
Operating System-Level Load Distribution for Network
Telemetry Data Collection

Eduard Bachmakov
2021-11 @ IETF112 grow

1



Network telemetry and you

Traditional networks maintain distributed state across many devices and
applications.

Observability requires joining relevant bits of state across devices and from
different perspectives.

“perspectives”? control plane, forwarding plane, device topology
“relevant”? obtain via specialized network telemetry protocols

2



Obtaining network telemetry

Device configuration is hard, fragile, and comes with a long tail in actuation.
Preferred solution: globally consistent endpoint address.

Usable for load balancing!

1. Anycast for regional routing
2. ECMP for flow balancing
3. On-host balancing across processes

3



Background



Goal & setup

Setting: network with some number of routers configured to push network
telemetry to a specific host.

Goal:

• combining control plane and forwarding plane information, per source
device

• IPFIX & BMP (and more)

• collector daemon: pmacct’s nfacctd
• (later steps: message broker→ storage system→ OLAP queries)

4



Data flow routing

To combine the data we need to ensure that both network telemetry data streams
hit the same collector daemon.

Solution: proxies.

• HAProxy for TCP-based telemetry protocols (i.e. BMP)
• nfacctd for UDP-based ones (i.e. IPFIX)

5



Data flow routing: visualization

Operator network

Collector Host

router1

HAProxy

BMP nfacctd0

IPFIX

router2

BMP

IPFIX

router3

BMP

IPFIX

nfacctd1

nfacctd2

BMP for 1,3

BMP for 2

IP Mapping
map[ip] == dst

IPFIX for 1,3

IPFIX for 2

6



Data flow routing: issues

• Reliability
• Overhead
• Large configuration space

devices︷︸︸︷
K × L︸︷︷︸

protocols

×
frontends︷︸︸︷
M × N︸︷︷︸

backends

7



Design



Refresher: SO_REUSEPORT

• Multiple processes bind to the same IP:port combination, forming a
“reuseport group”.

• During local delivery of TCP/UDP packets, on socket lookup,
• all new TCP connections and
• all UDP datagrams are distributed among the reuseport group.

• socket assignment determined by hash of 5-tuple

Good start, however, uncontrolled assignment is not acceptable …

… but we can influence this using eBPF!

8



Refresher: eBPF

eBPF is a Linux kernel subsystem allowing users to attach custom logic at specific
hooks at runtime.

Properties:

• virtual machine with restricted instruction set optimized for JIT-compilation
• limited functionality (not Turing-complete)
• on-load safety/security verification
• well defined interface to userspace (“eBPF maps”)
• not a kernel modification, not a kernel module
• public API/ABI→ stability

One of the available hooks is right at the SO_REUSEPORT socket selection!

9



Core design

Now the pieces are in place. We can now

1. register all participating collector daemons in a lookup table (i.e. a special
eBPF map),

2. create an algorithm to find the appropriate socket for a given, incoming
packet,

bucket := h
(
ipsrc,���*

0
ipdst,����:0portsrc,����:0portdst,����:0proto

)
mod N

���: intendednow

3. bundle that logic in a “SK_REUSEPORT” eBPF program, and
4. attach a SK_REUSEPORT eBPF program to the reuseport group.

10



Design Implications

We have now achieved balancing that is

• stateless,
• based on device identity only,
• stable across restarts,
• prevents cascading failures,
• requires virtually no configuration.

11



Conclusion



Summary

Network telemetry aggregation has additional, special requirements for load
balancing.

We designed and implemented a system addressing these requirements using
in-kernel loadbalancing via eBPF.

Balancing is device scoped and cross-protocol balancing across an arbitrary
number of collection endpoints.

Enables reliable network monitoring by ensuring robust correlation of network
telemetry data at the collection endpoint.

Requires less maintenance effort and much less configuration overhead than the
previously existing architecture.

Evaluation shows more efficiently than the previously existing system.
12



Questions? Answers!

Same stuff—many, many more words: doi.org/10.3929/ethz-b-000507440

https://doi.org/10.3929/ethz-b-000507440


Backup



Resource usage: CPU

0.0 0.5 1.0
Time (normalized)

0

50

100

150

200

250
C

PU
us

ag
e

(m
s/

s)
Proxy-based

user
sys

0.0 0.5 1.0
Time (normalized)

0

50

100

150

200

250
BPF-based

user
sys



Resource usage: memory

0.0 0.5 1.0
Time (normalized)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
U

sa
ge

(G
B

)
Proxy-based

cache
unevictable
RSS

0.0 0.5 1.0
Time (normalized)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
BPF-based

cache
unevictable
RSS


	Background
	Design
	Conclusion
	Appendix
	Backup


