IEEE 802 Address Assignment with P802.1CQ

IETF 112, intarea
2021-11-09

not the formal position, explanation, or interpretation of the IEEE but rather the personal views of:

Roger Marks
(EthAirNet Associates)
P802.1CQ Status [1]

- IEEE SA Project Authorization (PAR) P802.1CQ
 - Initiated: 2016-02-05; Extended 2020-06-03; Expires: 2022-12-31

- Draft Standard for Local and Metropolitan Area Networks: Multicast and Local Address Assignment
 - IEEE 802 addresses (MAC addresses)

- In 802.1 Working Group, Time-Sensitive Networking (TSN) Task Group
 - https://1.ieee802.org/tsn/802-1cq/

- Current draft: P802.1CQ/D0.7
 - reviewed in Task Group Ballot
 - comment resolution completed in September

- Awaiting editor’s implementation of new draft
 - IETF/802 coordination meeting has indicated that it should be shared with intarea
P802.1CQ PAR Details

• **Scope**: This standard specifies protocols, procedures, and management objects for *locally-unique assignment* of 48-bit and 64-bit addresses in IEEE 802 networks. **Peer-to-peer address claiming and address server capabilities are specified.**

• **Need**: Currently, global addresses are assigned to most IEEE 802 end station and bridge ports. **Increasing use of virtual machines and Internet of Things (IoT) devices could exhaust the global address space.** To provide a usable alternative to global addresses for such devices, this project will define a set of protocols that will allow ports to automatically obtain a locally-unique address in a range from a portion of the local address space. **Multicast flows also need addresses to identify the flows.** They will benefit from a set of protocols to distribute multicast addresses. **Peer-to-peer address claiming and address server capabilities will be included to serve the needs of smaller (e.g. home) and larger (e.g. industrial plants and building control) networks.**
Multicast Address Assignment

- In P802.1CQ, multicast addresses are assigned to end stations.
 - In other scenarios, multicast addresses are assigned to protocols.
- In some TSN networks, streams are addressed to multicast addresses assigned by the sender (the “talker”).
- A peer-to-peer protocol (MAAP) for a talker to claim a multicast address range is specified in IEEE Std 1722 (Transport Protocol for Time-Sensitive Applications in Bridged LANs).
- P802.1CQ provides backward compatibility with MAAP.
 - new functionality:
 - address blocks
 - Registrars (address servers)
 - operation without a global address
Power of Dynamic Software-Defined Addressing

• Half of IEEE 802 addresses are global
 - unique among all devices over an intended span of 100 years
 - generally burned-in by the factory, so flat
• Half of IEEE 802 addresses are local
 - assignable dynamically
 - vast quantity available, since uniqueness restriction limited to the LAN
 - can be liberally assigned
 - can be thoughtfully assigned to have addressing power
• Block Address Registration and Claiming” (BARC) protocol
BARC assigns MAC Addresses in Blocks

- An Address Block (AB) is a set of local BARC addresses.
- An AB includes equal-sized and unicast and multicast contiguous sub-blocks.
- No BARC address falls within more than one AB.
- Registrable Address Block Identifier (RABI)
 - identifies a Registrable Address Block (RAB) holding Registrable Addresses (RAs)
 - RABIs are held in inventory of a Registrar
 - may be assigned to Claimants
- Claimable AB Address (CABA)
 - identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)
 - claimable by a Claimant without using a Registrar
 - CABA is a multicast MAC address, not in any AB, and used as a DA
- An Address Block Designation (ABD) is a CABA or a RABI.
- A large set of Temporary Unicast Addresses (TUAs) is specified
 - useful for initial discovery by Claimant lacking a unicast address
BARC MAC Address Structure

<table>
<thead>
<tr>
<th>N0</th>
<th>r</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For registrable addresses, \(r=1 \); for claimable addresses, \(r=0 \)

<table>
<thead>
<tr>
<th>N1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(m \) is the usual multicast (I/G) bit; 111 for “SAI*” (Standard Assigned Identifier)

<table>
<thead>
<tr>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 for CA or TUA</td>
</tr>
</tbody>
</table>

- Address block includes subblocks of
 - \(16^{jk} \) claimable addresses, or
 - \(16^{jk} \) registrable addresses (or aggregated into larger blocks)
- For claimable addresses, \(i \) distinguishes
 - Claimable Addresses (CAs) from
 - CABAs
 - Identifiers that are also used as addresses
- See P802.1CQ/D0.7 for details

```
<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>i</th>
<th>jk</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>0</td>
<td>1</td>
<td>CAB</td>
<td>I/G</td>
</tr>
<tr>
<td>CABA</td>
<td>0</td>
<td>0</td>
<td>Size</td>
<td>1</td>
</tr>
<tr>
<td>TUA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RA</td>
<td>1</td>
<td>RABI</td>
<td>BABI</td>
<td>I/G</td>
</tr>
</tbody>
</table>
```

12 nibbles per 48-bit address

per IEEE Std 802 [2], “Specification of the use of the SAI quadrant for SLAP address assignments is reserved for the standard forthcoming from IEEE P802.1CQ”
CABA and CA, CAB Size 0-3

2 contiguous subblocks per CABA (one unicast, one multicast)

- ≈6.9E10 Size 0 CABAs
- 1 CA/subblock
- ≈4.3E9 Size 1 CABAs
- 16 CAs/subblock
- ≈2.7E8 Size 2 CABAs
- 256 CA/subblock
- ≈1.7E7 Size 3 CABAs
- 4096 CAs/subblock

* indicates wildcard (any value)
Claimant of CABA_X \(AB \) listens to CABA_X multicast address

1. CABA_1 (DISCOVER state)
2. (unicast) CABA_6: CLAIMED state
3. Start listening to CABA_6

Claiming (simplified)
Registrar

• Claimant need not be aware of Registrar when initiating a claim.

• Registrar maintains an inventory of RABIs.
 – a protocol specifies how Registrars acquire RABIs.
 – set of RABs is disjoint from the set of CABs
 – AB is either claimable (CAB) or registrable (RAB); not both

• Registrar listens for all messages to a CABA.
 – r=0, i=0, m=1, i.e. DA begins 00**-1111
 • [MMRP NumberOfValues field is 13 bits]

• Registrar can respond to a DISCOVER with an offer of a RABI in its inventory.
 – The offer can also defend the DISCOVER’s CABA.
 – Registrar confirms registration of request for offered RABI.

• Pre-claim Inquiry lets Claimant reach Registrar or Advisor.
 – Client can learn of Registrars and received Claim proposals.
Operation with Registrars

Claimant

Registrar

RABI₁

(1) CABA₁: DISCOVER state

(2) (unicast) RABI₅: OFFERED state

RABI₂

(1) CABA₁: DISCOVER state

LAN

RABI₃

(2) (unicast) RABI₁: OFFERED state

(3) (unicast) RABI₁: REQUESTED state

RABI₄

(4) (unicast) RABI₁: REGISTERED state

Registrar
Semantic Address Block Assignments

<table>
<thead>
<tr>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
<th>N8</th>
<th>N9</th>
<th>N10</th>
<th>N11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **Semantic Prefix**: identifies format
- **Access Bridge ID**
- **Server ID**
- **Virtual Machine ID**

- Access switch ID: A
- Access switch ID: B

LAN

```
<table>
<thead>
<tr>
<th>RA</th>
<th>1 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 *</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>RA</th>
<th>1 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 *</td>
</tr>
</tbody>
</table>
```
Applications

• General address assignment
 - eliminates need for global addresses
 - reducing consumption
 - may simplify manufacturing
 - maintains uniqueness within the LAN
 - backward-compatible with IEEE 802 addressing and bridging
 - could be useful to address privacy concerns in global addressing
 - provides contiguous unicast and multicast blocks (identical except 1 bit)

• Apply address blocks to structure semantic addresses
 - addressing to reflect topology and hierarchy, as in IP
 - simplified forwarding
 - add flow identification to address
 - useful in forwarding and for other purposes
 - e.g. to multiplex within a single end station
 - combined structure and flow content
 - e.g. flow-zone switching in hyperscale Clos network [3]
 - alternative to completely random assignment; e.g. in wireless
 - dynamic assignment provides MAC address privacy
 - protocol protects against duplication
 - address blocks can code frames for location, flow, stream, etc.
 - bridging of 64-bit addressing in a 48-bit bridged LAN

• Implications to IP need exploration
References

 https://1.ieee802.org/tns/802-1cq
