KEMS IN CMS

COMPOSITE KEYS, SIGS, ENCRYPTION

Mike Ounsworth, John Gray, Serge Mister, Julien Pret, Ludovic Perret

LAMPS 112
Outline

- CMS KEM Recipient Info (L. Parret’s draft)
- Composite drafts:
 - Public keys / Certificates
 - Composite Signatures
 - Composite Encryption
A draft has been started by Ludovic Perret, Julien Prat, and myself to provide a generic KEM-based RecipientInfo in CMS (generalizing RSA-KEM RFC 5990).

Draft not published yet.

Several ways to approach:

1. (current) Use KeyTransRecipientInfo with an AlgID OID indicating it’s actually a wrapped KEM, and AlgID Params containing AlgIDs of \{KEM, KDF, WRAP\}.
2. Use OtherRecipientInfo with content similar to (1).
3. Define a new top-level KEMRecipientInfo
 - **Question**: Is this worth a discussion on-list, or are they all sorta equivalent?

Core idea:

- Params: KEM, KDF, WRAP
- Input: recipPubKey, cek
- ss, ct = KEM.encaps(rPK)
- kek = KDF(ss)
- wk = WRAP(kek, cek)
- ek = ct || wk
Composite / dual / hybrid landscape

| Keys / Certs | draft-ounsworth-pq-composite-keys-00
draft-ounsworth-pq-explicit-composite-keys-00
 • Defines composite public and private keys
 • Could go with either a generic (open container) or explicit (pairwise OIDs) approach | Non-composite multi-cert
 • Alison Becker’s proposal
 • *(which I have not seen at time of writing slides)* |
|-------------|---|---|
| Signatures | draft-ounsworth-pq-composite-sigs-05
 • Defines composite dual signatures
 • Stable, mature draft.
 • Currently references the composite keys draft, but could easily be made to work with multi-cert instead or in addition. | |
| Encryption | draft-ounsworth-pq-composite-encryption-00
 • Defines composite hybrid encryption for use with CMS EnvelopedData
 • Still undergoing heavy design iteration.
 • Currently references the composite keys draft, but could easily be made to work with multi-cert instead or in addition. | |
We heard feedback at the Sept 13 interim LAMPS mtg that explicit is preferred.

- That is, providing an ASN.1 “factory” for producing and using pre-defined pairs of algs.

Still working on Explicit Composite ASN.1.

Plan to re-work to make Generic a sub-type of Explicit

- ie register an OID for “pk-AnyWithAny”

Security properties of composite keys (for comparison against a multi-cert approach):

- Strongly binds multiple keys to same identity.
- Can enforce strong multi-key binding to the root CA.
- Allows certificate issuer to control whether sub-keys must be used in AND or OR mode.
Mature draft, no change since last time.

- Some design decisions that we'll bring up if / when this gets WG Adoption.

Working on Explicit Composite ASN.1 for defining SigAlgs of pre-defined pairs.

- Regardless of how pub keys are conveyed (composite vs multi-cert), you’ll need a mechanism for producing a multi-key signature.

- This draft can easily work with composite or multi-cert.
Goal: composite hybrid encryption for use with CMS EnvelopedData

- IE given a recipient with multiple KEM, KeyEx, and/or Encr public keys, produce an EnvelopedData that requires all their private keys to open it.

Still undergoing heavy design iteration .

Debate over what interface it should expose:

- **KeyTrans**: Take a CEK and a recipient (composite / multi) pub key, and produces an enciphered CEK. This would fit directly into KeyTransRecipientInfo.
- **KEM**: Take a recipient (composite / multi) pub key, and produce a shared secret and an enciphered shared secret. This would fit into Ludovic's new KEM RecipientInfo draft.

Debate over underlying mechanism:

1. Establish a shared secret under each algorithm, use these (via a KDF?) as one-time-pad XOR keys to wrap the CEK.
 - Advantage: fewer parameters to go stale over time. Is a KeyTrans.
2. Establish a shared secret under each algorithm, roll these through a KDF to produce an AES key; AES-wrap the CEK.
 - Advantage: more standard, follows NIST SP 800-56C-r2. Could be either KeyTrans or KEM.