Group Key Management using IKEv2

draft-ietf-ipsecme-g-ikev2

Valery Smyslov
ELVIS-PLUS

Brian Weis
Independent

IETF 112
Securing IP Multicast

- IP multicast applications
 - Contain at least 1 sender, and N receivers
 - Take advantage of the network to route and replicate IP packets, such that the same packet reaches all N receivers
- This requires senders and receivers to share setup an IPsec SA using the same keys
 - The IPsec policy and keys are not negotiated, but instead they are distributed by a Group Controller / Key Server (GCKS) to Group Members (GMs)
 - A GM invokes a unicast Registration protocol to authenticate to the GCKS. The GCKS then authorizes the GM, and distributes IPsec policy and keys to the GM.
 - A Rekey protocol enforces a time-based key rollover strategy
Distribution of Group Keys in IEEE 802.15

- IEEE 802.15.9 specified IKEv2 as one of KMPs for IEEE 802.15.4
 - IEEE Std 802.15.9-2015 left group keys distribution out of scope
- Draft 05 version of the IEEE Std 802.15.9 standard (March 2021) specifies that G-IKEv2 is used for group key distribution
 - GSA_INBAND_REKEY over unicast SA is used
 - SPI field in GSA payload is used to specify the type of group key
Document Status

- Has been in development for several years
 - few implementations of early draft versions exist
- Has been adopted by IPSECME WG in 2019
- Version -01 (July 2020): major rewrite
- Version -02 (January 2021): minor update
- Version -03 (July 2021): minor update
- For authors the draft looks mature
 - however, more reviews are needed
Outline of -01 Changes

• Policy representation changed
 – before: IKEv1 style, mostly using attributes
 – now: IKEv2 style – using transforms, attributes are still used to represent variables
• Format of GSA and KD payloads changed
• Group keys representation changed
 – before: group keys were transferred in clear inside KD payload
 – now: all keys are encrypted inside KD payload, using either SK_d derived key or other group key
• LKH (Logical Key Hierarchy) is integrated in core G-IKEv2
 – before: dedicated attributes were used to transfer LKH keys
 – now: LKH functionality is integrated into the core G-IKEv2 protocol, GM semantics doesn’t depend on key management method
Outline of -01 Changes (cont.)

- IANA considerations are rewritten
 - now it’s more an extension to IKEv2 than a separate protocol (IKEv2 IANA registries are used)
 - many parameters have been renamed to better reflect their purpose
- A lot of clarifications
 - AUTH payload calculation for GSA_REKEY messages is described in details
 - introduced means to indicate cross-dependency of supported algorithms in SAg payload
 - using PPK in G-IKEv2 is clarified
 - using ESN is clarified (in -02)
 - failover in situations when rekey message was missed clarified (using NEXT_SPI)
 - example of using LKH is rewritten
GSA Payload

Contains policy necessary to participating in the group:

- Protocol (GIKE_REKEY, AH, ESP)
- Traffic Selector
- Transforms for algorithms and methods used in the policy
- Attributes for variables that change over time (like initial Message-ID)
- GSA format is now common for KEK (GIKE_REKEY) and TEK (AH, ESP)
 - GAP (Group Policy) shares the same format and is distinguished by zero protocol
KD Payload

Contains keying material necessary for the policy in the GSA payload:

- One or more keys are conveyed in the KD payload
- Security parameters are also conveyed in the KD payload
- Each key is individually wrapped in a new structure Wrapped Key
- Each Wrapped Key structure is encrypted using either SK_d derived key or other group key
- LKH capability is now integrated into G-IKEv2 core and is achieved by including several keys into the KD payload logically linked by encrypting next key in the tree with previous one
- Wrapped Keys may contain either group keys (common for a whole group or for subset of its members) or member keys (allows for provision keys for a member during GSA registration, needed for LKH)
IDg Payload

Contains identity of the group a GM wants to join (no changes since -00):

• has the same format as IKEv2 ID payload
• only some ID types are expected to be used
 – ID_KEY_ID MUST be supported
 – ID_IPV4_ADDR, ID_IPV6_ADDR, ID_FQDN, ID_RFC822_ADDR SHOULD be supported
Reused IKEv2 payloads

Payloads that have the same types as in IKEv2, but different semantics:

- **SAg (GM Supported Transforms)**
 - declares which Transforms a GM is willing to accept
 - has the same format as IKEv2 SA payload, but slightly different semantics, which allow to indicate inter-dependency of supported algorithms

- **D (Delete Payload)**
 - used when the GCKS may want to signal to group members to delete policy (e.g., data flows finished, change of policy)
 - semantics is slightly different from IKEv2, allowing to delete all SAs
New Notifications

- **INVALID_GROUP_ID** (error notify)
 - GCKS informs GM that the requested Group ID in a registration protocol is invalid

- **AUTHORIZATION_FAILED** (error notify)
 - GCKS informs GM that it is not authorized to join the requested Group ID

- **REGISTRATION_FAILED** (error notify)
 - GCKS informs GM that for some reason the GM cannot join the group
 - GM sends to GCKS to unregister from the group

- **SENDER** (status notify)
 - GM informs the GCKS about its intention to be a sender in the group
 - requests a number of Sender-ID values, that are used as part of a counter-mode transform nonce (RFC 6054)

- **REKEY_IS_NEEDED** (status notify) – added in -01
 - GCKS informs GM that it must rekey IKE SA before receiving sensitive information (used in PPK scenarios)
Reused IKEv2 Notifications

- **USE_TRANSPORT_MODE**
 - semantics is changed, so that Protocol and SPI fields are used to indicate which SA to create in transport mode
 - multiple instances can be sent if multiple SAs are being created
Thank you!

- Comments?
- Questions?
- Please review the document
 - WGLC?