
 IP Security
Maintenance and

Extensions (IPsecME)
WG

IETF 112, Monday, November 8th, 2021

Chairs: Tero Kivinen
 Yoav Nir

Responsible AD: Benjamin Kaduk

1

Note Well

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to point
you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF "contribution" and
"participation" are set forth in BCP 79; please read it carefully.

As a reminder:

• By participating in the IETF, you agree to follow IETF processes and policies.

• If you are aware that any IETF contribution is covered by patents or patent applications that are owned or controlled by
you or your sponsor, you must disclose that fact, or not participate in the discussion.

• As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic
records of meetings may be made public.

• Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.

• As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam
(https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or ADs:
•BCP 9 (Internet Standards Process)
•BCP 25 (Working Group processes)
•BCP 25 (Anti-Harassment Procedures)
•BCP 54 (Code of Conduct)
•BCP 78 (Copyright)
•BCP 79 (Patents, Participation)
•https://www.ietf.org/privacy-policy/ (Privacy Policy)

2

https://www.ietf.org/contact/ombudsteam/
https://www.ietf.org/privacy-policy/

Administrative Tasks

Bluesheets

We need volunteers to be:

• Two note takers

• One jabber scribe

Jabber: xmpp:ipsecme@jabber.ietf.org?join

MeetEcho: https://meetings.conf.meetecho.com/ietf112/?
group=ipsecme&short=&item=1

Notes: https://codimd.ietf.org/notes-ietf-112-ipsecme

3

Agenda

● Note Well, technical difficulties and agenda bashing –
Chairs (5 min) (12:00-12:05)

● Document Status – Chairs (10 min) (12:05-12:15)
● Work items

● IPTFS –
Christian Hopps (20 min) (12:15-12:35)

● Quantum-resistent IKEv2 and big keys –
Stefan-Lukas Gazdag (10 min) (12:35-12:45)

● Group Key Management using IKEv2 –
Valery Smyslov (10 min) (12:45-12:55)

● Announcing Supported Authentication Methods in IKEv2 –
Valery Smyslov (10 min) (12:55-13:05)

● AOB + Open Mic (55 min) (13:05-14:00)

4

WG Status Report

Publication requested:

draft-ietf-ipsecme-ikev2-intermediate

Waiting for write-up / Chair review:

draft-hopps-ipsecme-iptfs

draft-fedyk-ipsecme-yang-iptfs

draft-ietf-ipsecme-mib-iptfs

draft-ietf-ipsecme-ikev2-multiple-ke

draft-ietf-ipsecme-ikev1-algo-to-historic

draft-ietf-ipsecme-labeled-ipsec

Work in progress:

draft-ietf-ipsecme-g-ikev2

draft-ietf-ipsecme-rfc8229bis

5

https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev2-intermediate/
https://datatracker.ietf.org/doc/draft-hopps-ipsecme-iptfs/
https://datatracker.ietf.org/doc/draft-fedyk-ipsecme-yang-iptfs/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-mib-iptfs/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev2-multiple-ke/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev1-algo-to-historic/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-labeled-ipsec/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-g-ikev2/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-rfc8229bis/

More detailed status of drafts in
progress

● Group Key Management using IKEv2
– draft-ietf-ipsecme-g-ikev2

– Need more reviews

● Announcing Supported Authentication Methods in
IKEv2
– draft-smyslov-ipsecme-ikev2-auth-announce

– Should be ready for WG adoption call

● TCP Encapsulation of IKE and IPsec Packets
– draft-ietf-ipsecme-rfc8229bis

– Ready for WGLC?

6

Presentations

● IPTFS –
Christian Hopps

● Quantum-resistent IKEv2 and big keys –
Stefan-Lukas Gazdag

● Group Key Management using IKEv2 –
Valery Smyslov

● Announcing Supported Authentication Methods in
IKEv2 –
Valery Smyslov

7

IP Traffic Flow Security
Improving IPsec Traffic Flow Confidentiality

IETF 112 – “draft-ietf-ipsecme-iptfs-11”

Christian Hopps

LabN Consulting, LLC

2021 Recap
• WGLC Competed Feb 2021
• Doc updated with received comments Feb 22 (-07)

• Post WGLC comments
• Mar 30: Doc updated (-08) revised language (IPTFS->AGGFRAG) from Valery
• Apr 5: Draft Write-Up submitted to Shepherd/Chairs
• July 5: Doc updated (-09) clarifying that reorder window should be small, and

should NOT force the replay window to be small as well
• Sep 3: Doc updated (-10) recommending use of drop timer instead of reorder

window to avoid long delays
• Intending to address important comment from Tero

• Oct 24: Doc updated (-11) took a guess at text Tero would accept WRT
optionally sending immediately out-of-order
• Oct 31: Text from Tero – one last outstanding issue based on this text

Last Issue To Resolve

• Update -11 added text saying the receiver MAY optionally send whole
inner packets on receipt w/o waiting for earlier misordered tunnel
packets to arrive.
• Tero’s alternate text has same mechanism but changes it to

“SHOULD”, restoring the original in-order delivery as a MAY.

New text in -11

“As an optional optimization (e.g., to handle very lossy and/or
reordered tunnel paths), the receiver MAY transmit any fully formed
inner packets contained within the AGGFRAG_PAYLOADs prior to re-
ordering the outer packets.”

Proposed Tero Text

The receiver SHOULD process incoming AGGFRAG_PAYLOAD payloads
as soon as they arrive as much as it can. I.e., if the incoming
AGGFRAG_PAYLOAD packet contains complete inner packet(s), receiver
should extract them and forward them immediately. For partial packets
the receiver needs to keep the partial packets in the memory until the
they fall out from the reordering window, or until the missing parts of
the packets is received, in which case it will reassemble them and send
them out. If AGGFRAG_PAYLOAD payload contains multiple packets
they SHOULD be sent out in the order they are in the
AGGFRAG_PAYLOAD (i.e., keep the original order they were received on
the other end).
… [reworded original text]

Counter and Compromise Proposal

• Lou Berger suggested on list, swapping SHOULD/MAYs
• In-order delivery (which might incur a small delay) remains recommended

“FWIW I'm basing my comments on my routing area experience where a huge amount of
work has been put into maintaining ordering experienced by user traffic at
significant implementation expense, i.e., in support of ECMP and other multipath
solutions in protocols and hardware.”

• Out-of-order delivery still allowed
• I.e., adopt Tero’s text but keep original as the recommended behavior

• Lou’s mail also OK with both MAYs with a configuration selection

Issue with Send Immediately

• Amplifies end-user experienced misordering
• Routers are built to not introduce misordering or bizarre delays in

packet flows

Why reordering outer packets “Just Works”

• Operationally significant delays unlikely from misordering
• At high send rate (e.g., line rate, no send gap)

• A reasonable reordering window won’t introduce unreasonable delay to correct ordering
• At lower send rate (wide sending gap)

• Misordered sloths are simply dropped
• Drop timer limits any delay due to these drops

1511 12 13 14106 7 8 951 2 3 4 2016 17 18 19

1511 12 13 14

106 7 8 9

51 2 3 4

2016 17 18 19

15

11
12

13
14

10

6
7

8
9

5

1
2

3
4

20

16
17

18
19

1511 12 13 14106 7 8 951 2 3 4 2016 17 18 19

10

6
7

8
9

5

1
2

3
4

15

11
12

13
14

20

16
17

18
19

5

1
2

3
4

20

16
17

18
19

10

6
7

8
9

15

11
12

13
14

Ordered Outer

Misordered Outer

many user packets
misordered

Small Delay

Send Immediately

Send In-Order

For Discussion: MAY vs SHOULD

The receiver MAY|SHOULD process incoming AGGFRAG_PAYLOAD payloads as soon as they arrive
as much as it can. I.e., if the incoming AGGFRAG_PAYLOAD packet contains complete inner
packet(s), receiver should extract them and forward them immediately. For partial packets the
receiver needs to keep the partial packets in the memory until the they fall out from the reordering
window, or until the missing parts of the packets is received, in which case it will reassemble them
and send them out. If AGGFRAG_PAYLOAD payload contains multiple packets they SHOULD be sent
out in the order they are in the AGGFRAG_PAYLOAD (i.e., keep the original order they were received
on the other end).
Instead of the method described in the previous paragraph the receiver SHOULD|MAY reorder out-
of-order AGGFRAG_PAYLOAD payloads received into in-sequence-order AGGFRAG_PAYLOAD
payloads (Section 2.2.3),and only after it has in-order AGGFRAG_PAYLOAD payload stream,receiver
extracts the inner-packets. In this case the receiver considers a packet lost when the drop timer
expires or it's sequence number is abandoned (e.g., pushed out of the re-ordering window, or
timed-out) by the reordering algorithm. Using this method will make sure the packets are sent in-
order, i.e., there is no reordering possible, but the cost is that any lost packet will cause delay of the
drop timer interval full reorder window, and there will be extra burstiness in the output stream
(when lost packet is dropped out from the re-order window, all outer packets received after that are
then immediately processed, and sent out back to back).

Next Steps

• Publish document based on today’s discussion/resolution
• No other issues
• Submit to IESG for publication

 1 / 14

IPTFS Reorder/lost
frame issue

Tero Kivinen <kivinen@iki.fi>

 2 / 14

Section 2.5 of IPTFS draft:
2.5. Summary of Receiver Processing

 An AGGFRAG enabled SA receiver has a few tasks to perform.

 The receiver first reorders, possibly out-of-order ESP packets
 received on an SA into in-sequence-order AGGFRAG_PAYLOAD payloads
 (Section 2.2.3). If congestion control is enabled, the receiver
 considers a packet lost when it's sequence number is abandoned (e.g.,
 pushed out of the re-ordering window, or timed-out) by the reordering
 algorithm. As an optional optimization (e.g., to handle very lossy
 and/or reordered tunnel paths), the receiver MAY transmit any fully
 formed inner packets contained within the AGGFRAG_PAYLOADs prior to
 re-ordering the outer packets.

 Additionally, if congestion control is enabled, the receiver sends
 congestion control data (Section 6.1.2) back to the sender as
 described in Section 2.4.2 and Section 3.

 Finally, the receiver processes the now in-order AGGFRAG_PAYLOAD
 payload stream to extract the inner-packets (Section 2.2.3,
 Section 6.1).

 3 / 14

Issues in section 2.5

● It implies that normal processing is to reorder
outer ESP packets to in-order stream and
process them after that.

● New text was added in -11 version to allow
optimization where receiver MAY transmit any
fully formed inner packets before re-ordering.

● I think this optimization should be default,
and the in-order processing should not be
used in normal cases.

 4 / 14

Normal flow

Ix

O1
I1 I2 I3

Ix

Ix

Ox

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Receiver receives O1, starts processing it.

 5 / 14

Normal flow

Ix

O1
I1 I2 I3

Ix

Ix

Ox

I1 I2

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Sends out inner packets I1 and I2, cannot send I3, as it is not fully received

 6 / 14

Normal flow

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O2
I3 I4

I1 I3I2 I4

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Receiver receives O2, sends out nowcomplete I3, and I4

 7 / 14

Normal flow

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O2
I3 I4

O3
I5 I6

I1 I3I2 I4 I5

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Receiver receives O3, Sends out I5

 8 / 14

Normal flow

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O2
I3 I4

O3
I5 I6

O4
I6 I7 I8

I1 I3I2 I4 I5 I7I6

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Receiver receives O4, Sends out I6, and I7

 9 / 14

Normal flow

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O2
I3 I4

O3
I5 I6

O4
I6 I7 I8

O5
I8 I9

I1 I3I2 I4 I5 I7 I9I6 I8

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Receiver receives O5, Sends out I8, and I9

 10 / 14

Reordered flow (in-order)

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O2
I3 I4

O4
I6 I7 I8

O5
I8 I9

I1 I3I2 I4 I5 I7 I9I6 I8

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

O3
I5 I6

When receiver receives O3, it buffers it. When it receives O2, it processes O2,
and then O3, thus fully complete I5 will be delayed until O2 arrives to keep order.

 11 / 14

Reordered flow (immediate)

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O2
I3 I4

O4
I6 I7 I8

O5
I8 I9

I1 I3I2 I4I5 I7 I9I6 I8

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

O3
I5 I6

When receiver receives O3, it buffers I6, but sends I5 out as it is complete. When it
receives O2, it reassembles I3, and sends out, and then sends I4. I5 is sent before I3
and I4, meaning the reordering in outer frames is kept and is visible in inner frames too.

 12 / 14

Lost frame (in-order)

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O3
I5 I6

O4
I6 I7 I8

O5
I8 I9

I1 I2 I5 I7 I9I6 I8

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Assuming reorder window of 2

O2
I3 I4

When receiver receives O3, it realises frame is missing, so it buffers O3 until reorder
buffer gets full. If reorder window is 2, after receiving O4 it knows O2 was lost, and only
after that it will send out I5, I6, and I7. Receiver needs to buffer I3 of O1, and O3 until
they fall out from reorder window, thus reorder window greatly affects memory usage.

 13 / 14

Lost frame (in-order)

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O3
I5 I6

O4
I6 I7 I8

O5
I8 I9

I1 I2 I5 I6

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Assuming reorder window of 3

O2
I3 I4

When receiver receives O3, it realises frame is missing, so it buffers O3 and O4 until
reorder buffer gets full. If reorder window is 3, after receiving O5 it knows O2 was lost,
and only after that it will send out I5, I6, I7, I8, and I9. Receiver had to buffer I3, O3, and
O4. Larger the reorder window greater the delay and memory usage.

 14 / 14

Lost frame (immediate)

Ix

O1
I1 I2 I3

Ix

Ix

Ox

O3
I5 I6

O4
I6 I7 I8

O5
I8 I9

I1 I2 I5 I7 I9I6 I8

Ix

Outer packet

Complete inner packet

Start of the inner packet

End of the inner packet

Inner packet out from the device

Reorder window does not affect processing

O2
I3 I4

When receiver receives O3, it processes it normally and sends out I5. It processes O4,
and O5 normally and send the inner packets out when they are complete. No buffering
happening. Large reorder window does not affect delay, and only I3 from O1 is buffered
until O2 falls out from the reorder window and then it is discarded.

Presentations

● IPTFS –
Christian Hopps

● Quantum-resistent IKEv2 and big keys –
Stefan-Lukas Gazdag

● Group Key Management using IKEv2 –
Valery Smyslov

● Announcing Supported Authentication Methods in
IKEv2 –
Valery Smyslov

8

Quantum-Resistant IKEv2
and Big Keys

Stefan-Lukas Gazdag, Daniel Herzinger

0 0.1 0.2 0.5 0.75 1 2 5
0

50

100

150

Error Rate [%]

H
an

d
sh
a
ke

D
u
ra
ti
on

[s
]

0 0.1 0.2 0.5 0.75 1 2 5
0

50

100

150

Error Rate [%]

H
an

d
sh
a
ke

D
u
ra
ti
on

[s
]

Presentations

● IPTFS –
Christian Hopps

● Quantum-resistent IKEv2 and big keys –
Stefan-Lukas Gazdag

● Group Key Management using IKEv2 –
Valery Smyslov

● Announcing Supported Authentication Methods in
IKEv2 –
Valery Smyslov

9

Group Key Management

using IKEv2

draft-ietf-ipsecme-g-ikev2

Brian Weis
Independent

IETF 112

Valery Smyslov
ELVIS-PLUS

2

• IP multicast applications
– Contain at least 1 sender, and N receivers

– Take advantage of the network to route and replicate IP
packets, such that the same packet reaches all N receivers

• This requires senders and receivers to share setup an
IPsec SA using the same keys
– The IPsec policy and keys are not negotiated, but instead they

are distributed by a Group Controller / Key Server (GCKS) to
Group Members (GMs)

– A GM invokes a unicast Registration protocol to authenticate to
the GCKS. The GCKS then authorizes the GM, and distributes
IPsec policy and keys to the GM.

– A Rekey protocol enforces a time-based key rollover strategy

Securing IP Multicast

3

• IEEE 802.15.9 specified IKEv2 as one of KMPs for

IEEE 802.15.4

– IEEE Std 802.15.9-2015 left group keys distribution out of

scope

• Draft 05 version of the IEEE Std 802.15.9 standard

(March 2021) specifies that G-IKEv2 is used for group

key distribution

– GSA_INBAND_REKEY over unicast SA is used

– SPI field in GSA payload is used to specify the type of group

key

Distribution of Group Keys in

IEEE 802.15

4

• Has been in development for several years

– few implementations of early draft versions exist

• Has been adopted by IPSECME WG in 2019

• Version -01 (July 2020): major rewrite

• Version -02 (January 2021): minor update

• Version -03 (July 2021): minor update

• For authors the draft looks mature

– however, more reviews are needed

Document Status

5

• Policy representation changed

– before: IKEv1 style, mostly using attributes

– now: IKEv2 style – using transforms, attributes are still used to represent

variables

• Format of GSA and KD payloads changed

• Group keys representation changed

– before: group keys were transferred in clear inside KD payload

– now: all keys are encrypted inside KD payload, using either SK_d derived key

or other group key

• LKH (Logical Key Hierarchy) is integrated in core G-IKEv2

– before: dedicated attributes were used to transfer LKH keys

– now: LKH functionality is integrated into the core G-IKEv2 protocol, GM

semantics doesn’t depend on key management method

Outline of -01 Changes

6

• IANA considerations are rewritten

– now it’s more an extension to IKEv2 than a separate protocol (IKEv2 IANA

registries are used)

– many parameters have been renamed to better reflect their purpose

• A lot of clarifications

– AUTH payload calculation for GSA_REKEY messages is described in details

– introduced means to indicate cross-dependency of supported algorithms in SAg

payload

– using PPK in G-IKEv2 is clarified

– using ESN is clarified (in -02)

– failover in situations when rekey message was missed clarified (using

NEXT_SPI)

– example of using LKH is rewritten

Outline of -01 Changes (cont.)

7

Contains policy necessary to participating in the group:

• Protocol (GIKE_REKEY, AH, ESP)

• Traffic Selector

• Transforms for algorithms and methods used in the

policy

• Attributes for variables that change over time (like initial

Message-ID)

• GSA format is now common for KEK (GIKE_REKEY)

and TEK (AH, ESP)

– GAP (Group Policy) shares the same format and is

distinguished by zero protocol

GSA Payload

8

Contains keying material necessary for the policy in the

GSA payload:
• One or more keys are conveyed in the KD payload

• Security parameters are also conveyed in the KD payload

• Each key is individually wrapped in a new structure Wrapped Key

• Each Wrapped Key structure is encrypted using either SK_d derived key

or other group key

• LKH capability is now integrated into G-IKEv2 core and is achieved by

including several keys into the KD payload logically linked by encrypting

next key in the tree with previous one

• Wrapped Keys may contain either group keys (common for a whole group

or for subset of its members) or member keys (allows for provision keys

for a member during GSA registration, needed for LKH)

KD Payload

9

Contains identity of the group a GM wants to join (no

changes since -00):

• has the same format as IKEv2 ID payload

• only some ID types are expected to be used

– ID_KEY_ID MUST be supported

– ID_IPV4_ADDR, ID_IPV6_ADDR , ID_FQDN ,

ID_RFC822_ADDR SHOULD be supported

IDg Payload

10

Payloads that have the same types as in IKEv2, but

different semantics:

• SAg (GM Supported Transforms)
– declares which Transforms a GM is willing to accept

– has the same format as IKEv2 SA payload, but slightly different

semantics, which allow to indicate inter-dependency of supported

algorithms

• D (Delete Payload)
– used when the GCKS may want to signal to group members to delete

policy (e.g., data flows finished, change of policy)

– semantics is slightly different from IKEv2, allowing to delete all SAs

Reused IKEv2 payloads

11

• INVALID_GROUP_ID (error notify)
– GCKS informs GM that the requested Group ID in a registration protocol is

invalid

• AUTHORIZATION_FAILED (error notify)
– GCKS informs GM that it is not authorized to join the requested Group ID

• REGISTRATION_FAILED (error notify)
– GCKS informs GM that for some reason the GM cannot join the group

– GM sends to GCKS to unregister from the group

• SENDER (status notify)
– GM informs the GCKS about its intention to be a sender in the group

– requests a number of Sender-ID values, that are used as part of a counter-
mode transform nonce (RFC 6054)

• REKEY_IS_NEEDED (status notify) – added in -01
– GCKS informs GM that it must rekey IKE SA before receiving sensitive

information (used in PPK scenarios)

New Notifications

12

• USE_TRANSPORT_MODE

– semantics is changed, so that Protocol and SPI fields are used to indicate

which SA to create in transport mode

– multiple instances can be sent if multiple SAs are being created

Reused IKEv2 Notifications

13

• Comments?

• Questions?

• Please review the document

– WGLC?

Thank you!

Presentations

● IPTFS –
Christian Hopps

● Quantum-resistent IKEv2 and big keys –
Stefan-Lukas Gazdag

● Group Key Management using IKEv2 –
Valery Smyslov

● Announcing Supported Authentication
Methods in IKEv2 –
Valery Smyslov

10

Announcing Supported

Authentication Methods

in IKEv2

draft-smyslov-ipsecme-ikev2-auth-announce

Valery Smyslov

svan@elvis.ru

IETF 112

Authentication in IKEv2

• Unlike IKEv1, authentication method in IKEv2 is not

negotiated, each peer is free to use whichever method

it thinks is appropriate

• Generally works well if there is only one way of doing

authentication or there is no ambiguity in choosing

among several of them

• If peers can use several methods to authenticate each

other, it is possible that initiator selects authentication

method unsupported by the responder

– less likely in the opposite direction, but still possible

2

The Problem

• The problem was first encountered when RSA-PSS

signature format appeared in IKEv2

– newer initiators tried to use PSS signatures while older

responders didn’t support it, sending back
AUTHENTICATION_FAILED

– if initiators knew responders’ capabilities they would have

chosen PKCS#1 and the SA succeeded

3

Source of the Problem

• Currently there is no way for the peers to explicitly

indicate the supported authentication methods

– it is possible to guess them via indirect means, e.g. CERTREQ

content, but this is unreliable

• With new signature formats and authentication methods

appearing in the future (including PQ and hybrid ones)

the situation of mis-selecting may happen more often

4

Proposed Solution

• Add new optional status notification
SUPPORTED_AUTH_METHODS to indicate the supported

authentication methods

– for certificate-based authentication add an ability for the peers

to indicate which signing algorithms can be used with each of
CA in the CERTREQ payload

– avoid creating new IANA registries

5

SUPPORTED_AUTH_METHODS

Notification Format

• Notification data consists of a list of supported
authentication methods in the following formats:
1. Two-octet format for the methods that are not linked to

CERTREQ payload (PSK, NULL)

2. Three-octet format that allows optional linking to CERTREQ
payload (RSA-SIG etc.)

3. Multi-octet format that allows optional linking to CERTREQ
payload and specifying ASN.1 AlgorithmIdentifier for
use with particular CA (SIG)

• The linking to CAs is done by specifying the ordinal
number of CA within the CERTREQ payload the
method can be used with

6

SUPPORTED_AUTH_METHODS

Notification Format Illustration

HDR,SAr1,KEr,Nr,CERTREQ,N(SUPPORTED_AUTH_METHODS)

7

CA1 (RSA)

CA2 (ECDSA)

CA3 (RSA)

CA4 (RSA)

PSK

SIG 1 sha256WithRSAEncryption

SIG 0 RSASSA-PSS

SIG 2 ecdsa-with-sha256

RSA-SIG 1

NULL

AUTH LINK AlgorithmIdentifier

Exchanges (Option 1)

Initiator Responder

8

IKE_SA_INIT

HDR,SAi1,KEi,Ni IKE_SA_INIT

HDR,SAr1,KEr,Nr,[CERTREQ,]

[N(SUPPORTED_AUTH_METHODS)(…)]

IKE_AUTH

HDR,SK{IDi,[CERT,][CERTREQ,]

[IDr,] AUTH, SAi2, TSi, TSr,

[N(SUPPORTED_AUTH_METHODS)(…)]}

IKE_AUTH

HDR,SK{IDr,[CERT,]

AUTH, SAi2, TSi, TSr}

Exchanges (Option 2)

Initiator Responder

9

IKE_SA_INIT

HDR,SAi1,KEi,Ni IKE_SA_INIT

HDR,SAr1,KEr,Nr,[CERTREQ,]

[N(SUPPORTED_AUTH_METHODS)]

IKE_AUTH

HDR,SK{IDi,[CERT,][CERTREQ,]

[IDr,] AUTH, SAi2, TSi, TSr,

[N(SUPPORTED_AUTH_METHODS)(…)]}

IKE_AUTH

HDR,SK{IDr,[CERT,]

AUTH, SAi2, TSi, TSr}

IKE_INTERMEDIATE

HDR,SK{…} IKE_INTERMEDIATE

HDR,SK{…,

N(SUPPORTED_AUTH_METHODS)(…)}

Thanks

• Comments? Questions?

• More details in the draft

• WG adoption?

10

Open Discussion

• Other points of interest?

12

