LPWAN WG

WG Chairs:
Alexander Pelov a@ackl.io
Pascal Thubert pthubert@cisco.com

AD: Eric Vyncke
<evyncke@cisco.com>

LPWAN@IETF112

IETF 112, Virtual, November 9th, 2021
Note Well

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF "contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

• By participating in the IETF, you agree to follow IETF processes and policies.
• If you are aware that any IETF contribution is covered by patents or patent applications that are owned or controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.
• As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic records of meetings may be made public.
• Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
• As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.
IETF meetings, virtual meetings, and mailing lists are intended for professional collaboration and networking, as defined in the IETF Guidelines for Conduct (RFC 7154), the IETF Anti-Harassment Policy, and the IETF Anti-Harassment Procedures (RFC 7776). If you have any concerns about observed behavior, please talk to the Ombudsteam, who are available if you need to confidentially raise concerns about harassment or other conduct in the IETF.

The IETF strives to create and maintain an environment in which people of many different backgrounds are treated with dignity, decency, and respect. Those who participate in the IETF are expected to behave according to professional standards and demonstrate appropriate workplace behavior.

IETF participants must not engage in harassment while at IETF meetings, virtual meetings, social events, or on mailing lists. Harassment is unwelcome hostile or intimidating behavior -- in particular, speech or behavior that is aggressive or intimidates.

If you believe you have been harassed, notice that someone else is being harassed, or have any other concerns, you are encouraged to raise your concern in confidence with one of the Ombudspersons.
Definitive information is in the documents listed below and other IETF BCPs.

For advice, please talk to WG chairs or ADs:

- **BCP 9** (Internet Standards Process)
- **BCP 25** (Working Group processes)
- **BCP 25** (Anti-Harassment Procedures)
- **BCP 54** (Code of Conduct)
- **BCP 78** (Copyright)
- **BCP 79** (Patents, Participation)

Reminder:

Minutes are taken *
This meeting is recorded **
Presence is logged ***

* All: Please contribute online to the minutes at: https://codimd.iertf.org/notes-iertf-112-lpwan
** Recordings and Minutes are public and may be subject to discovery in the event of litigation
*** Based on Meetecho Attendance Record. You can log once and only once to each session.
Minute takers, jabber scribes

• Minutes
 – CodiMD: https://codimd.ietf.org/notes-ietf-112-lpwan
 – Minute takers volunteers?

• Remote participation
 – Meetecho: https://meetings.conf.meetecho.com/ietf112/?group=lpwan&short=&item=1

• Mailing list: lp-wan@ietf.org
 – To subscribe: https://www.ietf.org/mailman/listinfo/lp-wan

• Meeting materials: https://datatracker.ietf.org/meeting/112/agenda/lpwan-drafts.pdf
Agenda bashing

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>Opening, agenda bashing (Chairs)</td>
<td>5mn</td>
</tr>
<tr>
<td></td>
<td>• Note-Well, Scribes, Agenda Bashing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Status of drafts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Presenters: The Chairs</td>
<td></td>
</tr>
<tr>
<td>14:35</td>
<td>LPWAN Architecture and general newcomer presentation</td>
<td>5mn</td>
</tr>
<tr>
<td></td>
<td>• Presenter: Alexander Pelov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Associated drafts: draft-ietf-lpwan-architecture</td>
<td></td>
</tr>
<tr>
<td>14:40</td>
<td>Yang Data Model for SCHC</td>
<td>15mn</td>
</tr>
<tr>
<td></td>
<td>• Presenter: Laurent Toutain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Associated drafts: draft-ietf-lpwan-schc-yang-data-model</td>
<td></td>
</tr>
<tr>
<td>14:55</td>
<td>SCHC-over-SigFox</td>
<td>15mn</td>
</tr>
<tr>
<td></td>
<td>• Presenters: Juan Carlos Zuniga / Sergio Aguilar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Associated drafts: draft-ietf-lpwan-schc-over-Sigfox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• draft-ietf-lpwan-schc-compound-ack</td>
<td></td>
</tr>
</tbody>
</table>
Agenda bashing (cont.)

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter(s)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:10</td>
<td>SCHC-over-NBIOT</td>
<td>Ana Minaburo</td>
<td>10mn</td>
</tr>
<tr>
<td></td>
<td>• Associated drafts: draft-ietf-lpwan-schc-over-nbiot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:20</td>
<td>SCHC adoption within the LoRa Alliance</td>
<td>Dominique Barthel</td>
<td>5mn</td>
</tr>
<tr>
<td>15:25</td>
<td>Future of SCHC-over-PPP</td>
<td>Pascal Thubert</td>
<td>5mn</td>
</tr>
<tr>
<td>15:30</td>
<td>Meetecho ends</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2022</td>
<td>Produce a Standards Track document for SCHC over NBIOT</td>
<td>draft-ietf-lpwan-schc-over-nbiot</td>
</tr>
<tr>
<td></td>
<td>Produce a Standards Track document to enable operations, administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and maintenance (OAM) to the LPWAN device, including support for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>delayed or proxied liveness verification (Ping)</td>
<td></td>
</tr>
<tr>
<td>Oct 2021</td>
<td>Produce a Standards Track document for SCHC over SigFox</td>
<td>draft-ietf-lpwan-schc-over-sigfox</td>
</tr>
<tr>
<td>Feb 2021</td>
<td>Produce a Standards Track document to define the generic data models to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>formalize the compression and fragmentation contexts for LPWANs</td>
<td></td>
</tr>
<tr>
<td>Dec 2020</td>
<td>Produce Standard Track documents to apply SCHC IPv6/UDP over the baseline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>technologies</td>
<td></td>
</tr>
<tr>
<td>May 2020</td>
<td>Perform SCHC Maintenance, including enabling SCHC mechanisms for Upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>layer Protocols</td>
<td></td>
</tr>
</tbody>
</table>
Document's advancement

<table>
<thead>
<tr>
<th>Document</th>
<th>Date</th>
<th>Status</th>
<th>IPR</th>
<th>AD / Shepherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-lpwan-architecture-00</td>
<td>2021-05-18</td>
<td>I-D Exists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPWAN Static Context Header Compression (SCHC) Architecture</td>
<td>10 pages</td>
<td>WG Document: Informational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-compound-ack-01</td>
<td>2021-10-18</td>
<td>I-D Exists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHC Compound ACK</td>
<td>9 pages</td>
<td>WG Document</td>
<td></td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-nbiot-06</td>
<td>2021-10-25</td>
<td>I-D Exists</td>
<td></td>
<td>Éric Vyncke</td>
</tr>
<tr>
<td>SCHC over NB-IoT</td>
<td>21 pages</td>
<td>WG Document Feb 2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-sigfox-08</td>
<td>2021-10-24</td>
<td>I-D Exists</td>
<td></td>
<td>Éric Vyncke</td>
</tr>
<tr>
<td>SCHC over Sigfox LPWAN</td>
<td>33 pages</td>
<td>WG Document Oct 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-yang-data-model-05</td>
<td>2021-09-09</td>
<td>I-D Exists</td>
<td></td>
<td>Éric Vyncke</td>
</tr>
<tr>
<td>Data Model for Static Context Header Compression (SCHC)</td>
<td>51 pages</td>
<td>WG Document Reviews: yangdoctors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LPWAN@IETF112 Agenda / Status: SCHC over PPP work stalled @ intarea WG
LPWAN Architecture and general newcomer presentation

Alexander Pelov (a@ackl.io)
Pascal Thubert (pthubert@cisco.com)
Ana Minaburo (ana@ackl.io)
Low-Power Wide-Area Networks
RFC 8376: LPWAN Architecture
<table>
<thead>
<tr>
<th>Function/Technology</th>
<th>LoRaWAN</th>
<th>NB-IoT</th>
<th>Sigfox</th>
<th>Wi-SUN</th>
<th>IETF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor, Actuator, device, object</td>
<td>End Device</td>
<td>User Equipment</td>
<td>End Point</td>
<td>Leaf Node</td>
<td>Device (DEV)</td>
</tr>
<tr>
<td>Transceiver Antenna</td>
<td>Gateway</td>
<td>Evolved Node B</td>
<td>Base Station</td>
<td>Router Node</td>
<td>Radio Gateway</td>
</tr>
<tr>
<td>Server</td>
<td>Network Server</td>
<td>PDN GW/ SCEF*</td>
<td>Service Center</td>
<td>Border Router</td>
<td>Network Gateway (NGW)</td>
</tr>
<tr>
<td>Security Server</td>
<td>Join Server</td>
<td>Home Subscriber Server</td>
<td>Registration Authority</td>
<td>Authent. Server</td>
<td>LPWAN- AAA Server</td>
</tr>
<tr>
<td>Application</td>
<td>Application Server</td>
<td>Application Server</td>
<td>Network Application</td>
<td>Application (App)</td>
<td></td>
</tr>
</tbody>
</table>
Low-Power Wide-Area Networks

License free
In licensed spectrum

25 mW transmission power
15-50 km rural outdoor
20 years on simple battery
2-3 km urban indoor

Data-over-NAS
Guard-bands
In-band

Duty cycling
Collisions
Acknowledgements

No scheduling
Star topology
ALOHA

Device-initiated com
Huge densities
Asymmetric links
Low throughput

Throughput:
Hundreds bps

Payload Size:
Tens of Bytes

Uplink:
Few Messages

Downlink:
Even fewer messages
SCHC Architecture

• Provide the reference architecture
 – Modes:
 • SCHC Device/SCHC Gateway
 • SCHC Peers

• RFC 8724 and Rules
 – Introduces Yang Data Model
 – Discusses rule creation and update
 – Discusses rule installation and discovery
SCHC Architecture

Device
Application

End-Device

Network
Application

Application
Server
SCHC Architecture

SCHC Device

NGW IP/UDP/CoAP

SCHC Gateway

Application Server

AAA Perf Mgmt

LPWAN@IETF112
SCHC Architecture

- SCHC Device
- CORECON
- SCHC Gateway
- Rule Manager
- Rules
- SCHC CD-FR
- AAA
- Perf
- Mgmt

LPWAN@IETF112
SCHC Architecture

CORECONF

Rule Manager

Rules

SCHC CD-FR

SCHC Gateway

IP/UDP/CoAP

IP

SCHC Device

AAA

Perf

Mgmt
SCHC Architecture

SCHC Device

- Rule Manager
- Rules
- SCHC CD-FR

SCHC Gateway

- Rule Manager
- Rules
- SCHC CD-FR

CORECONF

IP/UDP/CoAP

IP

SCHC

LPWAN@IETF112

21
SCHC Architecture

![SCHC Architecture Diagram](image-url)

- Rule Manager
- Rules
- SCHC CD-FR

Protocol

SCHC Peer

CORECONF

SCHC Peer

Protocol

Rule Manager

Rules

SCHC CD-FR

SCHC Peer

Protocol

Rule Manager

Rules

SCHC CD-FR

SCHC Peer
Next Steps in Architecture

• Steps to Provision and Install a SCHC Device
• Steps to Generate and Publish Rules
• Steps to Provision Network for Device Type
• Steps to Identify Device Type and get Rule Set
• State maintenance in the Network
• Steps to Deprecate (forget) a Device Type
draft-ietf-lpwan-schc-yang-data-model
Version 20210817

Authors:
Laurent Toutain (laurent.toutain@imt-atlantique.fr)
Ana Minaburo (ana@ackl.io)
Cosmetic

Add a « - »

```cpp
leaf dtag-size {
  type uint8;
  default "0";
  description
  "Size in bit of the DTag field";
}

leaf w-size {
  when "not(derived-from(../fragmentation-mode, 'fragmentation-mode-no-ack'))";
  type uint8;
  description
  "Size in bit of the window field";
}

leaf fcn-size {
  type uint8;
  mandatory true;
  description
  "Size in bit of the FCN field";
}
```
Cosmetic

Rename types be use RFC8724 terminology and shorter IDs

```
leaf field-id {
  type schc:field-id-type;
  mandatory true;
  description "Field ID, identify a field in the header with a YANG reference."
}

leaf field-length {
  type schc:field-length-type;
  mandatory true;
  description "Field Length in bit or through a function defined as a YANG
      type."
}

leaf field-position {
  type uint8;
  mandatory true;
  description "Field position in the header is a integer. If the field in
      the header the value is 1, and incremented for each repetition of the
      field. 0 means that the position is not important and order may change when
deployment happens."
}

leaf direction-indicator {
  type schc:direction-indicator-type;
  mandatory true;
  description "Direction Indicator, a YANG reference to say if the packet
      is a downlink or uplink."
}
```
Compression

- Simplify TV (remove union)
Compression

- Rename target-value

```c
841+ list target-value {
842+   key "position";
843+   uses tv-struct;
844+   description
845+     "A list of value to compare with the header field value. If target value
846+     is a singleton, position must be 0. For matching-list, should be consecutive
847+     values starting from 1."
848+
849+ }
```

- « rule » and « entry » are singular
No-Compression

- Add a new type of rule for no-compression
- Remove version field (not in RFC8724)
Fragmentation

• Add l2-word-size

```
    grouping fragmentation-content {
        description
        "This grouping defines the fragmentation parameters for all the modes (No Ack, Ack Always and Ack on Error) specified in RFC 8724."

        leaf l2-word-size {
            type uint8;
            default "8";
            description
            "Size in bit of the layer 2 word";
        }
    }
```
Added Compound Ack

- See draft
Added Compound Ack

```
1002+    leaf bitmap-format {
1003+        type schc:bitmap-format-type;
1004+        when "derived-from(../fragmentation-mode, 'fragmentation-mode-ack-on-error')";
1005+        default "schc:bitmap-RFC8724";
1006+        description
1007+            "How the bitmaps are included in the Ack message."
1008+    }
```
Is it usefull?

- Has disappear from RFC 8724

```plaintext
812  leaf maximum-window-size {
813    type uint16;
814    description "by default \(2^{wsize} - 1\);"
815  }
```
relations between values

- add MUST statement in compression rules

```plaintext
leaf matching-operator {
  type schc:mo-type;
  must ".\target-value or derived-from-or-self(., 'mo-ignore')" {
    error-message "mo-equal, mo-msb and mo-match-mapping require target-value";
    description
    "target-value is not required for mo-ignore";
  }
  must "not (derived-from-or-self(., 'mo-msb')) or .../matching-operator-value" {
    error-message "mo-msb requires length value";
  }
  mandatory true;
  description
  "MO: Matching Operator";
}
```

- derived-from-or-self to match identityref
relations between values

• add WHEN statement in fragmentation rules
Other relations between values?

- Test if MSB arg is shorter than field-length?
 - How to deal with length functions?
- Test is LSB/Map-send CDA with MSB/M-M MO?
 - Not in the spec
- Any other???
Conclusion

• New version is on github lp-wan repository
 – Check against RFC 8724 for fragmentation

• Used yangson to check rules
 – Done during Hackathon
 • Transform a openSCHC JSON file to a JSON following YANG DM
 – For Compression, Fragmentation To Be Done
 – CORECONF TBD
 – OpenSchc version will be released soon.
Example openSCHC

<table>
<thead>
<tr>
<th>Rule 6/3</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPV6.VER</td>
<td>4</td>
</tr>
<tr>
<td>IPV6.TC</td>
<td>8</td>
</tr>
<tr>
<td>IPV6.FL</td>
<td>20</td>
</tr>
<tr>
<td>IPV6.LEN</td>
<td>16</td>
</tr>
<tr>
<td>IPV6.NXT</td>
<td>8</td>
</tr>
<tr>
<td>IPV6.HOP_LMT</td>
<td>8</td>
</tr>
<tr>
<td>IPV6.DEV_PREFIX</td>
<td>64</td>
</tr>
<tr>
<td>IPV6.DEV_IID</td>
<td>64</td>
</tr>
<tr>
<td>IPV6.APP_PREFIX</td>
<td>64</td>
</tr>
<tr>
<td>IPV6.APP_IID</td>
<td>64</td>
</tr>
<tr>
<td>ICMPV6.TYPE</td>
<td>8</td>
</tr>
<tr>
<td>ICMPV6.CODE</td>
<td>8</td>
</tr>
<tr>
<td>ICMPV6.CKSUM</td>
<td>16</td>
</tr>
<tr>
<td>ICMPV6.IDENT</td>
<td>16</td>
</tr>
<tr>
<td>ICMPV6.SEQNO</td>
<td>var</td>
</tr>
</tbody>
</table>
Example openSCHC

```
{ "ietf-schc:schc": { "rule": [{ "comp-decomp-action": 'cda-not-sent',
    "direction-indicator": 'di-bidirectional',
    "field-id": 'fid-ipv6-version',
    "field-length": '4',
    "field-position": 1,
    "matching-operator": 'mo-equal',
    "target-value": [{ "position": 0,
        "value": 'AAY=' }],

    { "comp-decomp-action": 'cda-not-sent',
    "direction-indicator": 'di-bidirectional',
    "field-id": 'fid-ipv6-trafficclass',
    "field-length": '8',
    "field-position": 1,
    "matching-operator": 'mo-equal',
    "target-value": [{ "position": 0,
        "value": 'AA="' }],

    { "comp-decomp-action": 'cda-not-sent',
    "direction-indicator": 'di-bidirectional',
    "field-id": 'fid-ipv6-trafficclass',
    "field-length": '8',
    "field-position": 1,
    "matching-operator": 'mo-equal',
    "target-value": [{ "position": 0,
        "value": 'AA="' }]
    }]
}
```
Dependancies

- RFC 8724: Rule format & IPv6 UDP fields
- RFC 8824: CoAP OSCORE field-id
- OAM: ICMPv6 field-id

- YANG DM: Compound Ack
- Frag Rule format
Tree

```plaintext
module: ietf-schc
  +--rw schc
     +--rw version?  uint64
     +--rw rule* [rule-id-value rule-id-length]
       +--rw rule-id-value  uint32
       +--rw rule-id-length  uint8
       +--rw (nature)?
          +--rw 12-word-size?  uint8
          +--rw direction  schc:direction-indicator-type
          +--rw dtag-size?  uint8
          +--rw w-size?  uint8
          +--rw fcn-size  uint8
          +--rw RCS-algorithm?  RCS-algorithm-type
          +--rw maximum-window-size?  uint16
          +--rw retransmission-timer?  uint64
          +--rw inactivity-timer?  uint64
          +--rw max-ack-requests?  uint8
          +--rw maximum-packet-size?  uint16
          +--rw fragmentation-mode  schc:fragmentation-mode-type
          +--rw (mode)?
             +--rw (no-ack)
             +--rw (ack-always)
             +--rw (ack-on-error)
                +--rw tile-size?  uint8
                +--rw tile-in-All?  schc:all1-data-type
                +--rw ack-behavior?  schc:ack-behavior-type
                +--rw bitmap-format?  schc:bitmap-format-type
          +--rw (compression)
             +--rw entry* [field-id field-position direction-indicator]
                +--rw field-id  schc:field-id-type
                +--rw field-length  schc:field-length-type
                +--rw field-position  uint8
                +--rw direction-indicator  schc:direction-indicator-type
                +--rw target-value* [position]
                   +--rw value?  binary
                   +--rw position  uint16
                +--rw matching-operator  schc:matching-operator-type
                   +--rw matching-operator-value* [position]
                      +--rw value?  binary
                      +--rw position  uint16
                   +--rw comp-decomp-action  schc:comp-decomp-action-type
                   +--rw comp-decomp-action-value* [position]
                      +--rw value?  binary
                      +--rw position  uint16
```
draft-ietf-lpwan-schc-over-sigfox-08

Juan Carlos Zúñiga (Sigfox), Carles Gómez, Sergio Aguilar (UPC),
Laurent Toutain (IMT-Atlantique),
Sandra Cáspedes, Diego Wistuba (U Chile)
Draft updates since IETF 111

• rev 05 -> 06
 • SCHC Compound ACK mechanism added
• rev 06 -> 07
 • SCHC Compound ACK split as generic mechanism for all LPWANs
 • Yang model description added to SCHC Compound ACK
• rev 07 -> 08
 • Added normative reference to SCHC Compound ACK usage for SCHC/Sigfox, together with signaling examples
 • SCHC-Abort definitions added
Hackathon – SCHC/Sigfox

• Objectives:
 • Use SCHC over Sigfox draft in a ”real case” scenario
 • Mini weather station: Measure temperature and humidity
 • Send JSON file with measured data from Sigfox Device

• Equipment:
 • LoPy4
 • Pysense

• Codebase
 • SCHC over Sigfox Project in github
 • url: https://github.com/schc-over-sigfox
Implementation and Results

- LoPy4 + Pysense
 - Two threads
 - One thread in charge of sensing
 - Second thread handles SCHC over Sigfox (i.e., fragmentation, transmissions, etc.)
 - Both threads are connected using a list
- JSON file format:
 1- `{"temp": XXX, "hum": YYY, "bat_vol": ZZZ, "light": ABC}
 2- `{"temp": XXX, "hum": YYY}
- SCHC Fragments per JSON
 - 1- 7 SCHC Fragments (1 window)
 - 2- 4 SCHC Fragments

Results

Case 1

- W: 0
- 001 - , "light": 58.64736
- 010 - , "hum": 61903
- 100 - "temp": 21.
- 101 - 4.872366,
- 110 - {"bat_vol": [4, 5]}

Case 2

- W: 0
- 100 - p": 21.8871
- 101 - 54949, "tem
- 110 - {"hum": 57,
- 111 - 5}

Payload

1. {"hum": 63.08279, "temp": 15.84892)
2. {"hum": 53.7601, "temp": 19.52763}
3. {"hum": 45.95958, "temp": 21.59757}
4. {"hum": 48.65317, "temp": 21.55467}

Temperature

Humidity
Next steps

• Verify latest details on implementation

• Test one more use case (e.g. asset tracking)
Thanks!
draft-ietf-lpwan-schc-compound-ack-01

Juan Carlos Zúñiga (Sigfox), Carles Gómez, Sergio Aguilar (UPC),
Laurent Toutain (IMT-Atlantique),
Sandra Céspedes, Diego Wistuba (U Chile)
Draft history

• SCHC Compound ACK message definition and examples added to draft-ietf-schc-over-Sigfox rev 06

• WG decision to make compound ACK mechanism generic for all LPWAN technologies on a standalone draft

• Implementation of SCHC Compound ACK tested over Sigfox

• draft-ietf-lpwan-schc-compound-ack-00 posted in July’21, and revised in Oct’21

• WG Last Call held in October-November 2021
Backup slides

• SCHC Compound ACK Definition

• Message format

• Message sequence examples
SCHC Compound ACK – Definition

• The SCHC Compound ACK:
 • Only reports windows with fragment losses
 • Includes W field for each bitmap
 • May not fit all bitmaps of all windows for a SCHC packet
 • Has variable size
 • Is compatible with the SCHC Receiver Abort and ACK Failure message formats (RFC8724)

• ACK messages reduction when using SCHC Compound ACK:
 • SCHC Compound ACK messages = Regular SCHC ACKs – (# of windows – 1)

Example

```
SCHC Packet: 14 tiles
Window size: 7 tiles

2 SCHC ACK Messages
```

```
Sender
|------W=0, FCN=6------|
|------W=0, FCN=5------|
|------W=0, FCN=4------|
|------W=0, FCN=3------|
|------W=0, FCN=2-X-----|
|------W=0, FCN=1------|
|------W=0, FCN=0------|  Bitmap: 111011
(no ACK - no DL Enable)
|------W=1, FCN=6------|
|------W=1, FCN=5------|
|------W=1, FCN=4------|
|------W=1, FCN=3------|
|------W=1, FCN=2------|
|------W=1, FCN=1-X-----|

Receiver

[<- SCHC Compound ACK]  W=0,111011 - W=1,111101

[-----W=0, FCN=2------] W=0 completed
[-----W=1, FCN=1------] W=1 completed

DL Enable

[-----W=1, FCN=7------]  Bitmap: 111101

[<- ACK, C=1, W=1 --]
(End)
```
SCHC Compound ACK – Message Format

- When ACK-on-Error mode is used for UL fragmentation, SCHC Compound ACKs MUST be used the in the downlink responses
- W + Bitmap groups MUST be ordered from the smallest window number to the largest
Example – SCHC Packet 28 tiles – Normal SCHC ACK

5 SCHC ACK Messages

W = 00

 Sender Receiver
|----- W=0, FCN=6------>
|----- W=0, FCN=5------>
|----- W=0, FCN=4------>
|----- W=0, FCN=3------>
|----- W=0, FCN=2------>
|----- W=0, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=0, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=1, FCN=6------>
|----- W=1, FCN=5------>
|----- W=1, FCN=4------>
|----- W=1, FCN=3------>
|----- W=1, FCN=2------>
|----- W=1, FCN=1------>

W = 01

 Sender Receiver
|----- W=0, FCN=2------>

 DL Enable

 <--- ACK, W=1, C=0 --- Bitmap: 111101

 (no ACK)

|----- W=1, FCN=6------>
|----- W=1, FCN=5------>
|----- W=1, FCN=4------>
|----- W=1, FCN=3------>
|----- W=1, FCN=2------>
|----- W=1, FCN=1------>

W = 11

 Sender Receiver
|----- W=1, FCN=6------>
|----- W=1, FCN=5------>

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>

W = 10

 DL Enable

 <--- ACK, W=2, C=0 --- Bitmap: 1101111

 (no ACK)

|----- W=2, FCN=6------>
|----- W=2, FCN=5------>
|----- W=2, FCN=4------>
|----- W=2, FCN=3------>
|----- W=2, FCN=2------>
|----- W=2, FCN=1------>

W = 11

 DL Enable

 <--- ACK, W=3, C=0 --- Bitmap: 1110111

 (no ACK)

|----- W=3, FCN=6------>
|----- W=3, FCN=5------>
|----- W=3, FCN=4------>
|----- W=3, FCN=3------>
|----- W=3, FCN=2------>
|----- W=3, FCN=1------>
Example – SCHC Packet 28 tiles – Compound ACK

2 SCHC ACK Messages

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=0</td>
<td>FCN=6</td>
</tr>
<tr>
<td>W=0</td>
<td>FCN=5</td>
</tr>
<tr>
<td>W=0</td>
<td>FCN=4</td>
</tr>
<tr>
<td>W=0</td>
<td>FCN=3</td>
</tr>
<tr>
<td>W=0</td>
<td>FCN=2</td>
</tr>
<tr>
<td>W=0</td>
<td>FCN=1</td>
</tr>
</tbody>
</table>
| W=0 | FCN=0 | Bitmap: 111011

(no ACK – no DL Enable)

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=1</td>
<td>FCN=6</td>
</tr>
<tr>
<td>W=1</td>
<td>FCN=5</td>
</tr>
<tr>
<td>W=1</td>
<td>FCN=4</td>
</tr>
<tr>
<td>W=1</td>
<td>FCN=3</td>
</tr>
<tr>
<td>W=1</td>
<td>FCN=2</td>
</tr>
<tr>
<td>W=1</td>
<td>FCN=1</td>
</tr>
</tbody>
</table>
| W=1 | FCN=0 | Bitmap: 111101

(no ACK – no DL Enable)

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=2</td>
<td>FCN=6</td>
</tr>
<tr>
<td>W=2</td>
<td>FCN=5</td>
</tr>
<tr>
<td>W=2</td>
<td>FCN=4</td>
</tr>
<tr>
<td>W=2</td>
<td>FCN=3</td>
</tr>
<tr>
<td>W=2</td>
<td>FCN=2</td>
</tr>
<tr>
<td>W=2</td>
<td>FCN=1</td>
</tr>
</tbody>
</table>
| W=2 | FCN=0 | Bitmap: 110111

(Bitmap: 110111)

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=3</td>
<td>FCN=6</td>
</tr>
<tr>
<td>W=3</td>
<td>FCN=5</td>
</tr>
<tr>
<td>W=3</td>
<td>FCN=4</td>
</tr>
<tr>
<td>W=3</td>
<td>FCN=3</td>
</tr>
<tr>
<td>W=3</td>
<td>FCN=2</td>
</tr>
<tr>
<td>W=3</td>
<td>FCN=1</td>
</tr>
</tbody>
</table>
| W=3 | FCN=0 | Bitmap: 111011

(Bitmap: 111011)

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=0</td>
<td>W=1, W=2, W=3</td>
</tr>
<tr>
<td>W=0</td>
<td>FCN=2</td>
</tr>
<tr>
<td>W=1</td>
<td>FCN=1</td>
</tr>
<tr>
<td>W=2</td>
<td>FCN=4</td>
</tr>
<tr>
<td>W=3</td>
<td>FCN=2</td>
</tr>
</tbody>
</table>

(Bitmap: 111011)

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=3</td>
<td>FCN=7</td>
</tr>
</tbody>
</table>

(Bitmap: 111011)

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=3</td>
<td>C=1</td>
</tr>
</tbody>
</table>

(Bitmap: 111101)

Retransmission
Thanks!
draft-ietf-lpwan-schc-over-nbiot-06

Authors:
Edgar Ramos
Ana Minaburo
Reviews

• Reviews from ML
 • Thanks to Ivaylo Petrov & Laurent Toutain for your inputs
Principal changements

• Nits

• Terminology
 • Device
 • RGW-eNB
 • NGW-MME
 • NGW-SGSN
 • NGW-PGW
 • NGW-SCEF
NB-IoT Architecture
Thank you

• Last Call?
RFC 8724, 9011 adoption at LoRa Alliance

Authors:
Dominique Barthel <dominique.barthel@orange.com>
Olivier Gimenez <ogimenez@semtech.com>
IPv6 support at LoRa Alliance

• First use case is DLMS over LoRaWAN
 – DLMS is mainly energy metering application protocol
 – Reuse of existing DLMS/UDP/IPv6 stack, with SCHC/LoRAWAN underneath

• IPv6_over_LoRaWAN Technical Specification being completed
 – Editors: Acklio, Semtech, IMT Atlantique
 – Contributors: 10 companies/institutions
 – Mandates compliance with RFC8724, 9011 and
 – Recommends to pick compression rule with min. Compression Residue
 – Recommends shorter Inactivity and Retransmission Timers than RFC9011 defaults, based on application
Next

• Vote at the Technical Committee meeting Nov 16th
• Write DLMS/UDP/IPv6/LoRaWAN certification document
• Discussions with CSA (formerly Zigbee Alliance) on LoRaWAN in Connected Home over IP (Matter)
draft-thubert-intarea-schc-over-ppp

Authors:
Pascal Thubert <pthubert@cisco.com>
• SCHC over PPP (and then PPP over foo)
• Enables SCHC over
 – Serial, 3GPP
 – Ethernet with PPPoE, Wi-Fi with Ethernet
• Signals
 – A new compression for PPP (Updates RFC 5172)
 – The URL of the data model for the compression
 – Dependency on draft-ietf-lpwan-schc-yang-data-model
Draft status: Stable

- 03 expired
- No discussion at INT AREA
- Co Authors?
- Add applicability statement?
- Possible extensions?