length: 199]
 [Related XFER_SEGMENT: 12]
 [Acknowledgment Time: 0.004187297 seconds]
 [Related XFER_SEGMENT start: 12]
 [Time since transfer Start: 0.004187297 seconds]
- TCPCLv4 Message: XFER_ACK, Xfer ID: 1, Flags: END
- TCPCLv4 Message: XFER_ACK. Xfer ID: 2. Flags: START
BPv7 Example Capture

Example shows Admin status record with BIB covering payload data.
Future and Maintenance

• The BPv7 dissector, without enhancements, is in the 3.6 release branch.

• The TCPCLv4 dissector and some BPv7 related enhancements (fall-through heuristic BTSD dissection) will likely be in 3.8 release.

• The current bundle version introspection logic is not based on any documented standard.
 - There is a similar logic proposed as a part of draft-sipos-dtn-udpcl, and could be extracted as a separate short document.

• TCPCL opportunistic message dissection could be added.
 - This could be done with known-message-type header detection, and some assumptions (i.e. check v4 types first, then v3)

• Now that the dissectors are in the upstream Wireshark project, proposed and future extensions can use this as a basis for experimentation and analysis.
 - The Wireshark project issue tracker is the right place for identifying defects and enhancements.