draft-decraeneginsberg-lsr-isis-fast-flooding-00

B. Decraene(Orange)
L. Ginsberg(Cisco Systems)
T. Li(Arista Networks)
G. Solignac
M. Karasek(Cisco Systems)
C. Bowers(Juniper Networks, Inc.)
G. Van de Velde(Nokia)
P. Psenak(Cisco Systems)
T. Przygienda(Juniper)
Summary

September, 2021 authors of:
 draft-decraene-lsr-isis-flooding-speed
 draft-ginsberg-lsr-isis-flooding-scale
met and agreed to produce a combined draft.
Consensus Points

Many Congestion Control Algorithms are possible
 Implemented on Tx Side
 Consistency not required for interoperability

Flow Control Requires Specification for interoperability

Best way forward is to provide tools so implementors can make use of what they believe is best
Combined draft content

1. Introduction
3. Historical Behavior

Discusses the motivations for the work and contrasts the historical behavior (33 LSPs/second) with the goals of faster flooding.

Text from both drafts merged – as this was a consensus point there were no significant issues in producing these sections
4. Flooding Parameters TLV
 4.1. LSP Burst Window sub-TLV (from draft-decraene, renamed)
 4.2. LSP Transmission Interval sub-TLV (from draft-decraene, renamed)
 4.3. LSPs Per PSNP sub-TLV (new)
 4.4. Flags sub-TLV (new)
 4.5. Partial SNP Interval sub-TLV (new)
 4.6. Operation on a LAN interface (from draft-decraene)

5. Performance improvement on the receiver (merged text)
 5.1. Rate of LSP Acknowledgments
 5.2. Packet Prioritization on Receive
6. Congestion and Flow Control
 6.1. Overview (new introductory section)

6.2. Congestion and Flow Control algorithm: Example
 (Algorithm from draft-decraene. Description has been updated)

6.3. Congestion Control algorithm: Example 2
 (Algorithm from draft-ginsberg. Description has been updated)

Appendix A. Changes / Author Notes (Placeholder)
Appendix B. Issues for Further Discussion (Placeholder)
Next Steps

Request WG Adoption!!

Continue Work – Report/Update the draft