IEEE 802 Address Assignment with P802.1CQ

IETF 112, intarea 2021-11-09

not the formal position, explanation, or interpretation of the IEEE but rather the personal views of:

Roger Marks (EthAirNet Associates)

1

P802.1CQ Status [1]

- IEEE SA Project Authorization (PAR) P802.1CQ
 - Initiated: 2016-02-05; Extended 2020-06-03; Expires: 2022-12-31
- Draft Standard for Local and Metropolitan Area Networks: Multicast and Local Address Assignment
 - IEEE 802 addresses (MAC addresses)
- In 802.1 Working Group, Time-Sensitive Networking (TSN) Task Group
 - https://1.ieee802.org/tsn/802-1cq/
- Current draft: P802.1CQ/D0.7
 - reviewed in Task Group Ballot
 - comment resolution completed in September
- Awaiting editor's implementation of new draft
 - IETF/802 coordination meeting has indicated that it should be shared with intarea

P802.1CQ PAR Details

- <u>Scope</u>: This standard specifies protocols, procedures, and management objects for locally-unique assignment of 48-bit and 64-bit addresses in IEEE 802 networks. Peer-to-peer address claiming and address server capabilities are specified.
- **<u>Need</u>**: Currently, global addresses are assigned to most IEEE 802 end station • and bridge ports. Increasing use of virtual machines and Internet of Things (IoT) devices could exhaust the global address space. To provide a usable alternative to global addresses for such devices, this project will define a set of protocols that will allow ports to automatically obtain a locally-unique address in a range from a portion of the local address space. Multicast flows also need addresses to identify the flows. They will benefit from a set of protocols to distribute multicast addresses. Peer-to-peer address claiming and address server capabilities will be included to serve the needs of smaller (e.g. home) and larger (e.g. industrial plants and building control) networks.

Multicast Address Assignment

- In P802.1CQ, multicast addresses are assigned to end stations.
 - In other scenarios, multicast addresses are assigned to protocols.
- In some TSN networks, streams are addressed to multicast addresses assigned by the sender (the "talker").
- A peer-to-peer protocol (MAAP) for a talker to claim a multicast address range is specified in IEEE Std 1722 (Transport Protocol for Time-Sensitive Applications in Bridged LANs).
- P802.1CQ provides backward compatibility with MAAP.
 - new functionality:
 - address blocks
 - Registrars (address servers)
 - operation without a global address

Power of Dynamic Software-Defined Addressing

- Half of IEEE 802 addresses are global
 - unique among all devices over an intended span of 100 years
 - generally burned-in by the factory, so flat
- Half of IEEE 802 addresses are local
 - assignable dynamically
 - vast quantity available, since uniqueness restriction limited to the LAN
 - can be liberally assigned
 - can be thoughtfully assigned to have addressing power
- Block Address Registration and Claiming" (BARC) protocol

BARC assigns MAC Addresses in Blocks

- An Address Block (AB) is a set of local BARC addresses.
- An AB includes equal-sized and unicast and multicast contiguous sub-blocks.
- No BARC address falls within more than one AB.
- Registrable Address Block Identifier (RABI)
 - identifies a Registrable Address Block (RAB) holding Registrable Addresses (RAs)
 - RABIs are held in inventory of a Registrar
 - may be assigned to Claimants
- Claimable AB Address (CABA)
 - identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)
 - claimable by a Claimant without using a Registrar
 - CABA is a multicast MAC address, not in any AB, and used as a DA
- An Address Block Designation (ABD) is a CABA or a RABI.
- A large set of Temporary Unicast Addresses (TUAs) is specified
 - useful for initial discovery by Claimant lacking a unicast address

BARC MAC Address Structure

NO	r i j k for registrable addresses, r=1; for claimable addresses, r=0											
N1	1 1 1 m m is the usual multicast (I/G) bit; 111 for "SAI*" (Standard Assigned Identifier)											
N2	0000 for CA or TUA											
N3	• address block includes subblocks of *per IEEE Std 802 [2], "Specification of the use of the SAI quadrant for SLAP address assignments is reserved for											
N4	- 16 ^{<i>jk</i>} claimable addresses, or - 16 ^{<i>jk</i>} registrable addresses (or aggregated into larger blocks)											
N5	 for registrable addresses (of aggregated into larger blocks) for claimable addresses, <i>i</i> distinguishes Claimable Addresses (CAs) from CABAs identifiers that are also used as addresses 											
N6												
N7												
N8												
N9			r	i	jk	m						
		CA	0	1	CAB	I/G						
N10		CABA	0	0	Size	1						
N11	64-bit CA,RA,TUA	TUA	0	0	0	0						
12 nibbles per 48-bit	N12 N13	RA	1	RABI Option	BABI Size	I/G						
auuress	N15						7					

CABA and CA, CAB Size 0-3

	CAB Siz	ze C=0	CAB Si	ze C=1	CAB Siz	ze C=2	CAB Size C=3	
	CABA	CAB	CABA	CAB	CABA	CAB	CABA	CAB
NO	0000	0 1 0 0	0001	0 1 0 1	0 0 1 0	0 1 1 0	0 0 1 1	0 1 1 1
N1	1 1 1 1	1 1 1 *	1 1 1 1	1 1 1 *	1 1 1 1	1 1 1 *	1 1 1 1	1 1 1 *
N2	0 0 0 0	0000	0000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
N3	X3	X3						
N4	X4	X4						
N5	X5	X5						
N6	X6	X6						
N7	X7	X7						
N8	X8	X8						
N9	X9	X9	X9	X9	X9	X9	0	*
N10	X10	X10	X10	X10	0	*	0	*
N11	X11	X11	0	*	0	*	0	*

2 contiguous subblocks per CABA (one unicast, one multicast)

• ≈6.9E10 Size 0 CABAs • 1 CA/subblock

• ≈4.3E9 Size 1 CABAs • 16 CAs/subblock • ≈2.7E8 Size 2 CABAs • 256 CA/subblock • ≈1.7E7 Size 3 CABAs • 4096 CAs/subblock

* indicates wildcard (any value)

Registrar

- Claimant need not be aware of Registrar when initiating a claim.
- Registrar maintains an inventory of RABIs.
 - a protocol specifies how Registrars acquire RABIs.
 - set of RABs is disjoint from the set of CABs
 - AB is either claimable (CAB) or registrable (RAB); not both
- Registrar listens for all messages to a CABA.
 - r=0, i=0, m=1, i.e. DA begins 00**-1111
 - [MMRP NumberOfValues field is 13 bits]
- Registrar can respond to a DISCOVER with an offer of a RABI in its inventory.
 - The offer can also defend the DISCOVER's CABA.
 - Registrar confirms registration of request for offered RABI.
- Pre-claim Inquiry lets Claimant reach Registrar or Advisor.
 - Client can learn of Registrars and received Claim proposals.

Semantic Address Block Assignments

Applications

- General address assignment
 - eliminates need for global addresses
 - reducing consumption
 - may simplify manufacturing
 - maintains uniqueness within the LAN
 - backward-compatible with IEEE 802 addressing and bridging
 - could be useful to address privacy concerns in global addressing
 - provides contiguous unicast and multicast blocks (identical except 1 bit)
- Apply address blocks to structure semantic addresses
 - addressing to reflect topology and hierarchy, as in IP
 - simplified forwarding
 - add flow identification to address
 - useful in forwarding and for other purposes
 - e.g. to multiplex within a single end station
 - combined structure and flow content
 - e.g. flow-zone switching in hyperscale Clos network [3]
 - alternative to completely random assignment; e.g. in wireless
 - dynamic assignment provides MAC address privacy
 - protocol protects against duplication
 - address blocks can code frames for location, flow, stream, etc.
 - bridging of 64-bit addressing in a 48-bit bridged LAN
- Implications to IP need exploration

References

- [1] IEEE Standards Project P802.1CQ, "Multicast and local address assignment." https://1.ieee802.org/tsn/802-1cq
- [2] IEEE Standards Association, "IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture – Amendment 2: Local Medium Access Control (MAC) Address Usage," IEEE Std 802c-2017. https://ieeexplore.ieee.org/document/8016709
- [3] Sergio Gonzalez-Diaz, Roger Marks, Elisa Rojas, Antonio de la Oliva, and Robert Gazda, "Stateless flow-zone switching using software-defined addressing," IEEE Access: 6 May 2021. https://ieeexplore.ieee.org/document/9424558