

LISP-FIX Cloud Native Anomaly Detection Using LISP Aggregation of IPFIX Sampling

Sharon Barkai, Dr. Aviv Yehezkel

Uniform Sampling Outperforms Probing

Auto-encoder Losses Transfer Learning, using only samples of the data

How does Uniform Small-Samples Detect App Anomalies

Auto-Encoder 1

Training is based on **specific** aggregated computer network data Encoded Input Sequence Decoder Encoder Representation time window BEFORE n intervals l-n sliding window length z(n) n 0 to current time window

Method	Un-norm 18	Kitsune [10]	Norm 18	Norm 12+18
Precision	0.28	0.43	0.58	0.51
Recall	0.40	0.11	0.38	0.60
F1 Score	0.33	0.17	0.45	0.55

Probing Any Process on Any Server, Any to Any Rack Links is Hard

Uniform Sampling Problem

Monitoring Links or Servers is Difficult

Link Probing

3

<u>Any specific link is hard only captures a fraction of per cloud native</u> application behavior

<u>All</u> the links is impossible due to sheer volume, a 50 rack segment = 100s of Tbps

Server Agents

Increases complexity and attack surface by orders of magnitude

Agents can and have brought attackers right into the <u>OS soft belly</u>

Default IPFIX

Switch based sampling aggregation will result in random mix of applications traffic, none of the partitions will likely have Uniform Sampling of any of the Apps.

Logical IPFIX aggregation per application can <u>Solve Uniform Sampling</u>

App Samples Aggregated On Cyber CFN

Standard Sample Steering → Realtime Uniform Sample per App

IPFIX + LISP-FIX Algorithmic EID Steering Of Samples from Switch/Vswitch exporters

Next-Gen Sampling Analysis

Normalized Uniform Small Samples per Application

- Latest AI technology can instantly detect anomalies \bullet
 - Based on <u>normalized uniform **small** samples</u> of application 0 traffic.
 - Proven in Gbps size sites, municipalities, hospitals 0
 - Sampling simulations provides higher accuracy than probes 0

Method	Un-norm 18	Kitsune [10]	Norm 18	Norm 12+18
Precision	0.28	0.43	0.58	0.51
Recall	0.40	0.11	0.38	0.60
F1 Score	0.33	0.17	0.45	0.55

Reducing 100Tbps to Tbps samples to Gbps partitions Each partition is a uniform sample of the cloud native application

We therefore:

- LISP-FIX in switches steers built-in sampling export 0
- Records are aggregated by dedicated encoders per app 0

LISP-NEXAGON Parking Detection Deployment

NYC Nexar, Tokyo AECC

Sharon Barkai

Scale & Spectrum of AECC Architecture

Using Hierarchy and Layering

The Geolocation **Service Key-Issue**

To Utilize a Geospatial Area: Vehicle-to-Service Uploads Are Consolidated

Non-Random Association Between Vehicles and Geolocation Service Instance

<u>Client-Service association challenges:</u>

Transparent re-resourcing per traffic density in Geolocation Service Area

Geoprivacy of vehicles uploading or subscribing to Geolocation Service

Seamless geospatial contextswitching for vehicles while driving between areas

Identity preservation while toggling between carriers while in a service area

Solving Scale and Use-Case Spectrum

By Leveraging LISP Layering / LISP-Nexagon Hierarchy

<u>Crowd-Scaled Concurrency, Throughput, Latency</u>

- Uploads partitioned to H3EIDs, scale connected cars and coverage areas
- LISP Signal-Free Propagation form H3EIDs is O(changes) not O(uploads)
- Edges RLOCs pre-allocated per latency to mobile carriers IP Anchors

Layering Protections

- Transparent resource reallocation of H3EIDServices per road traffic (H3EID)
- Seamless geospatial context switching without mobile resolutions (H3EID)
- Multi-carrier ID preservation and IP geoprivacy of Vehicle systems (V-EID)

