P2MP Policy

Draft-hb-idr-sr-p2mp-policy

Authors:
Hooman Bidgoli, Nokia
Daniel Voyer, Bell Canada
Andrew Stone, Nokia
Rishabh Parekh, Cisco
Serge Krier, Cisco
Arvind Venkateswaran, Cisco

Presenter Hooman Bidgoli
Update/Relevant Drafts

Multiple Vendors are in the mist of implementing this draft.

draft-spring-sr-replication-segment (adopted)

draft-ietf-pim-sr-p2mp-policy (adopted)

draft-hb-spring-sr-p2mp-policy-yang-01

draft-ietf-bess-mvpn-evpn-sr-p2mp-02 (adopted)

draft-hsd-pce-sr-p2mp-policy-03 (adoption call on going until Nov 25th)

draft-hb-idr-sr-p2mp-policy-04 (asking for adoption in this IETF, IPR call has been concluded)

draft-hb-pim-p2mp-policy-ping-001 (adoption call on going)
SR P2MP Policy

• A Point-to-Multipoint (P2MP) Policy connects a Root node to a set of Leaf nodes via Candidate Paths (CPs).
 • CPs have preferences, highest preference is the active CP
 • Each CP has two or more path instance for global optimization and MBB procedures

• A P2MP segment contains Replication Segments, each providing forwarding instructions and protection at Root, Transit Nodes and Leaf Nodes.

• It is identified via <ROOT, Tree-ID>

• PCC Initiated: Root and Leaves can be discovered via multicast procedures like NG-MVPN (RFC 6514, 6513) or PIM (Protocol Independent Multicast) on PCC and the relevant information send to the PCE

• PCE Initiated: Root and Leaves can be configured explicitly on the PCE or controller and programmed on the PCC
SR P2MP Objects

Non-SR-P2MP nodes

SID, Forwarding instruction for this segment

P2MP LSP Redundancy

End to End Optimization

Forwarding info

Fast Reroute

Replication Policy
- Node-ID
- Tree-ID
- Root
- Instance ID
- Inc Rep SID
- Rep SID Action

Forwarding Info
- Next-hop-group-id [nh-id] //array of nh
 - Next-hop-id <id>
 - Next-hop-add
 - Next-hop-int
 - Protect-nh <id>
 - Sid-list [list of outgoing labels]

SR P2MP Policy
- ROOT Node
- Leaf Node
- Constrains
- Tree-ID

Forwarding Info
- Next-hop-group-id [nh-id] //array of nh
 - Next-hop-id <id>
 - Next-hop-add
 - Next-hop-int
 - Protect-nh <id>
 - Sid-list [list of outgoing labels]
New BGP NLRI and Route Types

- New BGP NLRI, called the P2MP-POLICY NLRI
- A new SAFI is defined: the SR P2MP Policy SAFI, (Codepoint tbd assigned by IANA)
- Route Types
 - P2MP Policy route
 - Replication segment Binding SID route
 - Replication segment OIF route

P2MP Policy NLRI

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>route type</td>
<td>1 octet</td>
</tr>
<tr>
<td>length</td>
<td>1 octet</td>
</tr>
<tr>
<td>route type specific (variable)</td>
<td></td>
</tr>
</tbody>
</table>

P2MP Policy route

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-ID</td>
<td>4 or 16 octets (ipv4/ipv6)</td>
</tr>
<tr>
<td>Tree-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Distinguisher</td>
<td>4 octets</td>
</tr>
</tbody>
</table>

Replication Segment Binding SID route

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-ID</td>
<td>4 or 16 octets (ipv4/ipv6)</td>
</tr>
<tr>
<td>Tree-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Distinguisher</td>
<td>4 octets</td>
</tr>
<tr>
<td>instance-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Node-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Replication SID Length</td>
<td>1 octet</td>
</tr>
<tr>
<td>Replication SID</td>
<td>4 or 16 octets</td>
</tr>
</tbody>
</table>

Replication segment OIF route

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-ID</td>
<td>4 or 16 octets (ipv4/ipv6)</td>
</tr>
<tr>
<td>Tree-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Distinguisher</td>
<td>4 octets</td>
</tr>
<tr>
<td>instance-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Node-ID</td>
<td>4 octets</td>
</tr>
<tr>
<td>Downstream-Node Length</td>
<td>1 octet</td>
</tr>
<tr>
<td>Downstream-Node</td>
<td>4 or 16 octets</td>
</tr>
<tr>
<td>Outgoing-TreeSID Length</td>
<td>1 octet</td>
</tr>
<tr>
<td>Outgoing-TreeSID</td>
<td>4 or 16 octets</td>
</tr>
</tbody>
</table>
BGP SR P2MP Policy

SR P2MP Policy SAFI NLRI: <route-type p2mp-policy>

Attributes:
- Tunnel Encaps Attribute (23)
- Tunnel Type: (TBD, P2MP-Policy)
 - Preference
 - Policy Name
 - Policy Candidate Path Name
 - leaf-list (optional)
 - remote-end point
 - remote-end point
 - ...
 - path-instance
 - active-instance-id
 - instance-id
 - instance-id
 - ...

Candidate Path and its preference

List of leaves discovered by Controller

It can optionally be downloaded to the node for debug info

Path Instances under a candidate path, used for global optimization
BGP SR P2MP Policy

replication segment SAFI NLRI: <route-type non-sahred/shared
tree replication-segment-oif>

Attributes:
Tunnel Encaps Attribute (23)
Tunnel Type: (TBD Replication-Segment-oif)
segment-list
 weight (optional)
 protection (optional, must be present when protection flag is enabled for downstream-nodes)
segment
...
segment-list
 weight (optional)
 protection (optional, must be present when protection flag is enabled for downstream-nodes)
segment
segment
...
segment-list (protection segment list)
 protection (protecting the first segment list, can't have weight sub-tlv)
segment
segment
...
...

• With this new model each OIF is downloaded individually
• Closer implementation to Segment-Routing-Policy
• ECMP is optional for each OIF via multiple segment-list
• Protection is optional for each OIF via protection sub-tlv
Next Steps

• Comments welcome
• IPR call was done
• Asking for adoption
Thank You!
SR P2MP YANG Model

```yaml
++-rw p2mp-traffic-engineering!
  | | ++-rw tree-id uint32
  | | ++-rw root-address inet:ip-address
  | | ++-rw p2mp-policy-name? string
  | | ++-rw admin-state? enumeration
  | | ++-ro oper-state? enumeration
  | | ++-rw leaf-list*[leaf-address]
  | | | | ++-rw leaf-address inet:ip-address
  | | | | ++-rw admin-state? enumeration
  | | | ++-rw candidate-path*[protocol-id originator discriminator]
  | | | | ++-rw protocol-id enumeration
  | | | | ++-rw originator inet:ip-address
  | | | | ++-rw discriminator uint32
  | | | | ++-rw candidate-path-name? string
  | | | | ++-rw admin-state? enumeration
  | | | | ++-ro oper-state? enumeration
  | | | | ++-rw preference? uint32
  | | | ++-rw constraints*[index]
  | | | | ++-rw index uint32
  | | | | ++-rw attributes? uint32
  | | | | ++-rw explicit-routing*[index]
  | | | | | | ++-rw index uint32
  | | | | | | ++-rw attributes? uint32
  | | | | | | ++-rw path-instances*[index]
  | | | | | | | | ++-rw index uint32
  | | | | | | | | ++-rw instance-id?
  | | | | | | | | | | -> ../../../replication-segment/replication-id
  | | | | | | | | | ++-ro oper-state? enumeration
  | | ++-rw replication-segment*[node-address replication-id]
```

```yaml
++-rw replication-segment*[node-address replication-id]
  | | ++-rw node-address inet:ipv4-address
  | | ++-rw replication-id uint32
  | | ++-rw admin-state? enumeration
  | | ++-ro oper-state? enumeration
  | | ++-rw root-address inet:ipv4-address
  | | ++-rw tree-id? uint32
  | | ++-rw instance-id? uint32
  | | ++-rw replication-sid? uint32
  | | ++-rw downstream-nodes*[downstream-index]
  | | | | ++-rw downstream-index uint32
  | | | | ++-rw next-hop-address? inet:ip-address
  | | | | ++-rw next-hop-interface-name? if:interface-ref
  | | | | ++-rw protecting-next-hop? boolean
  | | | | ++-rw protect-nexthop-id? uint32
  | | | | ++-rw (label)?
  | | | | | | +--:(sid-list)
  | | | | | | | | ++-rw sid-list*[index]
  | | | | | | | | | | ++-rw index uint32
  | | | | | | | | | | | | ++-rw sid-segment-type? uint32
  | | | | | | | | | | | | | | ++-:(sr-policy)
  | | | | | | | | | | | | | | | | ++-rw sr-policy*[replication-sid]
  | | | | | | | | | | | | | | | | | | ++-rw replication-sid uint32
  | | | | | | | | | | | | | | | | | | | | ++-rw sr-policy? string
  | | | | | | | | | | | | | | | | | | | | | | | | +--:(rsvp-te)
  | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ++-rw rsvp-te*[replication-sid]
  | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +--rw replication-sid uint32
  | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +--rw rsvp-te-tunnel-id? uint32
```

...
Replication Segment

- Is the forwarding instructions for the P2MP LSP
 - Label instructions
 - Next-Hop information
 - Fast Reroute instructions

- A Replication segment is defined via following
 - Root: The root of the P2MP segment that the replication segment is for;
 - Tree-ID: Tree that the replication segment is part of;
 - Node-ID: The node this Replication Segment belongs too.
 - Instance-ID: Unique path-instance ID per <Root, Tree-ID>, it identifies a P2MP LSP.
 - Replication-SID: Segment ID for this Replication Segment.
 - Replication-SIDs can’t be stacked as each replication segment can be a egress or transit.
 - There could be exceptions like using a shared replication segment for FRR

- Two Replication Segments can be connected directly via adjacent nodes or they can be non-adjacent and connected via a SID List (Unicast)
Shared Replication Segment

• Shared Replication segment is defined via following

 • Two or more P2MP trees May share a replication segment.

 • A tree has its own replication segment at its root.

 • Replication segment may be identified with Zero ROOT-ID, a unique Replication-ID (for the Tree-ID) and the Node-ID

 • As an example it can be used for Facility FRR when the by-pass tunnel is made of only Replication Segments to protect a nexthop. i.e. LFA or TI-LFA is not sued.
Example 1
Single Candidate Path

1. The primary path (candidate path 1) is A to C to LEAF D and LEAF E with C being a BUD node
2. B does not support Replication Segment
Example 2

1. Ingress Replication from A to D and A to E
2. Root and Leaves need to support Replication Policy.
3. B, C, G don’t support P2MP Policy and are part of the unicast SR.
4. All SR resiliency functionality can be used in unicast SR domain.

SR P2MP Policy
- ROOT Node = A
- Leaf Node = D, E
- Tree-ID = 1

Candidate path 1
- Preference = 1000

Instance-1
- LSP ID = 1

Forwarding Info
- Next-hop-group-id 0
 - Next-hop-add = B
 - Sid-list B, C, D <D is bottom of Stack>
- Next-hop-group-id 1
 - Next-hop-add = B
 - Sid-list B, G, E <E is bottom of Stack>

Replication Policy A
- Tree-ID = 1
- Root = A
- Instance ID = 1
- Inc Rep SID

Replication Policy D
- Tree-ID = 1
- Root = A
- Instance ID = 1
- Inc Rep SID = D

Forwarding Info
- Next-hop-group-id 0
 - Next-hop-add = na

Replication Policy E
- Tree-ID = 1
- Root = A
- Instance ID = 1
- Inc Rep SID = E

Forwarding Info
- Next-hop-group-id 0
 - Next-hop-add = na
1. The primary path is A to C to LEAF D
2. Link between C and D is cut, FRR Nexthop Protection via G
3. G can use a Shared RS to act as a facility bypass for multiple trees.
Thank You!