Source Address Validation: Use Cases and Gap Analysis

draft-li-sav-gap-analysis-00

Dan Li (Tsinghua)
Jianping Wu (Tsinghua)
Mingqing Huang (Huawei)
Lancheng Qin (Tsinghua)
Nan Geng (Huawei)

Presenter: Lancheng Qin (Tsinghua)
IETF112 - Online
2021.11.09
Background

• The traditional Internet architecture lacks the validation of a packet’s source address
 ✓ Source address spoofing leads to various malicious attacks

• **Source Address Validation (SAV)** is necessary in order to detect and reject spoofed IP packets in the network, and contributes to the security of IP networks (RFC6959)

• Mutually Agreed Norms for Routing Security (**MANRS**) is calling on network operators to implement SAV to prevent source address spoofing

• However, it is difficult to solve the source address spoofing problem at a single "level" or through a single SAV mechanism (RFC5210)
 ✓ It is unrealistic to require a SAV mechanism to be accepted by all network operators
 ✓ The failure of a single SAV mechanism will completely disable SAV
Source address validation architecture (SAVA)

Source Address Validation Architecture (SAVA) [RFC5210] divides SAV into three checking levels and MANRS also follows this architecture:

- **Access network SAV**
 - Source Address Validation Improvement (SAVI) [RFC7039]
 - It is fully effective only when deployed by all access networks
- **Intra-AS SAV**
 - ACL based SAV [RFC2827]
 - Strict uRPF [RFC3704]
- **Inter-AS SAV**
 - EFP-uRPF [RFC8704]
 - Loose uRPF [RFC3704]

It is difficult to require all access networks to deploy SAVI simultaneously, so Intra-AS SAV and Inter-AS SAV are more encouraged by MANRS.
Use cases: Intra-AS and Inter-AS SAV

- **Intra-AS SAV avoids source address spoofing from inner AS**
 - Router1 and Router4 should:
 1. drop the packet with P1' from Router2
 2. accept the packet with P1 from Router3

- **Inter-AS SAV avoids source address spoofing from external ASes**
 - AS1 and AS4 should:
 1. drop the packet with P1'' from AS3
 2. accept the packet with P1 from AS2

P1 is the source address prefix of Router3
P1' is the spoofed P1 by Router2
P1'' is the spoofed P1 by routers in AS3
Existing intra- and inter-AS SAV mechanisms

RFC8704 summarizes the recommendations concerning SAV mechanisms:

• Intra-AS SAV
 ✓ **ACL based SAV** [RFC2827] configures matching rules to specify which source prefixes are acceptable
 ➢ Require manual configuration to update
 ➢ Lacks incentive
 ✓ **Strict uRPF** [RFC3704] takes the source address as a destination address to lookup the FIB and requires the forwarding interface of the FIB matches the incoming interface of the packet

• Inter-AS SAV
 ✓ **EFP-uRPF** [RFC8704] automatically sets a RPF(Reverse Path Filter) list on each **customer interface**
 ✓ **Loose uRPF** [RFC3704] is implemented at **provider and peer interfaces**, which only requires the source address appears in the FIB

However, existing intra- and inter-AS uRPF mechanisms have inherent false positive or false negative problems
Gap analysis: Intra-AS SAV mechanisms

Access network advertises 10.0.0.0/16 to Router 1 while advertises 10.1.0.0/16 to Router 2

Strict uRPF [RFC3704] exhibits false positives in the case of routing asymmetry

When Router3 forwards packets to 10.1.0.0/16
- Forwarding Path: Router3 → Router4 → Router2 → Access network
- Reverse Path: Access network → Router1 → Router3

When Router3 runs strict uRPF, the SAV rule is:
- Packets with source addresses of 10.1.0.0/16 must arrive from Router4
 ✓ The reverse data flow will be dropped

Existing intra-AS SAV mechanism has false positive problems
Gap analysis: Inter-AS SAV mechanisms

EFP-uRPF [RFC8704] and loose uRPF [RFC3704] exhibit false negatives when AS4 runs EFP-uRPF at customer interfaces, the SAV rule is:

- Packets with source addresses belonging to AS4’s customer cone can arrive from every customer
 - ✓ ASes in AS4’s customer cone (AS1 and AS2) can forge each other

when AS4 runs loose uRPF at provider and peer interfaces, the SAV rule is:

- Packets with any source addresses existing in FIB can arrive from every provider or peer
 - ✓ ASes outside AS4’s customer cone (AS3 and AS5) can forge any source address in FIB

Existing inter-AS SAV mechanisms have false negative problems
Gap analysis: intra- and inter-AS SAV mechanisms

• An ideal SAV mechanism should guarantee accuracy
 ✓ False positives cause legitimate traffic to be discarded
 ✓ False negatives give attackers the freedom to forge source addresses

• All existing intra- and inter-AS SAV mechanisms cannot guarantee accuracy
 ✓ Intra-AS SAV mechanisms have false positive problems
 ✓ Inter-AS SAV mechanisms have false negative problems

• The root cause of their inaccuracy is that:
 ✓ They all achieve SAV based on local FIB/RIB information which may not match the real data-plane forwarding paths from other sources
Design considerations

• In order to achieve high accuracy ➔ Avoid false positives & Reduce false negatives as much as possible
 ✓ SAV should follow the real data-plane forwarding path

• A path probing method
 ✓ The source router sends probing packets carrying source information. Then each intermediate router can generate SAV rules based on <source information, incoming interface>
 ✓ A combination of allowlist and blocklist can improve the accuracy when forwarding information is incomplete

• Requirements
 ✓ High scalability
 ➢ The design should not induce much overhead (e.g. bandwidth cost of path probing)
 ✓ High deployability
 ➢ The design should generate SAV table automatically and support incremental deployment
 ✓ High security
 ➢ The design should guarantee the integrity of each probing packet (e.g. man in the middle attack)
Next step

• Where to promote this work?
 ✓ Intarea
 ➢ SAVA (source address validation architecture) and SAVI (source address validation improvement) are adopted by intarea
 ✓ RTG
 ➢ Intra-AS SAV and inter-AS SAV are related to routing
 ✓ Opsec
 ➢ EFP-uRPF [RFC8704] is adopted by opsec
 ✓ Others?

• Solicit comments and refine the draft

• Seek collaborators
THANKS!
Questions/Comments?