CCID5: An implementation of the BBR Congestion Control algorithm for DCCP

Nathalie Romo Moreno

https://www.ietf.org/id/draft-romo-iccrg-ccid5-00.txt

Introduction

Background

➤ Target

Extend DCCP with a new CC algorithm -> BBR

Motivation

- All the current standardized algorithms for DCCP (CCID2, CCID3, CCID4) are loss-based
- Application to multipath scenarios where the latency difference among paths is a key factor -> Use BBR within MP-DCCP.

https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-dccp-05 https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-frameworkmpdccp-01

 Proven result of BBR for TCP: low latency, high bandwidth and avoidance of buffer bloating

Progress

Development

- BBR v1->CCID5 (for DCCP) -> Within the Linux kernel 4.14 -> available as open source. <u>https://github.com/telekom/mp-</u> <u>dccp/blob/master/net/dccp/ccids/ccid5.c</u>
- Challenge: Due to the unreliable nature of DCCP all functions related to ACK generation and processing are part of the CCID definition.
- > Standardization
- Adopt existing and mature (TCP) BBR as a new CCID profile for DCCP.

https://www.ietf.org/id/draft-romo-iccrg-ccid5-00.txt

Early results

Single Path

- CCID5 shows significant improvement in terms of latency for both: single and multipath scenarios, when a BW limitation is imposed in the path
- In the multipath scenario, CCID5 also improves the scheduling performance
- Conceptual basis of TCP BBR as well as existing studies and results are valid for DCCP

Multi Path – UDP traffic over MP-DCCP

Further details can be found at: https://dl.acm.org/doi/10.1145/3472305.3472322

Clash of BBR requirements and DCCP features

Tests in live network

Deeper BW drops were found for CCID5 on ProbeRTT phase

> Analysis

- BBR requirement: Restauration of cwnd when leaving probeRTT phase
- DCCP feature: The big change in the cwnd requires a synchronization of the Sequence and ACK validity windows [<u>RFC4340</u> section 7.5]

 The problem: The probeRTT phase duration acquires a latency dependency -> The synchronization extends its duration at least one RTT

Clash of BBR requirements and DCCP features

Temporary solution

 Pro-active update of local values even if the confirmation has not been received yet (feature negotiation not finished)

New or enhanced feature for Sequence Window negotiation in DCCP required?

Tests in live network

 After applying the change, the depth of the BW drops in CCID5 is reduced -> results comparable to BBR TCP

Conclusion

- > Adopt existing and mature (TCP) BBR as a new CCID profile
 - > All simulation and verification from TCP are kept valid for DCCP
 - Main differences come from the unreliable nature of DCCP -> ACK definition

https://www.ietf.org/id/draft-romo-iccrg-ccid5-00.txt

What would be the right please to discuss the Sequence window negotiation problem (slides 4 and 5)? ICCRG OR TSVWG?